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We demonstrate a spatio-temporal chaos in lattice models of multidimensional and 
multicomponent media on the set of traveling waves solutions running with large enough 
velocities. We describe stability properties of such solutions, construct invariant measures with 
"good" ergodic properties concentrated on the above set and study different types of dimensions 
including the correlation dimension. 

I. INTRODUCTION 

How can a finite-dimensional dynamics appear in ex-
tended systems with dissipation and energy pumping? This 
problem has recently attracted the attention of physicists 
and mathematicians. The two cases of bounded and un-
bounded media should be treated separately. In the case of 
bounded media the explanation seems to be more or less 
clear: the linearized monodromy operator has a discrete 
spectrum and modes with big wave numbers are dumped 
due to dissipation. In the case of unbounded media the 
situation is not well understood. One of the possible mech-
anisms is that in some range of parameters there may exist 
subsets of solutions described by finite-dimensional dynam-
ical systems. Moreover some of these sets turn out to be 
stable with respect to small perturbations of initial data. 
For example, let us consider the nonlinear diffusion equa-
tion 

au 
at = feu) + "Al!.u, 

where uEIRd, 

(
a2u1 iJ2Ud) 

!:J.u= ax2 ,,,., ax2 , 

A is the matrix of coupling, " is the diffusion coefficient, 
is the nonlinear term. To illustrate the type of 

nonlinearity let us mention here the following examples: 
one-dimensional, one-component media: 
feu) =u(l-u) is the quadratic polynomial-for the 

Kolmogorov-Petrovsky-Peskunovequation (a is a param-
eter); 

f(u) =au(1-u)(u-a) is the cubic polynomial-for 
the Huxley equation (a,a are parameters); 

one-dimensional, two-component media: 
f(u,v) =(aq>(u) -av,/3u-yv) 
for Fitz-Hugh Nagumo equation (a, /3, yare parame-

ters, q> is a function). 
For the diffusion equation the following sets of solu-

tions are known: 
(a) static solutions described by the system with d 

degrees of freedom: 

(b) spatially homogeneous solutions described by the 
ordinary differential equation 

du 
dt =f(u); 

(c) traveling waves; they are solutions of the form 
u(x,t) =w(s) where s=x-ct is the traveling coordinate 
(c is the velocity of the wave) and w( 5) is the solution of 
the differential equation with dissipation 

If these sets are stable in the above sense the corresponding 
finite-dimensional dynamics is said to be "physically real-
izable." In this case the original infinite-dimensional sys-
tem can display a very complicated behavior both in time 
and in space. For example, it is known (cf. Refs. 1-4) that 
the existence of traveling waves with chaotic profiles can 
cause the appearance of space-time chaos in the medium. 
It is due to the perturbations arising in different parts of 
space in an unpredictable way and oscillating in time like a 
realization of a random process. The type of chaos that 
usually occurs for such systems, is, as a rule, not so devel-
oped as one observed and studied in Refs. 5 and 6 because 
it can be found only for special sets of solutions. 

Partial differential equations are still very difficult for 
complete analysis of chaotic behavior. In this paper we 
consider their space-time discrete versions called lattice 
models. From the physical viewpoint lattice models can 
play an independent role and serve as phenomenological 
models describing the interaction of particlelike localized 
structures in dissipative nonequilibrium media (cf. Ref. 7). 
From a mathematical viewpoint they form a broad and 
interesting class of infinite-dimensional systems displaying 
nontrivial dynamics which can be studied by applying 
some methods of the theory of finite-dimensional dynami-
cal systems. In this paper we demonstrate the spatio-

233 CHAOS 3 (2). 1993 1054·1500/93/020233-09$06.00 © 1993 American Institute of Physics 233 

 03 August 2023 01:46:15



234 Afraimovich, Pesin, and Tempelman: Traveling waves in models of media 

temporal chaos in lattice models of unbounded media 
based on the set of traveling waves running with a big 
velocity. 

Let us illustrate the main results of the paper by con-
sidering the space-time discrete version of the one-
dimensional nonlinear diffusion equation 

Uj(n+ I) =u/n) +<P(u/n»+"(Uj_l (n) -2u/n) 

+Uj+l(n» 

=h(u/n))+"(Uj_l (n) -2uj(n) 

(1.1 ) 

Here u={u j(n)}e (JRd)Z, d;;d is a characteristic of the 
medium; jEZ is the discrete spatial coordinate; iiEZ+ is 
the discrete time; <p:IRd _JRd introduces a nonlinearity, h =1 
+'1'. If d> I this represents the case of one-dimensional 
d-component media. In Sec. II we describe the case of 
multidimensional media. The equation (1.1) can be solved 
if a boundary condition at infinity is fixed. We consider 
such solutions which can grow with prescribed rates, 
namely, given ql> I, q2> I the solution u(n)=(uj(n» 
should satisfy 

L 
j>O 

The equation (1. I) with this boundary condition generates 
the infinite-dimensional nonlinear dynamical system 
(<1>"vU'., ,.,), wherevU'."., = {u = (u):lIullq"., < co} is 
the infinite-dimensional Banach space and <1>. is the non-
linear evolution operator given by the right-hand side of 
Eq. (1.1). The metric 11'11."., is called metric with 
weights. Such metrics were introduced in Ref. 8 for the 
lattice models of drift-type systems and turned out to be 
very useful for studying stability properties. In Ref. 9 they 
were used to investigate hyperbolic properties of traveling 
wave solutions in lattice models of unbounded multidimen-
sional and multicomponent media (cf. also below). 

Let us emphasize that Eq. (1.1) admits the group of 
space translations S" given by S"(u) =u+u, u, uevU'q"." 
i.e., SV commutes with the evolution operator. 

The solutions of Eq. (1.1) in the form u/n)=¢(lj 
+mn), I, mel. are said to be traveling waveS. Here mil is 
the velocity of the wave and the function tf; satisfies the 
"traveling wave equation" 

1f:(k+m +1) =h(1/J(k+I)}+"(1/J(k) -21/JCk+!) 

+tf;(k+21), ( 1.2) 

where k=/j +mn-l is the "traveling" coordinate. We 
consider only the case of "large" velocities when I> 0 and 
m;;.l+ 1. Let us set 

Xk;)=tf;(k+i- I), i= I,oo.,l+m. 

Equation (1.2) is now equivalent to the following system 
of equations 

x(l) _X(2) x(l+m-l)_x(l+m) 
k+l- k , ... , k+l - k 

The equations ( 1.3) introduce a finite-dimensional dynam-
ical system acting on d (I + m) -dimensional phase space for 
which the variabie k is the discrete time. In other words we 
have the map F. :JRd(l+m) _JRd(l+m) such that 
F"( ... ,I+m) ... '/+m' This map can be in-
terpreted as a multidimensional version of the famous He-
non map (cf. Ref. 10). Any bounded trajectory of this map 
corresponds to a bounded solution of Eq. (1.2), i.e., to a 
stationary traveling wave of the equation (1.1). 

For small enough " the hyperbolic properties of the 
map F. depend very much on the hyperbolic properties of 
the map h. For example, it was shown in Ref. 9 that if h 
has an invariant closed hyperbolic set A C JRd then F. also 
possesses an invariant closed hyperbolic set A" (cf. defini-
tions below). Moreover, it was proved in Ref. 9 that 

(1) the set of traveling wave solutions of Eq. (1.1) 
forms a finite-dimensionai smooth submanifoid .sf" in the 
infinite-dimensional phase space invariant under both evo-
lution operator and space translations; 

(2) &/. is stable in a weak sense with respect to the 
perturbations in directions transversal to it; 

(3) there exists a hyperbolic set 2'.C &/. which is 
closed and invariant with respect to both evolution opera-
tor and space translations; 

(4) the evolution operator is invertible on &f x; more-
over it is a diffeomorphism. 

The situation described above can occur for Fitz-Hugh 
Nagamo equation in some range of parameters a, {3, y. 
However, the map F. can possess strong hyperbolic prop-
erties even when the map h does not. This may happen, for 
example, when h is a one-dimensional smooth piecewise 
monotonic map. In general, one can expect the may F. to 
inherit the same (or even better) type of hyperbolic behav-
ior as the map h has. In the other cases when h has a 
strange attractor (of type of Lorenz or Lozi) F. is ex-
pected to have a strange attractor too. 

In this paper we are interested in chaotic behavior of 
traveling wave solutions of Eq. (1.1). It is worthwhile to 
emphasize that in lattice models we deal with two types of 
dynamical systems; time evolution and space translations, 
The latter is a dynamical system with multidimensional 
time, or an action of the lattice l.', t;;.l. The chaotic regime 
is irregular in time with respect to the evolution operator 
while the space translations describe a spatial distribution 
of chaotic patterns. 

The type of chaotic behavior of the evolution operator 
<1>. on the set of traveling wave solutions &/. is mainly 
determined by the map F •. Namely, we shall show that 
any finite measure f.L invariant under F" induces a measure 
I'q"., on &/. invariant under <1> •• This measure is also 
invariant under space translations. Moreover, if I' is mix-
ing, the measure 1-'., '" is also mixing with respect to both 
the evolution operator and space translations. According 
to Refs. 5 and 6 one can say that the system (1.1) displays 
a space-time chaos on the set of traveling wave solutions 
(with respect to the measure I-'q"q,)' We consider also 
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some special type of invariant measures on .!!' x playing an 
important role in applications. 

In general, .!!' x is a hyperbolic set. There is a well-
developed ergodic theory for the map <l>xl.!!' x' Namely, 
using results in Ref. II for any H61der continuous function 
cp on .!f'" we shall construct an ergodic measure f.L",q; 
(called Gibbs measure) on .!!' x invariant under both evo-
lution operator and space translation; it also has many 
"good" ergodic properties. 

We also consider the special case when.!!' x is a hyper-
bolic attractor. This means that there is an open subset 
YBxC£x such that <l>x (YBx)CYB x and 

.!!' x= n <I>:(YB x), 
• ,0 

We shall construct the Bowen-Ruelle-Sinai measure I'x 
concentrated on .!!' x and invariant under both evolution 
operator and space translations. This measure plays a spe-
cial role from physical point of view: It is the limit distri-
bution for the evolution of a smooth initial distribution 
given in &J". This measure has some "nice" ergodic prop-
erties: Under certain assumptions on the nonlinear term h 
it is mixing with respect to both time evolution and space 
translations, 

Another characteristic of chaotic behavior which has 
recently become of a great interest is the fractal dimension 
of the set.!!' x' There are many different characteristics of 
dimension type that are used to describe the fractal struc-
ture of !£". Among them there are Hausdorff dimension, 
information dimension, correlation dimension, etc. The 
most general way to introduce many of them is given by 
the generalized spectrum for dimension, Le., a one-
parameter family of characteristics of dimension type (cf. 
Ref. 12). For the appropriate value of the parameter one 
can obtain the correlation dimension-one of the most 
popular characteristic of dimension type which is often 
used for numerical calculation of fractal dimension, cf. 
Ref. 13. We apply results from this paper to our case and 
study the correlation dimension as well as other character-
istics of dimension type with respect to the evolution op-
erator and an invariant ergodic measure. OUf main result is 
that all these characteristics coincide; thus the common 
value represents the fractal dimension. We also consider 
the same problem concerning the correlation dimension 
and other characteristics of dimension type with respect to 
the group of space translations. The first but sufficiently 
restricted result in this direction was established in Ref. 14. 
We give the full solution of this problem. We show that all 
the characteristics of dimension type calculated with re-
spect to an invariant ergodic measure coincide and the 
common value is the same as the one calculated with re-
spect to the evolution operator. This property can be con-
sidered the main feature of the space-time chaos. It is 
worthwhile to emphasize that the dimensionlike character-
istics of the measure specified by the evolution operator or 
space translations are completely determined by the corre-
sponding dimensionlike characteristics of an appropriate 
measure specified by the map F x' Thus this map handles 
all the important features of the chaotic behavior of trav-

eling wave solutions of the evolution equation (related to 
ergodicity and dimension). This reflects the finite-
dimensional nature of space-time chaos in the set of trav-
eling waves in lattice models. The study of ergodic prop-
erties and dimension of the map F" is a "pure finite-
dimensional" problem and in many H structurally stable" 
cases is determined by the corresponding properties of the 
nonlinear map h. 

11. BASIC RESULTS 

We start from a brief summary of the main results in 
Ref. 9 describing hyperbolic properties of traveling wave 
solutions . 

Given if, = (qli), if,= (q,;), %> 1, q2;> 1, i= 1,00.,1 let 
us consider the set 

J!., '" = [u:'l/ (u(]) IeZ'), 

where q(j;) = q{; if };>O and q(j;) = q-;/' if j;<O and 
" ". . . .....n II . II aenotes some norm m ll<". 

It is easy to see that J! " '" is a Banach space with the 
norm 11'11., ,.,' 

We work with different values qh' }=1, 2, i=l, ... ,t 
because the growth of perturbations along a traveling wave 
has different rates in different directions. 

Let foRd Rd be a diffeomorphism of class C2, 

g:(Rd)(2'+1l' RdamapofclassC'(s>O) andx>Oareal 
number. Define the map <I>,:J! 0 .. 0. (Rd)Z' by the for-

- -- ['7'<: -

mula 

<l>x(u) = (f(u(j)l+xg({UU)}I;_ jl d), 
where u=(u(j)l and 

I 

171 = L Ihl· 
;=1 

The map <l>x determines an infinite-dimensional dy-
namical system which is the interaction of partial finite-
dimensional dynamical systems given by f We suppose 
that the interaction involves only a finite number of neigh-
bors, that corresponds to the models of dissipative media 
with a finite size of interaction. 

Proposition J: (Ref. 9) Assume that there exists }r1> 0 
such that for 1= I, 2 

I II alg - II sup lid fxll<M, au(lli) ({u(j)}) <M 
X¤IRd 

(2.1) 

for any T, ITI <s and any point u(j)eR(2HI)'. 
Then for any if, = (qu), if,= (qu), qu> I, q2;> 1, 

i= 1, ... ,t 
(1) <l>x is a map from J!., '" into itself; 
(2) $" is differentiable in the sense of Gateaux and its 

Gateaux differential at a point u=(u(})) is given by the 
linear map 
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(d<t>x1])(j) =f'(u(j)1](jl+ L a eT) 1] 0) , (2.2) 
li-JI<s 

where 

For any uE.4I'h.ih denote by It 
satisfies 

u(j,n + 1) = l(u(J,n)+"g({u(f,n)} 17-]1 d, (2.3) 

n)O, u(J,O) =u(j). 
Let us fix m, 11, ... ,I,EZ'(t)2) such that 
(1) I 1,+ 1; 
(2) the numbers 11,,,,,/, have the common divisor 1; in 

particular, the equation Ilxl + ... +I,x,=k has a solution in 
the set of integers for any kEZ. 

In the case of one-dimensional media (t= 1) instead of 
the condition 2 we shall assume the following weaker con-
dition: 

(2') the numbers I, m are relatively prime; in partic-
ular, the equation IXI+mx2=k has a solution in the set of 
integers for any kEZ. 

The traveling wave is a solution of Eq. (2.3) in the 
form 

u(J,n) = ,p(T,J) +mn)=,p(k-m), 

where k=(T,])+mn+m and ,p:Z-W/ is 
a function satisfying the "traveling wave equation" 

,p(k) = I(,p(k-m)+"g( {1/J(k-m+ (U))}ln ,,). (2.4) 

It is worthwhile to emphasize that the above assump-
tion on the numbers mj, lj '''''!l represents the fact that the 
"velocity" of the traveling wave I I, is sufficiently 
large. 

First we describe hyperbolic properties of Eq. (2.4). 
The function ,p is uniquely defined by Eq. (2.4) if we know 
the values xp=.,p( -m-ls+p-l), p= 1, ... , ls+m, where 
1=1'.:=1 Ii_ Let us introduce the "traveling wave" map 

F x: (lI.d) ls+m _ (lI.d) IHm, 

where 

peT) =Is+ (U) + I. (2.5) 

Below we shall show that although the evolution operator 
<t> x is infinite-dimensional the problem of study of traveling 
wave solutions of Eq. (2.3) can be reduced to the investi-
gation of the finite-dimensional dynamical system (2.5). 

We assume that for any x = (x,)e(lI.d )(2HI)' the 
function g satisfies the following conditions 

ag(x) 
det-a-""'O, 

XI I (ag(x)) -II <const< 00. (2.6) 

These assumptions hold in many "practically interesting" 
cases, for example when g is a "diffusionlike" potential. 

Our main assumption is that I possesses a hyperbolic 
closed invariant set A (definition, cf. Ref. 11). We describe 
now the hyperbolic properties of the map F x given by Eq. 
(2.5) for small enough x. 

Proposition 2: (Ref 9) There exists "0> ° such that for 
any", I" 1<"0' ",,",0 the map F x possesses a hyperbolic 
closed invariant set 

/s+m 
AxCU= <l) U"U,=U. 

i=l 

Denote by r;,(x), the local stable and unstable 
smooth manifolds passing through a point xEAx. 

Denote aiso by IjI x the set of aii soiutions of Eq. (2.4) 
and by IjI x,q, ,q, ql> 1, q2> 1 the set of those of them for 
which 

••••• 0 "1I,p(J)112.,, 
111/I1I;"q,= L qi

l
' + L 

/;?O j <0 

11,p(J) 112. , ... 
. < oo,1f1E'l'i(' q2 i 

Let us emphasize that all bounded solutions of Eq. (2.4), 
of course, belong to IjI x,q, ,q, . Define the mapping 
X":(Rd)'s+m_\lf,, in the following way: 

Xx(x)(k)= if k)O 
{

(X)ko if -ls-m<k<-I 

if k<-Is-m-I 

We also consider the shift Sx:ljlx-ljI" (Sx,p)(k) 
=,p(k+I), ,pE'I1x . This map describes dynamics of the 
system along traveling coordinate. 

Proposition 3: (Ref 9) Assume that/and g satisfy COn-
ditions (2.1) and (2.6). There exist "I > ° with the follow-
ing property: if I" I <"I' ",,",0 then one can find qfO) > I, 
qlO)(,,) > 1 such that for any ql>qfO), q2)qlO)(,,) 

(1) Xx is a smooth imbedding of (lI.d )IHm into 
// . 

vII<- QI,Q2' 
(2) '11 = X (JRd)INm is d(ls+m)-dimensional x,Q1,Q2 x 

smooth submanifold in.4lq q ; l' , 
(3) the diagram 

]Rd(ls+m) x" IjI C.4I 
--> x,q, ,Q2 q] ,Q2 

Fx l ISx 

IRd(ls+m) x" 'I' x,qj ,qi C.Ai qj ,qz --> 

is commutative; 
(4) the set Ax.q,.q, = X x (Ax) C IjI x,q, ,q, is a hyperbolic 

closed invariant set for SX' 
tJ) Ine sets and 

= ,p=Xx(x) are local stable and 
unstable smooth manifolds passing through ,p. 

(6) XxECI, x;llljIx,q"q,ECI. 
The above statements allow us to transfer the entire 

hyperbolic picture for the generalized Henon-type map 
(2.3) to the space .41 q,.q, containing traveling wave solu-
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tions moving with the same wave vector. The next step is 
to display this picture in the phase space of the original 
system. 

We now return to Eq. (2.3) and describe hyperbolic 
properties of its solutions in the form of traveling waves. 
From now on we assume that I x I "x, and x"",o. Given 
,p E 1Jl, define 

a,(,p) =(u(,p) (j) )=(,p(7,])). 

Proposition 4: Ref 9 (I) If ,pE.At qpq, for some q, > I. 
- I q2>1 then a,(,p)E.Atihll) .• ,I/) where if,(l) = (q{). 

if2(l) = i= I ..... t. 
(2) Assume that f g satisfy conditions (2.1) and 

(2.6) and q,>q\O). q2>qiO) (x) (cf. Proposition 3). Then 
(a) a, IIJl ',q, ,q, is a smooth imbedding into 

.At .,(1)"2(/); the set .sz! ',q,q, = a,(1Jl "q, ,q,l is a smooth d(ls 
+m) dimensional submanifold in.At .,(/),.,(/); 

dof 
(b) .Sf' ',qp'h = a,(Ax,qpq,) C .sz! "q,.q, is a hyperbolic 

closed invariant set for <P" on d ",qlq2; 

(c) tbe sets q (u) = a,(V:q q (,p) and 
, I' 2 ' I' 2 

(u) = a,( V::,q,.q, (,p). u = a,(,p) are local stable 
and unstable smooth manifolds passing through u; 

(3) a"oS:=<p"oa". 
(4) a,ECI, a;II.sz!"q"q,EC' . 
The above statements show that in the infinite-

dimensional phase space.At .,(/),.,11) of the original system 
there exists a smooth d(ls+m)-dimensional submanifold 
which inherits all the hyperbolic properties of the Henon-
type map F,. In Ref. 9 we also proved that this subman-
ifold is stable in a weak sense with respect to perturbations 
lying in an infinite-dimensional subspace "transversal" to 
it. This subspace is everywhere dense in the phase space, 
This picture and Proposition 4 exhibit the hyperbolic 
structure of traveling wave solutions of Eq. (2.3) in 
.AI ih (7),ih(l) . 

The lattice Z' acts on .At •.• by translations S\ fEZ' ..,. _ _ _ I 2 

such that (S'u) (j) = u (i + j). This action cOl!lmutes with 
the evolution operator <P", i.e., S·o<p"=<p,,oSi. 

THEOREM 1: The sets .sz! "q, ,q, and .Sf' ',q, ,q, as well 
as local stable and unstable manifolds at points 
U E:f "q q are invariant under the '1/ action. , I' 2 

Proof First of all we shall check that 

(2.7) 

In fact. let u E.sz! '.q, ,q, and ,p = a;' (u) E IJl ',q, ,q,' We have 
that u(})=,p«(7,J)) for any JEZ'. This gives us that 

0) )=,p«(7,J) + (T,T). 

On the other hand 

S'(a,,p) 0) =a,,p(J +f) =,p(I,(J +f))) 
=,p«(7,J) + (l,T). 

This implies Eq. (2.7). Now the desired results follows 
immediately from Eq. (2.7). 0 

Ill. ERGODIC PROPERTIES 

From now on we assume that q,>q\O). q2>qiO)(x). 
We start from a finite measure f.l in IRd(ls+m) invariant 

under F" Consider the measure [iq"q2 = (X,),.,u· By 
virtue of Proposition 3 it is concentrated on 'I' ",q] ,q2 and 
invariant under S". Consider now the measure f.lq],Q2 

= (a,),jiq"q,' 
THEOREM 2: (1) Ilq q is concentrated on .sz!, q q 

I' 2 ' I' 2 
and invariant under <P". 

(2) If the measure 11 is weakly mixing then Ilq, ,q2 is 
ergodic; if J.L is mixing then f.lq] ,Q2 is the same. 

Proof The first statement follows directly from Prop-
osition 4. If 11 is weakly mixing or mixing then [iq, ,q, is the 
same. That is why the second statement is also the conse-
quence of Proposition 4 (let us recall that if [iq, ,q, is weakly 
mixing then the map is ergodic with respect to 

0 
We now describe ergodic properties of Ilq, ,q, with re-

spect to the Z' action. 
THEOREM 3: (1) Ilq, ,q2 is invariant under the Z' ac-

tion. 
(2) In the case of multidimensional media (t>2) if the 

measure 11 is ergodic or weakly mixing or mixing then 
Ilq, ,q2 is the same; in the case of one-dimensional media 
(t= I) if 11 is weakly mixing then Ilq, ,q, is ergodic; if 11 is 
mixing then f.lQ] ,Q2 is also mixing. 

Proof" Since the measure iiQ] ,Q2 is invariant under for 
any k the first statement follows from Eq. (2.7). Consider 
now the case t>2 and assume that 11 is ergodic and. hence. 
[iq q is the same. Let A C .sz!, q q be invariant under the 

l' 2 ' I' 2 
Z' action. There exists fEZ' such that (T,T) = 1. By virtue of 
Eq. (2.7) this means that (a;')(A) is invariant under S, 
and. consequently. its [iq, ,q2 measure is I or 0. Therefore 
Ilq"q, (A) = I or ° and Ilq, ,q, is ergodic. The other state-
ments follow from Eq. (2.7). Let us consider the case t= 1. 
If 11 is weakly mixing then [iq, ,q, is also weakly mixing and • 
consequently. is ergodic for any k with respect to 
[iq"q,. By virtue of Eq. (2.7) this implies that Ilq"q2 is 
ergodic. The last statement is obvious. 0 

Remark: Theorems 2 and 3 express the fact that ac-
cording to Refs. 5 and 6 if the Henon-type map F, admits 
a measure 11 which is mixing then the measure Ilq,.q, dis-
plays a space-time chaos on the set of traveling wave so-
lutions .!d' ",Q] ,Q2' 

We now describe some special class of measures in 
.sz! 'q q concentrated on .Sf', qq' Given Holder continu-, I' 2 ' ], 2 
ous function 'P on A, there exists the uniquely defined 
measure f.l",rp invariant under F" whose ergodic properties 
are described as follows. 

Proposition 6: (ef Ref II) (I) There exists the splitting 
A,,= Uf= 1 A",j into disjoint invariant sets A",i' i= 1, ... ,p 
such that F, I A,,; is ergodic with respect to 

(2) For any i= I ..... p there exists the splitting A'i 
kA}' ..... A}'lk h' = U j= 1 ",i mto dIsJomt mvanant sets ",i'} = , ... , i suc 

that 
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(a) Fx(A{,;J=A{t ' , for j=I, ... ,k;-1 and 
= A!,i' 

(b) is isomorphic to a Bernoulli automor-
phism with respect to !Lx,<p I 

(3) If F x I Ax is topologically transitive then !Lx,<p is 
ergodic; if F x i Ax is topoiogicaiiy mixing then !Lx,<p is mix-
ing (and, in fact, has the Bernoulli property; cf. definitions 
of topological transitivity and mixing in Ref. II). 

(4) !Lx,<p satisfies the variational principle, i.e., it is the 
only one measure for which 

f 'P d!L) =hp".(FxJ+ f 'P d!Lx,<p' 

where hp(Fx) is the Kolmogorov-Sinai metric entropy of 
the map P x and sup is taken over all invariant measures. 

The measure !Lx,<p is called the equilibrium state (or the 
Gibbs measure) corresponding to the function 'P, 

Let us consider the measure !Lq"q,,<p = (Xx)-.1'x,<p on 
Ax,q, ,q, andj.lq, ,q"cp = (ax}Jiq, ,q?ip on if x,q, ,q,)' The follow-
ing can derived 4, and 6 and 
Theorems 2 and 3. 

THEOREM 4: The measure iiq"q,,<p is the equilibrium 
state corresponding to the Holder continuous function 
(X,,)*<p On if ",ql,qz (with respect to S,,). The measure 
!Lq, ,q,,<p is the equilibrium state corresponding to the Holder 
continuous function (ax)*(Xx)*'P (with respect to <l>x)' 
These measures possess properties listed in Proposition 6 
(with obvious reolacement of F ... A .. bv S ... A .. __ and 
• .. -"" '" -'" - '<' ---1t''/1·'12 ------

<1>" .:t' x,q, ,q,' respectively). The !Lq"q,,<p also in-
variant under the space translations S;, IEZ' with ergodic 
properties stated in Theorem 3. 

Let us consider the special case when Ax is a hyper-
bolic attractor for F x' This means that there exist a 
bounded open domain U in Ed(lHm) such that 

Fx(U)CU, Ax= nF;(U). 
n,O 

We have this situation if A is a hyperbolic attractor for f It 
is easy to see that Ax q q and .:t' x q q are hyperbolic at-

I \' 2 ' I> 2 
tractors, respectively, for Sx (in \11 x,q, ,qz) and <I> x (in 
.Jd' x,q ,qz)' Denote by "mes" the Lebesque measure in 

. .... ;-'P'" •• • \ll';-r .... ana set v=Lllmes\uJJmes. 11 IS a normalIzed 
Borel measure on U. Consider its evolution under F", i.e., 
the sequence of measures 

I II-I 
Yn=- L (Fx);v, 

n k=O 

It is known that it converges to the Bowen-Ruelle-Sinai 
measure J1-" concentrated on A" and invariant under F". 
This measure is also the equilibrium state corresponding to 
the function 

'P(X) =log Jac(dFxl TxV"(x), xEAx· 

Thus its ergodic properties are described in Proposition 6. 
Let us define the measure va .. n• = (y,) v. It is a 

1 • .. 

smooth measure on "'0 q q C Jlq q whose evolution un-.. , I' 2 I' 2 
der S" is given by the sequence of measures 

n-I 

Vql ,q2,1I=-n L (S,,);VQI ,Q2=(X,J*vn . 
k=O 

It converges to the Bowen-Ruelle-Sinai measure II r-Q! ,q2 
=('1/) II 

The last step is to consider the measure Vq"q, 
= (ax)*vq q' It is a smooth measure on do q q I' 2 .. , I' 2 
C JI ij, (7),ij,(7)' Its evolution under <l>x is the sequence of 
measures 

n-I 

v q!,Q2,n=-n L 
k=O 

One can prove that it converges to the Bowen-Ruelle-
Sinai measure /Lq, ,q, = The ergodic properties 
of the measures iiq, ,q, and !Lq"q, are described in Theorem 
3. 

Remark: For arbitrary q, > I, q2> I (which not neces-
sarily satisfy our assumption to be large enough) one can 
still construct the mappings X x and ax' In general, X x is 
only continuous such that A" q q and .st'" q q are topo-, !, 2 ' I' 2 
logically hyperbolic closed invariant sets (cf. details in Ref. 
9). However, an invariant measure J1- on A" can be still 
transformed to Ax q q and .:t' x q q to produce the mea-

, l' 2 ' I' 2 
sures jiQl'Q2 and J1-QI ,Q2' respectively. If J1- is mixing then 
fig! ,Q2 and f.Lql,f}'l are the same. Moreover l-!QI,Q2 is also in-
variant under the 'I.' action and mixing. So it can still dis-
play the space-time chaos. However, the sets'" x q q and ., I' 2 
.JI! ".Ql ,Q2 are no longer manifolds (either smooth or topo-
logical). If Ax is a hyperbolic atlractor then A x.a .. a• and 
.:t' x q q are attracting sets and the above are , I' 2 
limit distributions for the evolution of initial measures con-
centrated on the sets \}I" q q and.Jl!" q q , respectively, 

, I' 2 ' I' 2 
When q, becomes bigger than q[O) (but I < q2 

< qjO) (,,) the first transition occurs: one can show that 
the mapping Xx is differentiable along v:; q q ("'), Since ax 

, I' 2 
is also smooth this implies the existence of local unstable 
manifold q (u) on any point UE.st' "q q . Moreover, 

• !, 2 ' I' 2 

the measure i-lQI ,Q2 inherits the following property of 
Bowen-Ruelle-Sinai measures: its conditional measure on 
unstable local manifolds are equivalent to the Lebesque 
measure. When q2 becomes bigger than qjO) (,,) the second 
transition takes place: the mapping Yx is differentiable at 
any point xEEd(lNm) Therefore "'x·q··q and d xq q be-

, I' 2 ' I' 2 
come finite-dimensional smooth submanifolds in JI x q q , !. 2 
and .AI QI(/),ih(7), respectively, so that the above results 
hold, 

IV. DIMENSION 

Following Refs. 13 and 15 we define the correlation 
dimension of a measure J1, on .Jlf ",ql ,Q2 invariant under the 
evolution operator <P". Given U E.Jlf "q q let us set , I' 2 
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2 .. 
C/u,n,r) =::;: card{ <; r n 

for O<;i<;j<;n} 

(card denotes the number of elements in a set and p is the 
metric in d"ql,q, induced by the norm /I'/lql,q,)' 

The quantities 

_ -.-. log C,(u,n,r) 
(3,(u) =hm hm I ' 

r_O n .... eo og r 

(3 ( ) r r log C,(u,n,r) 
_t U = 1m 1m log r 

, .... 0 n-eo 
(4.1 ) 

are called, respectively, the upper and lower correlation 
dimensions at point u with respect to the evolution opera-
tor. (So far we assume that the limit as n- 00 exists; below 
we will see that this is true for fL-almost every 
UEd"ql,q,') I! is easy to see that f!,(u)<;13,(u). If for 
,u-almost every UE.rd",QI,q2 

_ def 
f!,(u) =(3,(U) =(3, 

«(3 does not depend on u) then it is called the correlation 
dimension (with respect to fL). 

The following result gives a condition for the correla-
tion dimension to be correctly defined. I! also gives us a 
formula to calculate it. 

THEOREM 3: (I) For fL-almost every U Ed, q q the 
, I' 2 

limit exists for any r> 0 

J d,r 
lim C,(u,n,r) = '" fL(B(u,r»dfL(u) =tp(r) 
n .... eo x,Ql,q2 

and does not depend on u. 
(2) For fL-almost every UEd,q q 

, I' 2 

d,r 
f!,(u) =lim log tp(r)/log r=l!" = 
_ def_ 
(3,(u) = lim log tp(r)!1og r=(3, ,_0 

and the limits do not depend on u. 
Remark' This theorem was proved in Ref. 13 under the 

additional assumption that the function tp(r) is continu-
ous, In Ref. 16 it was proved that tp(r) has this property if 
,u is a Borel measure on a finite-dimensional Riemannian 
manifold. I! is our case if the norm in IRd is generated by a 
scalar product (thus II'/lql,q, is also generated by a scalar 
product in J'( "ql,q, which becomes a Hilbert space). 

We describe another equivalent approach to the defi-
nition of the correlation dimension. 

Given U, vE.rd x q q define , I' 2 

2 .. 
G,( u,v,n,r) =::;: card{ (i,j) v» <; r n 

for O<;i<;j <; n}. 

Consider the space X = d "ql ,q, X d ',ql ,q, with the metric 
p«u,ii),(u,v»=p(ii,v)+p(v,v) and the measure 
l!.=fLXfL and define Z2 action on X as follows 

(u,v) 

I! is not difficult to verify that this action preserves the 
measure I!. and is ergodic. This implies that for I!.-almost 
every pair (u,v) the limit exists for any r> 0 

lim C,(u,v,n,r) =1!.(U(A,r», 

where A = {(U,U):UE.Yx,ql,q,} is the diagonal and 
U(A,r)={(u,u):p(u,v)<;r} is the r neighborhood of A in 
the direct-product space, Since I!. is the direct-product 
measure the Fubini theorem immediately implies that 
I!.(U(A,r»=tp(r). Define now for u, VEd,q q , l' 2 

. . log C,(u,v,n,r) 
(3,(u,u) =hm hm I - =.-00 ogr 

_ -. -. log C,(u,v,n,r) 
(3,(u,v) =hm hm I 

, .... 0 n_(;Q og r 
(we assume that the limit when n - 00 exists). 

Proposition 8: (ej Rej 13) For I!.-almost every pair 
(u,v) EX 

f!,(u,v) =lim log tp(r)!1og r=I!" 

13,(u,u) = lim log tp(r)!1og r=13,. 
,_0 

We now change the definition of the correlation dimen-
sion and introduce the notion of lower and upper limit 
correlation dimensions (specified by the evolution opera-
tor) by setting 

g,=lim inflim(Jog J zfL(B(u,r»dfL(u)!1og r), 
0-0 Z ;::::u 

a,=lim inf lim (log J zfL(B(u,r»dfL(u)!1og r), (4.2) 
0-0 Z r ..... O 

where inf is taken over all sets zed 'q q with jL(Z);>1 , l' 2 
-S. If g,=5, then the common value a, is called the limit 
correlation dimension (with respect to fL). 

Given u E d x q q define , l' 2 

!leu) = lim log fL(B(u,r»/log r, 
= 

d(u) = lim log fL(B(u,r»!1og r, 

where B(u,r) is the ball in d xq q centered at u of radius , i' 2 
r. These quantities are called, respectively, lower and upper 
pointwise dimensions at u. 

The notion of pointwise dimension plays an important 
role in studying various characteristics of dimension type. 
I! follows from results of Young (cf. Ref. 17) that if 

!leu) =d(u) =d (4.3) 

for almost all U E..et x,Q, ,Q2 then dimensionlike characteris-
tics of the measure such as Hausdorff dimension, lower and 
upper box dimension, iuformation dimension and some 
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others coincide to the common value d. In fact it is also the 
common value for the generalized spectrum for dimensions 
(cf. details in Ref. 12). The conjecture due to Eckmann 
and Ruelle18 claims that Eq. (4.1) holds for any ergodic 
Borel measure with nonzero Lyapunov exponents invariant 
..... A ..... .... .... __ t.: ... .... ...... ,-il. 'T't..: ... :.., __ ..... 1.., 
UI1U\;l UJIlI;VUIVlj.JlUMU VI 1,,;1(1:');:) v . 1:5 !J1UVC;U 111 .l'\.t:1. 11 

for the two-dimensional case and in Ref. 19 for the Bowen-
Ruelle-Sinai measures on hyperbolic attractors and Gibbs 
measures on hyperbolic sets. 

The next statement follows from the resuIts in Refs. 13 
and 19. 

THEOREM 4: If is a Gibbs measure on 
.5t' x,q, ,q, given by a function 'P then for I"-almost every 
U E!f x,ql ,Q2 

!leu) =d(u) =d=g,=ii,=a" 

In particular, if .5t' x,q, ,q, is a hyperbolic attractor and 
I" = I"q1,q, is the Bowen-Ruelle-Sinai measure then the 
above relations hold, 

Remark: (I) According to Refs, 13 and 17 one can 
conclude from here that the limit correlation dimension a, 
coincides with many other dimensionlike characteristics of 
I" such as Hausdorff dimension, box dimension, and infor-
mation dimension. 

(2) One can easily derive from the definitions that 
gl>{3P at>pt· However in general we can not expect these 
values to coincide (cf. Refs, 20 and 21), 

We define now the correlation diIl!ension of the mea-
sure f..l with respect to translations Si, fEZt. OUf results 
generalize ones obtained in Ref, 14, Given UE£x,q"q, let 
us put 

I __ _ _ __ 
CsCu,n,f) =2i card{ (i,j):p(SI(u),SJ (u»(r,i,j E Bt(n)}. n 

where B,(n) ={fEZ':f={ik},I<:;h<:;n} is the cube in Z' of 
side n, Define 

_ - log C,(u,n,r) 
(3,(u) =lim lim I 

r_O 11-00 og r 
log C,( u,n,r) 

(3,(u) = lim lim I - r:::u 1/ ..... 00 og r 
(We assume again that the limit when n 00 exists.) These 
quantities are called, respectively, upper and lower corre-
lation dimensions at point U with respect to the Z' action, 
Obviously (3,( u) <:;$,( u), If they coincide almost every-
where (with respect to the measure If:) the common value 
is called the correlation dimension (with respect to 1"), We 
shall state an analog of Theorem 3 for the Z' action, 

THEOREM 5: (I) For I"-almost every U E £ x,q, ,q,' 
the limit exists lim,_oo C,(u,n,r)='P(r) for any r>O and 
thus does not depend on u. 

(2) For I"-almost every UE£x,q"q, 
, log 'P(r) dof 

(3,(u) =hm I =(3" - = ogr -

_ , log <per) d,r_ 
{3,(u)=hm I ={3" 

r_O og r 

In particular, {3,={3" $,=$" 
Both Theorems 3 and 5 are special cases of the follow-

ing general statement (cf, Ref, 16), 
Let (Y,p) be a separable space, I" a probability 

Borel measure on Y, and let Tk, kEZm(mE 1,00) be a 
dynamical system acting in the measure space (Y,g)!.. 
i.e., are ,u-preserving transformations of Y and rkrl 
= T k+ l, k,lEZm. We denote: 1l==1"'«.1"; C(y,n,r) 

2 -- -- k I =(l/n ')card{(k,l):k,iEB,(n), p(Ty,Ty)<:;r}, YEY; 
'P(r) = f Y I"(B(x,r»dl"(x); C", is the set of continuity 
points of 'P, Since 'P(r) is a monotonic function over r the 
set C", can be only countable. [Let us emphasize again that 
in our case when the action is given by space or time trans-
lations in £X,q"q2 the function 'P(r) is continuous,] 

6: (Ref. 16) For ,u-almost eVery yE Y the 
limit exists for any rE Cq; 

lim C(y,n,r) =<p(r), 
'-00 
The proof of this theorem is given in Ref. 16. It con-

sists of two steps. At first, we show that the set U(A,r) can 
be approximated by "polygons" in Yx Y, Then we use 
Wiener's multidimensional pointwise ergodic theorem (cf, 
Refs, 22 and 23) to prove the existence of the limit for any 
"polygon" P: 

for I"-aimost aii U (l p is the indicator of P), 
Define nOw the lower and upper cor!:elation dimen-

sions specified by the dynamical system Tk as follows: 

(3(y)=lim(Iog r)-1 lim log C(y,n,r) , 
r::;o n_ 00 

Bey) =lim(Iog r)-1 lim log C(y,n,r) 
;::::u n ..... 00 

(as usual we assume that the limit as n 00 exists), As 
Theorem 6 shows, for I"-almost every yE Y 

, log 'P(r) 
{3(y)=hm I ' - = ogr 

rEC<p 

(3-( ) -I' log 'P(r) y - 1m I ' = ogr 
rECf{! 

Thus the correlation _dimension does not depend on the 
dynamical system {Tk,kEZm} (in particular on the "time 
dimension" m) but only on the invariant measure fl. That 
explains why the correlation dimensions, specified by the 
evolution operator and space translations, coincide. 

Let us consider the map F x' Choose a Borel probabil-
ity measure I" on IRd(lHm) invariant under F x and denote 
by (3(x) (x), g(x) (x) the lower and upper correlation di-
mensions at a point xElRd(l,+m) specified by Fx [cf, Eq. 
(4,1)]. Let also g(x)(x) and ii(x) (x) denote the lower and 
upper limit correlation dimensions at x specified by F" [cf. 
Eq. (4,2)]. Consider the measure I"q"q, = (ax)*(Xx),JL' 
We have seen that it is concentrated on .sd' q q and is 

"'. I' 2 
invariant under the evolution operator and space transla-
tions; moreover, its lower and upper correlation dimen-
sions and limit correlation dimensions specified by the ev-
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olution operator [respectively, (3,(u), i3,(u) and g,(u), 
at(u), UEsff ",q[ ,q21 as well as the same characteristics spec-
ified by the space translations [respectively, (3,(u), /3,(u) 
and g,(u), a,(u)l coincide, i.e., -

f},(u) =f},(u), /3,(u) =i3'(u), 

g,(u) =g,(u), a,(u) =a,(u). 

If f.L is weakly mixing and q" q, are big enough then 

f}(x) (x) =f},( u) =f}" /3(x) (x) =/3,( u) =/3" 

g(x)(x) =g,(u) =g" a(x)(x) =a,(u) =a" 

where u=axoxx(x) (indeed, it is enough to notice that the 
maps ax and Xx are bi-Lipshitz maps, cf. statement 6 of 
Proposition 3 and statement 4 of Proposition 4). Thus, the 
correlation dimensions of f.Lq\.q, specified by the evolution 
operator and space translations are completely determined 
by the corresponding correlation dimensions of f.L specified 
by the map Fx. The same is true for the other dimension-
like characteristics. 
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