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On Morse-Smale Endomorphisms

M. Brin and Ya. Pesin

ABSTRACT. A C'-map f of a compact manifold M is a Morse-Smale endomor-
phism if the nonwandering set of f is finite and hyperbolic and the local stable and
global unstable manifolds of periodic points intersect transversally. Morse-Smale en-
domorphisms appear naturally in the dynamics of the evolution operator on the set
of traveling wave solutions for lattice models of unbounded media. The main result
of this paper is the openness of the set of Morse-Smale endomorphisms in the space
Cl(M, M) of C'-maps of M into itself. The usual order relation on f (given by
the intersections of local stable and global unstable manifolds) is used to describe the
orbit structure of f and its small C l-pf:rturbations.

§1. Introduction

Morse—-Smale endomorphisms arise naturally in lattice models of unbounded me-
dia with the evolution operator of diffusion type (see, e.g., [AP]). For such systems, the
dynamics of the evolution operator on the set of traveling wave solutions is completely
determined by the following multi-dimensional Hénon type map

Fe(xb“ka:---axn): (Xz,...,Xk+l,...,h(Xk)+6g(XI,...,Xn)),

where x; € RY, h : R — R is a C"-diffeomorphism, r > 1, g : R — R isa
C"-map, and ¢ is sufficiently small. If the map F is chaotic, i.e., preserves an invariant
mixing measure, then the lattice system displays a spatial-temporal chaos, i.e., there
exists a measure on the set of traveling wave solutions, which is invariant and mixing
with respect to both the evolution operator and the space translation operator. It is
plausible that in several physically interesting situations the dynamics of the map F; is
completely determined by the map 4 for all sufficiently small .

The first case is when the map 4 has a locally maximal hyperbolic set. One can
easily see that the map Fj also has a locally maximal hyperbolic set. Note that Fj is
not invertible, whereas Fr may be a diffeomorphism (this is the case if, for example,
one assumes that the matrix gf—] is nondegenerate). The stability of a locally maximal
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36 M. BRIN AND YA. PESIN

hyperbolic set for a C'-endomorphism under small perturbations by endomorphisms
(or difftomorphisms) was established in [AP].

Another case is when the map 4 is a Morse-Smale diffeomorphism, i.e., its non-
wandering set is finite and hyperbolic and the global stable and unstable manifolds of
periodic points intersect transversally (since / acts on R? one should also assume that
infinity is a repelling fixed point for 4).

From a physical point of view this situation often occurs when 4 is one-dimensio-
nal. The map F is (see [AP]) a Morse-Smale endomorphism, i.e., its nonwandering set
1s finite and hyperbolic and the local stable and global unstable manifolds of periodic
points intersect transversally (see §2).

In this context it is important to know whether Morse-Smale endomorphisms
form an open set in the C'-topology. The main result of this paper (see Theorem
4.1) provides a positive answer. A major still open question is whether Morse-Smale
endomorphisms are structurally semi-stable, i.e., a small C'-perturbation of a Morse—
Smale endomorphism is topologically semiconjugate to it.

F. Przytycki [Prl, Pr2] studied regular Axiom A endomorphisms (i.e., those that
are locally invertible). He proved that an Axiom A endomorphism is structurally stable
if and only if it is expanding or is a diffeomorphism.

In §2 we formulate the necessary properties of the stable and unstable manifolds.

In §3 we define Morse-Smale endomorphisms and consider the usual partial order
relation > on the set of nonwandering points of a Morse-Smale endomorphism f,
i.e.,, p > q if the unstable manifold of p intersects the local stable manifold of g. We
prove that > is a partial order without cycles, and that there are > 0 and € > 0 such
that p > ¢ if and only if there is an e-orbit of f from the J-neighborhood of p to
the d-neighborhood of ¢. The last property is a major ingredient in the proof of the
openness of Morse-Smale endomorphisms in §4.

§2. Stable and unstable manifolds for endomorphisms

We begin with a standard stable manifold theorem for a differentiable map (see
[Rob, Rue, Shu]). Let p be a fixed point of a C'-map f : U — R?. Denote by
ES(p), E"(p) the stable and unstable subspaces spanned by the generalized eigen-
vectors of df(p) corresponding to the eigenvalues A with | 1 |< 1 and | 4 |> 1,
respectively. The point p is hyperbolic if no eigenvalue of d f (p) has absolute value 1,

or equivalently, E* (p) and E*(p) span R?.

2.1. THEOREM (see [Rob, Rue, Shu]). Let p be a hyperbolic fixed point of a C'-map
f: U — RY. Then there exist local stable W;(p) and unstable W (p) manifolds with
the following properties:

(1) the manifolds W;S.(p) and W.(p) are of class C', pass through p, and are
tangent at p to the subspaces E*(p) and E"(p), respectively,

(2) W5.(p) and W' (p) are invariant under f, i.e.,

fWie(p)) € Wis(p), f(We(p)) D Wige(p);
(3) there are constants C > 0 and 4 € (0, 1) such that for any n > 0,
d(f"x, fy) < CAd(x, y)

if x,y € Wi.(p) and
d(f"x, f"y) > Ci"d(x,y)

if f¥x, fXy e Wii(p) fork =0,1,...,n;
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ON MORSE-SMALE ENDOMORPHISMS 37

(4) there is 6 > 0 such that

Wi(p) = {x €R? : d(f"x,p) <6 foralln > 0},
Wk (p) = {x € RY : there exist points xn € R? such that
Fxn =xandd(f*xp, p) <Sforalln >0 andk =0,1,...,n}.

The existence of the local unstable manifold W% (p) is shown in [Shu] (see The-
orem 5.2). The existence of the local stable manifold W3 (p) is proved in [Rob] (see
Theorem 10.1).

Denote by C!(U; R?) the space of C'-maps of a neighborhood U c R into R?
with the C!-topology.

2.2. THEOREM (see [Shu, Rue)). Let p be a hyperbolic fixed point of a C'-map
f: U — R?. Then for any e > 0 there exists an open neighborhood U3 f in C'(U,R¥)
such that every g € U has a unique hyperbolic fixed point in the e-neighborhood of p.
The local stable and unstable manifolds of this point depend continuously on g € U.

Let f : U — R9 be a C'-map with a hyperbolic fixed point p € U. Define the
global unstable manifold W¥*(p) of p by

wh(p) = |J /" (wi.(p)).

n>0

We will need the following lemma which follows directly from the A-lemma (or
inclination lemma) of Palis (see [PaMe]).

2.3. LEMMA. Let p € NW(f), R, e > 0. Let G be a submanifold of dimension
k > u(p) which intersects W3, (p) transversally at a point x, i.e., the intersection of the
tangent planes at x has dimension < max(k + s(p) — d, 0).

Then there is n > 0 such that f" G contains a submanifold G which is C" e-close to
the ball of radius R in WY (p) in the induced metric. O

83. Morse—Smale endomorphisms and their orbit structure

Let f : M — M be a C'-map of a compact d-dimensional Riemannian manifold
M. Theorem 2.1 allows one to construct local stable and unstable manifolds W} (p)
and W} (p) and the global unstable manifold W *(p) for any hyperbolic periodic point

poff.

3.1 DEFINITION. A C!-map f : M — M of a compact d-dimensional manifold
M is a Morse—Smale endomorphism if
(i) the nonwandering set NW () is finite and hyperbolic, i.e., NW (f) is the set
Per(f) of periodic points of f and all of them are hyperbolic;
(ii) the local stable and global unstable manifolds of periodic points intersect
transversally, i.e., if x € W5 (p)NW¥(q) with p, g € Per(f), then Ty W.(p)®
T WH4(g) = T M.

Note that if f is an invertible Morse-Smale endomorphism then it is a Morse—
Smale diffeomorphism.

It follows immediately from the definition that any orbit of f eventually enters
a small neighborhood of NW (f) and stays in it forever. This implies the following
important property of Morse-Smale endomorphisms.
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3.2. PROPOSITION. For any x € M there isn > 0 and p € NW (f) such that
f"x € Wi (p).

We assume now and for the remainder of this section that /' : M — M is a Morse—
Smale endomorphism. Following Smale’s arguments in the proof of the spectral
theorem for Axiom A diffeomorphisms, we define a partial order > on NW (f) by
p>qift WH(p)nW3.(q) # 0. A point x is called heteroclinicif x € W¥(p) N W;3.(q)
and transversal heteroclinic if the intersection is transversal.

3.3. PrROPOSITION. The partial order > is transitive and has no cycles, ie., p; >
p2 > > p = p) impliesthat p; = p1,i =2,3,...,k.

Proor. For p € NM(f) denote by s(p) and u(p) the dimensions of W% (q)
and W¥(p), respectively. If p > g then u(p) > u(q) by the transversality of the
intersections of local stable and global unstable manifolds. The transitivity of >
follows immediately from Lemma 2.3.

Assume now that py > py > -+ > pr = p1. By Lemma 2.3 applied k times
to W¥(p,), the submanifolds W*(p,) and W3 (p;) intersect transversally at a point
x # p1. It is easy to see that x is a nonwandering point of f with an infinite orbit.
This contradicts the fact that f is a Morse-Smale endomorphism. d

For 6 > 0 denote by Us(A4) the §-neighborhood of 4 in M.

3.4. ProprosITION. (1) For every 8 > 0 there is n(5) such that every finite orbit of
length at least n(5) must enter the 6-neighborhood of NW (f), i.e., for every x € M

n(od)
U fixNUs(NW () #0.

=0

(2) For every 6 > 0 there is N(J) such that the total time that an orbit can spend
outside of the 6-neighborhood of NW ( f) does not exceed N (5), i.e., for every x € M,

S 1y (f'x) S NG).
iz

PrOOF. Assume that there is a number 6 > 0 and a sequence of points x; such
that fix, ¢ Us(NW(f)) for all k and all i < ny, where ny — oo as k — co. Since
M is compact, the sequence x; has a limit point x whose positive semiorbit obviously
stays out of Us(NW (f)). An w-limit point of x is a nonwandering point of f lying
outside Us(NW (f)). This is a contradiction, which proves the first statement. The
second statement can be proved in a similar way. O

A sequence of points z;, € M, k = 1,...,n,is called an e-orbit if d(fzj,zp 1) <
€. We formulate an analog of Proposition 3.4 for e-orbits. The proof is quite similar
to the proof of Proposition 3.4.

3.5. PROPOSITION. For every d > 0 there is n(8) > 0 and € > 0 such that for every
e-orbit {zx }, k = 1,...,n withn > n(d),

Uz UsWw()#0. O
k=0
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We will characterize the partial order > in terms of the behavior of the orbits of f'.
We do this under the additional assumption that the nonwandering set of f consists
only of fixed points which is sufficient for the proof of the perturbation Theorem 4.1.
However, the corresponding arguments in the proofs of Propositions 3.8, 3.9, and 3.11
below can be easily modified to work in the general case.

Assume that any point in NW (f) is a fixed point of f. Denote by Us(x) the
J-neighborhood of x € M.

Givend > 0and p, r € NW (f) we say that r 5-follows p if there exist a sequence
of points x,, € M and sequences of integers a,, by, cn — 0, an < b, < ¢, such that

l. x, = pand f“"x, —r;

2. fkx, € Us(p) for0 <k < a, and f¥x, € Us(r) for b, < k < cy;

3. fkx, ¢ Us(NW(f)) for ay < k < by.
We need the following two lemmas.

3.6. LEMMA. Let p, q € NW (f) and assume that there are sequences of points
xn — p and integers t, — oo such that f'"x, — q. Then there exists a point
r € NW(f) such that r 6-follows p, a sequence of points y, € M and a sequence of
integers ky, such that y, — r, f*y, — q and ky — 0o asn — .

ProoF. Givenn > 0, we associate to each collection of points fix,, i =0,...,,,
a word
— k (}’I) kl(”) km(n)(n)
w(n) o pil](n) piz(n> e i,,,<,,,(n)

in the following way. The order of points p; ), j = 1,... ,m(n), corresponds to

the order in which the trajectory f Ixp,i=1,... ,k(n), enters the -neighborhoods of
nonwandering points pi, . . ., ps and thenumberk;(n), j = 1,...,m(n), is the amount
of time the trajectory spends in the corresponding neighborhood. Since k;, — oo as
n — o0, it follows from Proposition 3.5 that

1. there exist M > 0 such that m(n) < M for any n > 0;

2. Z;":(l”) ki(n) — coasn — cc.
We claim that there exists a point ps = r € NW (f) and a subsequence of words w(n;)
such that kg (n;) — oo as ! — oo and kj(n;) < constforall j = 1,...,s — 1 and all
[. Tt is easy to see that r d-follows p. To prove the claim consider the smallest index j
for which the sequence k;(n) is unbounded. Let k;(n;) — oco. Since there are finitely
many possible values for the index i;(n;), we can pass to a subsequence and assume
that there is s such that i;(n;) = s for all /, and the claim follows. O

3.7. LemMA. If p, r € NW (f) are two points such that r 5-follows p, then p > r.

Proor. Since the point r d-follows p, we have the corresponding sequences x,,
an, by, cn. Let y, = f%*1x,. Let y be a limit point of the sequence {y,}. Since
yn & Us(NW(f)), we have that y ¢ Us(NW(f)). Clearly there is K > 0 such that
fky € Us(r) forall k > K. Hence for sufficiently small §, by Statement 4 of Theorem
2.1, fKy € WS (r). Similarly, one can show that y € W4 (p). O

The following proposition is an immediate corollary of Lemmas 3.6 and 3.7.

3.8. PROPOSITION. Let p, q € NW(f) and assume that there are sequences of
points x, — p and integers t,, — oo such that f'"x, — q. Then p > q. O

Licensed to Penn St Univ, University Park. Prepared on Wed Aug 2 21:42:11 EDT 2023for download from IP 132.174.254.159.



40 M BRIN AND YA. PESIN

3.9. PROPOSITION. There exists &g > 0 such that for any 6 < dy the following holds.
Whenever p, ¢ € NW (f) and there is a point x € Us(p) for which f*x € Us(q) for
some k > 0, we have p > q.

ProOF. Assume the contrary. Then there exist numbers J,, — 0, k;;, — oo and
points p, ¢ € NW(f), xn € Us,(p) such that f*»x, € Us, (¢) and it is not true that
p > q. This contradicts Proposition 3.8. a

3.10 Remark. One can prove the following stronger version of Proposition 3.9.
For any o > 0 there is §yp > 0 such that for any § <, whenever p, ¢ € NW(f) and
there is a point x € Us(p) for which f¥x € Us(q) for some k > 0, we have p > g and
there is a heteroclinic point y € W4(p) N W3.(q) with d (x,y) < a.

An analog of Proposition 3.9 holds true for e-orbits.

3.11. PROPOSITION. For any positive 6 < 0o/4 there is € > 0 such that, whenever
P, q € NW(f) and there is an e-orbit {z;. } with z\ € Us(p) and z,, € Us(q), we have
r=q

Proor. Let p, g, z, be as above. One can find a point »r € NW ( f) and numbers
a, b, and c such that z;, € Us(p) fork =1,...,a, z; € Us(r) fork = b,...,c, and
zx ¢ Us(NW(f))fork =a+1,...,b. By Proposition 3.4,0 < b —a < n(6/2) for a
sufficiently small . Therefore, if £ is small enough, then there exists a point x € Us(p)
for which /% x € Us(r) for some k > 0. Thus by Proposition 3.9, p > r.

We repeatedly apply the above argument to the e-orbit, and the proposition fol-
lows. g

84. Perturbation theorem
Denote by C!(M, M) the space of C'-maps of M.

4.1. THEOREM. Let [ : M — M be a Morse-Smale endomorphism. Then there is
oo > 0 such that for any positive 6 < 0 there exists an open neighborhood U > f in
C'(M, M) with the property that any g € U is a Morse-Smale endomorphism and
1. there is a bijection y : NW(f) — NW (g) with d(p, x(p)) < 6 for any p €
NW(f);
2. for p1, p» € NW(f) we have pi < pyifand only if y(p1) < x(p2);
3. for any q1, g2 € NW (g) we have that q1 < q; if and only if there is a point
x € Us(qy) such that gk x € Us(q,) for some k > 0.

Proor. The following lemma allows us to reduce the theorem to the case when
NW (f) consists only of fixed points.

4.2. LEMMA. If g isa C'-map of M such that g™ is a Morse-Smale endomorphism
then g is a Morse-Smale endomorphism.

ProoF oF LEMMa 4.2. It is sufficient to show that any point x ¢ NW (g"") is a
wandering point for g. If x is such a point then, by Proposition 3.2, g”""x € W .(p)
for some n > 0 and p € NW (g’). Hence, x is a wandering point under g. O

From now on, by switching to the corresponding power, we assume that NW ( f)
consists only of fixed points. To show that any g close enough to f is a Morse-Smale

Licensed to Penn St Univ, University Park. Prepared on Wed Aug 2 21:42:11 EDT 2023for download from IP 132.174.254.159.



ON MORSE-SMALE ENDOMORPHISMS 41

endomorphism we have to prove that it satisfies properties (i) and (ii) of Definition
3.1.

Fix 6 > 0. By standard transversality arguments, if g is close enough to f, then
for any p € NW (f') there is a unique hyperbolic fixed point ¢ = x(p) of g such that
d(p, q) < 5. Let x be a nonwandering point of g. Then arbitrarily close to x there is
a point y and an arbitrarily large k such that the finite orbit O = {y, gy,...,g"y}isa
closed e-orbit of /. If § and U are small enough, Propositions 3.8 and 3.11 imply that
O lies in a small neighborhood of a fixed point p € NW (f). It follows that x = x(p).
This completes the proof of property (i).

To prove (i) we assume the contrary. Then there is a sequence of C!-maps g,, that
converges to f in the C!-topology and each map g, has a nontransversal heteroclinic
point. To simplify the notation in the arguments below we use the following convention:
p (possibly with an index) denotes a fixed point of £, g(n) (possibly with an index),
denotes a fixed point of g,, W (p), denotes the unstable manifold of 1, W4 (q(n)),
denotes the unstable manifold of g,,, and similarly for the local stable manifolds. By
passing to a subsequence, if necessary, we can assume that for any sufficiently small
0>0

1. there are fixed points py > p; > --- > p; of f and fixed points g;(n), j =
0,1,...,1 of g, such that g;(n) — p; asn — oc;

2. there are nontransversal heteroclinic points y, € W¥(qo(n)) N W3 (q;(n))
with the common unit vectors v, of the tangent spaces such that xé <
d(yn, q;(n)) < 6 for some k > 0, the sequence {y,} converges to a point
¥ € Wi (qi(n) and vy — v € Ty W (py), |lo] = 1;

3. there are points x, € W¥*(go(n)) such that

d(xp, qo(”)) <6< d(gnxn» qO(”));

and the sequence {x, } converges to a point x € W¥(py);
4. there are sequences of integers ap(n) = 0 < bo(n) < a;(n) < by(n) < --- <
a;(n) < b;(n)suchthatfor j=1,...,/andn=1,2,...,

ghxn € Us(g;(n)) ifaj(n) <i<bj(n)

and
ghxn ¢ Us(NW (gn)) ifb;(n) <i<aj(n);

5. gﬁ’(mxn = yn.
Clearly d(x, py) <8, d(fx, po) > and d(y, p;) < 6. Hence, d(x, py) > C5, where
C = maxyens [[df (x)]].

By Proposition 3.4,

-1

(a1 (n) — b; () < N (3).

Il
o

i

Assume first that a;(n) — by(n) is bounded uniformly in n. Then y = f¥x for some
k > 0, and hence, y € W (py). Therefore y is a nontransversal heteroclinic point of
f. This is a contradiction.
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Suppose now that a;(n) — bo(n) is not bounded in n. Then, by passing to a
subsequence, decreasing J, and deleting some of the fixed points if necessary, we may
assume that forevery j = 1,...,/ — 1

6. bj(n) —aj(n) — coasn — oo and the difference a;,(n) — b;(n) eventually

becomes constant (which we denote by k;);

(n)xn and g,l;’(")

7. the sequences of points g;,’
respectively.

For convenience, we set wy = x and z; = y. Note that z; € W .(p;) N W*(p;_,) is
a heteroclinic point of f'.

In the argument below we need to compare two subspaces in the tangent spaces
at two different points lying in the 26-neighborhood of p; for j = 0,...,/. For a
sufficiently small &, we identify the neighborhood with a ball in R?. We parallel
translate any subspace at any point to 0 and calculate the distance between subspaces
at 0 using, for example, the Grassmann metric.

Consider the image E,, C Ty, M of the tangent space to W¥(qy(n)) at x,, under

xp converge to points z; and w;

dgﬁ,” (") To obtain a contradiction we will show that for any € > 0 and all sufficiently
large n there is a subspace V,; C E, which is e-close to Ty, W¥(p;_,) and not transver-
sal to W3.(g;(n)). This means that W"(p,;_,) and W3 .(p;) are not transversal at y
which is impossible.

We need the following lemmas.

4.3. LemMMA. For any f > O there are o« > 0 and a neighborhoodV > f,V C U
such that for any j = 0,...,1 the following holds true: if x is a point with d (x,w;) < «,
E C TxM is a subspace a-close to Ty W"(p;), and g € V, then d(g¥1x,z;,1) < B
and the subspace dg*' E is f-close to T, w" (pj).

PROOF OF LEMMa 4.3. We have by Proposition 3.4(1) that k; < n(d) for all j and
the lemma follows. O

4.4. LEMMA. For any y > 0 there are f > 0 and a neighborhood W > f, W C U
such that for any j =0, ..., the following holds true: if x is a point with d (x,z;) < f,
E C TxM is a subspace f-close to T- W"(p;_), and g € V is such that d(g" x, w;) <
B for some integer k > 0, then the subspace dxg"E contains a subspace E' which is
y-close to Ty W (pj).

PrOOF OF LEMMA 4.4. Recall that z;, j = 1,...,/ are transversal heteroclinic
points of /. As before, we identify the 25-neighborhoods of p;’s with balls in R and
use parallel translation in R? to identify subspaces at different points. By Theorem
2.2, for a sufficiently small 6 > 0, any g close enough to f has a unique hyperbolic fixed
point ¢; = g;(g) in Us(p;), which depends continuously on g; the local stable and
unstable manifolds of g at g; depend continuously on g in the C!-topology. Denote
by F the orthogonal complement to 7> W;5.(p;) in E and view it as a submanifold
passing through x. It follows from the remarks above that if g is sufficiently close to
f and B is small enough, then the submanifold F intersects W3 (g;) transversally at
a point that is Cf-close to x and z;, where C > 0 does not depend on f and g. Note
that k — oo as f — 0. Hence, by the A-lemma of Palis (see [PaMe]) for a sufficiently
small § we have that dgX F is y-close to Tw, W"(p;). O

We now complete the proof of the theorem. Recall that z; = y and W¥(p;_;)

intersects W3 .(p;) transversally at y. Therefore, the difference between any two unit
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vectors, one from T, W3 _.(p;) and another from Ty, W¥(p;_,), is uniformly bounded
away from 0. We choose the first vector to be the accumulation vector v of the
common vectors v, for the nontransversal intersections above. By moving back
from p; to po and applying repeatedly Lemmas 4.3 and 4.4, we construct vectors
wp € Ty, W (qo(n)) such that the vector w,, = dg® v, is arbitrarily close to the
space Ty, W"(p,;_,) for a sufficiently large n. We multiply v,, by appropriate positive
numbers to get w, of unit length and obtain a contradiction. a
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