
Dimension and Product Structure of Hyperbolic Measures 

Author(s): Luis Barreira, Yakov Pesin and Jorg Schmeling 

Source: Annals of Mathematics , May, 1999, Second Series, Vol. 149, No. 3 (May, 1999), 
pp. 755-783  

Published by: Mathematics Department, Princeton University 

Stable URL: https://www.jstor.org/stable/121072

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide 
range of content in a trusted digital archive. We use information technology and tools to increase productivity and 
facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org. 
 
Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at 
https://about.jstor.org/terms

is collaborating with JSTOR to digitize, preserve and extend access to Annals of Mathematics

This content downloaded from 
����������132.174.254.159 on Thu, 03 Aug 2023 01:33:53 +00:00����������� 

All use subject to https://about.jstor.org/terms

https://www.jstor.org/stable/121072


 Annals of Mathematics, 149 (1999), 755-783

 Dimension and product structure
 of hyperbolic measures

 By LUIS BARREIRA, YAKOV PESIN, and J6RG SCHMELING*

 Abstract

 We prove that every hyperbolic measure invariant under a C1+' diffeo-
 morphism of a smooth Riemannian manifold possesses asymptotically "almost"
 local product structure, i.e., its density can be approximated by the product
 of the densities on stable and unstable manifolds up to small exponentials.
 This has not been known even for measures supported on locally maximal
 hyperbolic sets.

 Using this property of hyperbolic measures we prove the long-standing
 Eckmann-Ruelle conjecture in dimension theory of smooth dynamical systems:
 the pointwise dimension of every hyperbolic measure invariant under a C1+'
 diffeomorphism exists almost everywhere. This implies the crucial fact that
 virtually all the characteristics of dimension type of the measure (including
 the Hausdorff dimension, box dimension, and information dimension) coincide.
 This provides the rigorous mathematical justification of the concept of fractal
 dimension for hyperbolic measures.

 1. Introduction

 In this paper we provide an affirmative solution of the long-standing prob-
 lem in the interface of dimension theory and dynamical systems known as the
 Eckmann-Ruelle conjecture.

 In the late 70's-beginning 80's, attention of many physicists and applied
 mathematicians had turned to the study of dimension of strange attractors
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 of Mathematics, at Lisbon, Portugal, and J. S. was visiting Penn State. L. B. was partially supported
 by FCT's Pluriannual Funding Program and PRAXIS XXI grants 2/2.1/MAT/199/94, BD5236/95,
 and PBIC/C/MAT/2139/95. Ya. P. was partially supported by the National Science Foundation
 grant #DMS9403723. J. S. was supported by the Leopoldina-Forderpreis. L. B. and Ya. P. were
 partially supported by the NATO grant CRG970161.
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 LUIS BARREIRA, YAKOV PESIN, AND JORG SCHMELING

 (i.e., attracting invariant sets with some hyperbolic structure) in evolution-
 type systems (see, for example, [6], [7], [22]). The dimension was used to
 characterize a (finite) number of independent modes needed to describe the
 infinite-dimensional system. Several results were obtained which indicated
 relations between the dimension of the attractor and other invariants of the

 system (such as Lyapunov exponents and entropy; see, for example, [13], [14],
 [16], [23]). This study has become an important breakthrough in understanding
 the structure of systems of evolution type.

 In the survey article [4], Eckmann and Ruelle summarized this activity and
 outlined a rigorous mathematical foundation for it. They considered dynamical
 systems with chaotic behavior of trajectories and described relations between
 persistence of chaotic motions and existence of strange attractors. They also
 discussed various concepts of dimension and pointed out the importance of
 the so-called pointwise (local) dimension of invariant measures. For a Borel
 measure /L on a complete metric space M, the latter is defined by

 (1) d(x) f liml?g f(B(x,r))
 r-+O logr

 where B(x, r) is the ball centered at x of radius r (provided the limit exists).
 It was introduced by Young in [23] and characterizes the local geometrical
 structure of an invariant measure with respect to the metric in the phase space
 of the system. Its crucial role in dimension theory of dynamical systems was
 acknowledged by many experts in the field (see, for example, the paper by
 Farmer, Ott, and Yorke [6], the ICM address by Young [24, p. 1232] and also
 [25, p. 318]).

 If the limit in (1) does not exist one can consider the lower and upper
 limits and introduce respectively the lower and upper pointwise dimensions of
 ft at x which we denote by d(x) and d(x).

 The existence of the limit in (1) for a Borel probability measure ,t on M
 implies the crucial fact that virtually all the known characteristics of dimension

 type of the measure coincide (this is partly described in Prop. 1 in ?2). The
 common value is a fundamental characteristic of the fractal structure of p -
 the fractal dimension of /L.

 In this paper we consider a Cl+t diffeomorphism of a compact smooth
 Riemannian manifold without boundary. Our goal is to show the existence of
 the pointwise dimension in the case when fu is hyperbolic, i.e., all the Lyapunov
 exponents of f are nonzero at /u-almost every point (see Main Theorem in ?3).
 This statement has been an open problem in dimension theory of dynamical
 systems for about 15 years and is often referred to as the Eckmann-Ruelle
 conjecture.
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 DIMENSION AND PRODUCT STRUCTURE OF HYPERBOLIC MEASURES 757

 Since hyperbolic measures play a crucial role in studying physical models
 with persistent chaotic behavior and fractal structure of invariant sets, our
 result provides a rigorous mathematical foundation for such a study.

 The problem of the existence of the pointwise dimension has a long history.
 In [23], Young obtained a positive answer for a hyperbolic measure /u invariant
 under a C1+4 surface diffeomorphism f. Moreover, she showed that in this
 case for almost every point x,

 d(x)=d(x) = h(f) (1 -12

 where h,l(f) is the metric entropy of f and A1 > 0 > A2 are the Lyapunov
 exponents of ,I.

 In [12], Ledrappier established the existence of the pointwise dimension
 for arbitrary SRB-measures (called so after Sinai, Ruelle, and Bowen). In
 [20], Pesin and Yue extended his approach and proved the existence for hyper-
 bolic measures satisfying the so-called semi-local product structure (this class
 includes, for example, Gibbs measures on locally maximal hyperbolic sets).

 A substantial breakthrough in studying the pointwise dimension was made
 by Ledrappier and Young in [16]. They proved the existence of the stable and
 unstable pointwise dimensions, i.e., the pointwise dimensions along stable and
 unstable local manifolds for typical points (see Prop. 2 in ?2). They also showed
 that the upper pointwise dimension at a typical point does not exceed the sum
 of the stable and unstable pointwise dimensions.

 Our proof exploits their result in an essential way. It also uses a new
 and nontrivial property of hyperbolic ergodic measures that we establish in
 this paper. Loosely speaking, this property means that such measures have
 asymptotically "almost" local product structure. Let us point out that this
 property has not been known even for invariant measures on locally maximal
 hyperbolic sets (whose local topological structure is the direct product). This
 property also enables us to show that the pointwise dimension of a hyperbolic
 measure is almost everywhere the sum of the pointwise dimensions along stable
 and unstable local manifolds.

 Acknowledgment. We would like to thank Francois Ledrappier for useful
 discussions and comments.

 2. Preliminaries

 2.1. Facts from dimension theory. We describe some most important
 characteristics of dimension type (see, for example, [5], [18]). Let X be a
 complete separable metric space. For a subset Z c X and a number a > 0 the
 a-Hausdorff measure of Z is defined by
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 mH(Z, a) = liminfE (diam U)"
 UEg

 where the infimum is taken over all finite or countable coverings g of Z by
 open sets with diam g < e. The Hausdorff dimension of Z (denoted dimH Z)
 is defined by

 dimH Z = inf{a : mH(Z, a) = 0} = sup{a : mH(Z, a) = oo}.

 We define the lower and upper box dimensions of Z (denoted respectively by
 dimBZ and dimBZ) by

 dimBZ = inf{a : rH(Z, a) = 0} = sup{a : rH(Z, a) = oo},

 dimBZ = inf{a : rH(Z, a) = 0} = sup{a : H(Z, a) = oo},
 where

 rH(Z, a) = liminfZEa, rH(, a) = liminf -e -7r0 a -6-+e - ug e uO E - UO
 and the infimum is taken over all finite or countable coverings g of Z by open
 sets of diameter e. One can show that

 log N{Z, e) log N(Z, e) dimBZ = limog () dimBZ = lim lN(ze)
 E--+ log(l/0) ISe-"o log(l/e) '

 where N(Z, ?) is the smallest number of balls of radius e needed to cover the
 set Z.

 It is easy to see that

 dimHZ < dimnZ < dimBZ.

 The coincidence of the Hausdorff dimension and lower and upper box dimension
 is a relatively rare phenomenon and can occur only in some "rigid" situations
 (see [1], [5], [19]).

 In order to describe the geometric structure of a subset Z invariant under
 a dynamical system f acting on X we consider a measure /b supported on
 Z. Its Hausdorff dimension and lower and upper box dimensions (which are
 denoted by dimHj,a dimBs/, and dimB/u, respectively) are

 dimH,u = inf{dimH Z : (Z) = 1),

 dimB = lim inf{dimBZ : 1i(Z) > 1- 6}

 dimBsu = lim inf{dimBZ: /^(Z) > 1 - .
 F6-om

 From the definition it follows that

 dimH[u < dimB/ < dimBu.

 758
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 DIMENSION AND PRODUCT STRUCTURE OF HYPERBOLIC MEASURES 759

 Another important characteristic of dimension type of /A is its information
 dimension. Given a partition J of X, define the entropy of S with respect to ,t
 by

 H,U() = - (CQ) log Af(CQ)

 where C, is an element of the partition J. Given a number e > 0, set

 H, (e) = inf {H,(): diam <4

 where diam = maxdiam C. We define the lower and upper information
 dimensions of t by

 H,i ^(6) T- H ~(H ) I( m ) , ,(E) I(/ ) = Him . e'/ olog(l/e)' e-*olog(l/E)

 There is a powerful criterion established by Young in [23] that guarantees
 the coincidence of the Hausdorff dimension and lower and upper box dimen-
 sions of measures as well as their lower and upper information dimensions.

 PROPOSITION 1 ([23]). Let X be a compact separable metric space of
 finite topological dimension and tu a Borel probability measure on X. Assume
 that

 (2) d(x) = d(x) = d

 for ,u-almost every x E X. Then

 dimHf/ = dimBf/ = dimB = I(/) = I(Hl) = d.

 A measure ,u which satisfies (2) is called exact dimensional.

 2.2. Hyperbolic measures. Let M be a smooth Riemannian manifold
 without boundary, and f: M -* M a C1+' diffeomorphism on M. Let also f
 be an f-invariant ergodic Borel probability measure on M.

 Given x E M and v E TxM define the Lyapunov exponent of v at x by the
 formula

 A(x,v) = lim 1log lIdxfnTvl.
 n--oo n

 If x is fixed then the function A(x, .) can take on only finitely many values
 Al(x) <... < Ak(x)(x). The functions Ai(x) are measurable and f-invariant.
 Since /, is ergodic, these functions are constant /u-almost everywhere. We
 denote these constants by A1 < .. < Ak. The measure ft is said to be hyperbolic
 if Ai \ 0 for every i = 1, ..., k.
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 There exists a measurable function r(x) > 0 such that for ,-almost every
 x E M the sets

 WS (x) - {y E B (x, r(x)) lim- log d(fnx, fy) < O I"(.) iy n--+noo J

 WU(x) -= y E B(x,r(x)) lim -logd(fnx fny) > 0
 n n--oon

 are immersed local manifolds called stable and unstable local manifolds

 at x (see [17] for details). For each r E (0,r(x)) we consider the balls
 B(x, r) C WS(x) and BU(x,r) C WU(x) centered at x with respect to the
 induced distances on WS(x) and WU(x) respectively.

 Let J be a measurable partition of M. It has a canonical system of con-
 ditional measures: for /u-almost every x there is a probability measure /x de-
 fined on the element ((x) of ( containing x. The conditional measures 1/x are
 uniquely characterized by the following property: if 13 is the a-subalgebra (of
 the Borel a-algebra) whose elements are unions of elements of <, and A C M
 is a measurable set, then x ,-4 aux(A n ((x)) is 2B3-measurable and

 A/(A) = J /x(A n (x)) d,u(x).

 In [16], Ledrappier and Young constructed two measurable partitions ~s
 and (u of M such that for /u-almost every x E M:

 1. S(x) c WS(x) and (u(x) c WU(x);
 2. (S(x) and ~U(x) contain the intersection of an open neighborhood of x

 with WS(x) and WU(x) respectively.

 We denote the system of conditional measures of , with respect to the
 partitions ~s and <u, respectively by /z and 1/u, and for any measurable set
 A c M we write 4I(A) = i/'(A n S(x)) and Mu(A) = -u(A n ~u(x)).

 Given x E M, consider the lower and upper pointwise dimensions of /u
 at x, d(x) and d(x). Since these functions are measurable and f-invariant
 they are constant /1-almost everywhere. We denote these constants by d and
 d respectively.

 In [16], Ledrappier and Young introduced the quantities

 ds() f lim log s (Bs (x, r)) dS(l) =im ' r-*O logr
 dU) f ilog 1MU(Bu(x, r))

 du(x) dlim
 r-O log r

 provided that the corresponding limits exist at x E M. We call them, respec-
 tively, stable and unstable pointwise dimensions of /,.
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 DIMENSION AND PRODUCT STRUCTURE OF HYPERBOLIC MEASURES 761

 PROPOSITION 2 ([16]).
 1. For p-almost every x E M the limits dS(x) and du(x) exist and are con-

 stant ,-almost everywhere; we denote these constants by dS and du.
 2. If JL is a hyperbolic measure then

 d dS+du.

 When the entropy of f is zero it follows from [16] that dS = du = 0 and
 hence d= d d + du =0.

 Let us point out that in [16] the authors consider a class of measures more
 general than hyperbolic measures (some of the Lyapunov exponents may be
 zero). They prove Proposition 2 under the assumption that the diffeomor-
 phism f is of class C2. The main ingredient of their proof is the existence of
 intermediate pointwise dimensions, i.e., the pointwise dimensions of the condi-
 tional measures generated by the invariant measure on the intermediate stable
 and unstable leaves. This, in turn, relies on the Lipschitz continuity of the
 holonomy map generated by these intermediate leaves (see the Appendix for
 definitions and precise statements) and is where the assumption that f is of
 class C2 is used (see ?(4.2) in [16]; other arguments in [16] do not use the Lip-
 schitz continuity of the holonomy map and go well for C1+' diffeomorphisms).

 In the Appendix to the paper we provide a proof of the fact that for hy-
 perbolic measures the Lipschitz property of the holonomy map holds for diffeo-
 morphisms of class C1+a. Indeed, we prove a slightly more general statement:
 the Lipschitz property holds for intermediate stable and unstable foliations
 even if some of the Lyapunov exponents are zero. Our approach gives a new
 proof of this property even in the case of diffeomorphisms of class C2. As a
 consequence we obtain that Proposition 2 holds for diffeomorphisms of class
 Cl+a and so does our Main Theorem.

 Let us point out that the Lipschitz continuity of the holonomy map pre-
 sumably fails if the map is generated by stable leaves inside the stable-neutral
 foliation.

 3. Main Theorem

 In this paper we prove the following statement.

 MAIN THEOREM. Let f be a Cl+' diffeomorphism on a smooth Riemann-
 ian manifold M without boundary, and A, an f-invariant compactly supported
 ergodic Borel probability measure. If It is hyperbolic then the following proper-
 ties hold:
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 1. for every 6 > 0, there exist a set A C M with ,(A) > 1- 6 and a constant
 n > 1 such that for every x E A and every sufficiently small r (depending

 (3) r6) (B(x, ))u(Bu(x, ) < . (B(x, r))
 on x),

 < r-6 x(B'(x, Kr))u (Bu (x, Kr));

 2. At is exact dimensional and its pointwise dimension is equal to the sum of
 the stable and unstable pointwise dimensions, i.e.,

 d =d ds + du.

 This statement provides an affirmative solution to the Eckmann-Ruelle
 conjecture and describes the most broad class of measures invariant under
 smooth dynamical systems which are exact dimensional.

 Note that an SRB-measure is locally equivalent on A to the direct product
 of an absolutely continuous measure on an unstable leaf and a measure on a
 stable leaf (see [12]). Hence, statement 1 holds in this case automatically. One
 can also show that Gibbs measures on a locally maximal hyperbolic set A are
 locally equivalent to the direct product of a measure on an unstable leaf and
 a measure on a stable leaf (see [9]). Therefore, statement 1 holds in this case
 as well.

 Let us also point out that neither of the assumptions of the Main Theorem
 can be omitted. Ledrappier and Misiurewicz [15] constructed an example of
 a smooth map of a circle preserving an ergodic measure with zero Lyapunov
 exponent which is not exact dimensional. In [19], Pesin and Weiss presented
 an example of a Holder homeomorphism with Holder constant arbitrarily close
 to 1 whose measure of maximal entropy is not exact dimensional.

 Remarks. 1. Statement 1 of the Main Theorem establishes a new and

 nontrivial property of an arbitrary hyperbolic measure. Loosely speaking, it
 means that every hyperbolic invariant measure possesses asymptotically "al-
 most" local product structure. This statement has not been known even for
 measures supported on (uniformly) hyperbolic locally maximal invariant sets.
 The lower bound in (3) can be easily obtained from results in [16] while the
 upper bound is one of the main ingredients of our proof. Note that statement 2
 follows from statement 1. The proof of statement 2 exploits the existence of
 stable and unstable pointwise dimensions and the argument in [20] (see ?6).

 In order to illustrate the property of having asymptotically "almost" local
 product structure, let us consider an ergodic measure A invariant under the full

 shift a on the space Ep of all two-sided infinite sequences of p numbers. This
 space is endowed with the usual "symbolic" metric d:, for each fixed number

 762
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 ,3 > 2, defined by

 d(U, W2) = E -lil li - W I,
 iEZ

 where w1 = (wc1) and w2 = (wi2). Fix w =(wi) E Sp. The cylinder

 Cn(w) = {& = (i) : /i = wi for i = -n, .., n}

 can be identified with the direct product C+ (w) x C, (w) where

 Cn+(w) = { = (.i) : ii = wi for i = 0,..., n}
 and

 Cn (w) = {C = (i)) : Wi = ci for i = -n,..., 0}

 are the "positive" and "negative" cylinders at w of "size" n. Define measures

 /+(w) = lC+n(w) and ,n(w) = tulCn(w).

 The measure 1 is said to have local product structure if the measure iuiCn(w)
 is equivalent to the product I/+(w) x /u (w) uniformly over W E Ep and n >
 0. It is known that Gibbs measures have local product structure (see, for
 example, [18]). For an arbitrary a-invariant ergodic measure A it follows from
 statement 1 of the Main Theorem (see (3)) that for every 6 > 0 there exist a
 set A c Ep with /a(A) > 1- 6 and an integer m > 1 such that for every w E A
 and every sufficiently large n (depending on w),

 -2. It follo ) x +m(imm) < lfr Cn(o) <Main T em tha) x in-m()t -

 2. It follows immediately from the Main Theorem that the pointwise di-
 mension of an ergodic invariant measure supported on a (uniformly) hyperbolic
 locally maximal invariant set is exact dimensional. This result has not been
 known before. We emphasize that in this situation the stable and unstable
 foliations need not be Lipschitz (in fact, they are "generically" not Lipschitz;
 see [21]), and, in general, the measure need not have a local product struc-
 ture despite the fact that the set itself does. Therefore, both statements of
 the Main Theorem are nontrivial even for measures supported on hyperbolic
 locally maximal invariant sets.

 3. The role of the Eckmann-Ruelle conjecture in dimension theory of
 dynamical systems is similar to the role of the Shannon-McMillan-Breiman
 theorem in the entropy theory. In order to illustrate this, consider the full
 shift a on the space Ep.

 Let ju be a a-invariant ergodic measure on Ep. By the Shannon-McMillan-
 Breiman theorem, for /u-almost every w E Ep,

 (4) lim - log (Cn(cw))= h n-+0 2n t+ 1
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 where h = h, (a). Since the cylinder Cn(w) is the ball (in the symbolic metric
 dp) centered at w of radius c/pn (for some c > 0), the quantity in the right-
 hand side in (4) divided by log,3 is the pointwise dimension of I/ at w. The
 Shannon-McMillan-Breiman theorem (applied to the shift map) thus claims
 that the pointwise dimension of ,/ exists almost everywhere; it is clearly almost
 everywhere constant; furthermore, the common value is the measure-theoretic
 entropy of J divided by log 3.

 As an important consequence of this theorem one obtains that various
 definitions of the entropy (due to Kolmogorov and Sinai [11], Katok [8], Brin
 and Katok [2], etc.) coincide (see [18] for details).

 4. Let /t be an arbitrary (not necessarily ergodic) invariant measure for a
 Cl+a diffeomorphism f of M. The measure /J is said to be hyperbolic if on al-
 most every ergodic component the induced measure is a hyperbolic measure on
 M. The Main Theorem remains true for any f-invariant compactly supported
 hyperbolic Borel probability measure, i.e., the pointwise dimension of such a
 measure exists almost everywhere (but may not be any longer a constant; see
 ?7).

 4. Description of a special partition

 We use the following notation. Let r7 be a partition. For every integers
 k, 1 > 1, we define the partition 4] = Vl=-_k f-n7 We observe that r? (x) n
 x0 (X) = 4k (x) .

 From now on we assume that ,u is hyperbolic. In [16], Ledrappier and
 Young constructed a special countable partition T of M of finite entropy sat-
 isfying the following properties. Given 0 < e < 1, there exists a set r C M of
 measure f/(F) > 1 - e/2, an integer no > 1, and a number C > 1 such that for
 every x E r and any integer n > no, the following statements hold:

 a. For all integers k, I > 1 we have

 (5) C-1e-(I+k)h-(1+k)6 < 1(Pl (x)) < Ce-(l+k)h+(l+k),

 (6) C -lekh-ke < (h(z)) < Ce-kh+ke,

 (7) C-e-lh-le < t (to(X)) < Ce-lh+l
 where h is the Kolmogorov-Sinai entropy of f with respect to ML.

 b.

 (8) 5S(x) n on(x) D BS(x, e-n),
 n>O

 (9) u(x)n n Tn ?(x) D B" (x e-n?).
 n>O
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 C.

 (10) ed-n-ne < l(B(x, e-n)) < e-dsn+n,
 (11) e-dun-ne < /U(B(, een)) < e-dun+n
 d.

 (12) Tn(X) c B(x, e-n) C (x),

 (13) aOn(X) n fS(x) c BS(x, e-n) C T(x) n S(zx),

 (14) Pn(x) n u(zx) c BU(x, e-n) C T(x) n 6u(x),
 where a is the integer part of 2(1 + e) max{-Ai, Ak, 1}.

 e. Define Qn(x) by

 (15) Qn () =Uan ()

 where the union is taken over all y E F for which

 n"(y) n Bu(x, 2e-n) 5 0 and Tn0(y) n BS(x, 2e-n) # 0;

 then

 (16) B(x, en) n r c Qn(X) c B(x, 4e-n),

 and for each y E Qn(X),

 an (y) C Qn(x).

 Increasing no if necessary we may also assume that

 f. For every x E r and n > no,

 (17) BS(x, e-n) n r c Qn(x) n f8(x) c B(x, 4e-),

 (18) Bu(x, e-) n r Qn(x) n u(x) C BU(x, 4e-).

 The above statements are slightly different versions of statements in [16].
 Property (5) essentially follows from the Shannon-McMillan-Breiman theorem
 applied to the partition P while properties (6) and (7) follow from "leaf-wise"
 versions of this theorem. The inequalities in (10) and (11) are easy conse-
 quences of the existence of the stable and unstable pointwise dimensions dS
 and du (see Prop. 2). Since the Lyapunov exponents at ,u-almost every point
 are constant and equal to A1, ..., Ak, the properties (12), (13), and (14) follow
 from (8), (9), and the choice of a indicated above. The inclusions in (16) are
 based upon the continuous dependence of stable and unstable manifolds in the
 Cl+c topology on the base point (in each Pesin set). We need the following
 well-known result.
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 PROPOSITION 3 (Borel density lemma). Let tL be a finite Borel measure
 and A C M a measurable set. Then for ,-almost every x E A,

 lim (B(x, r)n A)
 rr-o0 p(B(x, r))

 Furthermore, if tt(A) > 0 then, for each 6 > 0, there is a set A C A with
 /,(A) > u(A)- 6, and a number ro > 0 such that for all x E A and 0 < r < ro,
 we have

 ,L(B(x, r)n A)> ,u(B(x, r)).

 It immediately follows from the Borel density lemma that one can choose
 an integer nl > no and a set F C F of measure [,(r) > 1 - e such that for
 every n > ni and x E F,

 (19) a(B(x, e-) nr) > l u(B(, e-n));

 (20) px(BS(x, e-n) n r) > ?/, (B(x, e-n));

 (21) u(BU(x, e-n) n r) u> |(B(x, e- n)).
 We establish two additional properties of the partitions Tk and T?.

 PROPOSITION 4. There exists a positive constant D D(r) < 1 such that
 for every k > 1 and x E F,

 94(y0k(x) n r) > D;

 l (91 (x) nr) > D.

 Proof. By (8), for every k > 1 and x E F, the set Tk(x) n F contains the
 set Bs(x, e-n) n r. It follows from (20) and (10) that

 U (o (x ) n r) > - (B (, en-o)) > e-o-o de I-zxk~OV') ?- 2I'xv-'Q-~~ e~~)) 2
 The second inequality in the proposition can be proved in a similar fashion
 using the properties (9), (21), and (11). O

 The next statement establishes the property of the partition ? which sim-
 ulates the well-known Markov property.

 PROPOSITION 5. For every x e F and n > no,

 aPn (x) n s (x) = y?(zx) n S(x); an an(x)\C/ J

 Ma( n (x) = Tp (x) n Cy (x).
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 DIMENSION AND PRODUCT STRUCTURE OF HYPERBOLIC MEASURES 767

 Proof. It follows from (13) and (8) that

 Pno (x) n S (x) C no (x) n Bs(x, e-n) C ?n (x) n B (x, e-no)
 Cax an
 c san,() n oP (z) n ( (x) = an(x) ns (x).

 Since Pan(x) C TPan (), this completes the proof of the first identity. The proof
 of the other identity is similar. E

 5. Preparatory lemmata

 Fix x E rand an integer n > nl. We consider the following two classes
 CR(n) and T(n) of elements of the partition Tan (we call these elements "rect-
 angles"):

 R(n) = {an ,(y) c ,(x) : ,an (y) n r h 0o}; franl(\ J.~J ankYJ

 n'= Tan'Y C() o
 (n)= { anS(y) C P(z) : Tan(y) n F 0 and poa(y) n rF 0}.

 The rectangles in iZ(n) carry all the measure of the set T(x) n r, i.e.,

 S Ln(R n r) = (Y(z) n r).
 RE R(n)

 Obviously, the rectangles in ~3(n) that intersect r belong to T(n). If these
 were the only ones in Y(n), the measure 4lTP(x) n F would have the "direct
 product structure" at the "level" n. One could then use the approach in [12],
 [20] to estimate the measure of a ball by the product of its stable and unstable
 measures. In the general case, the rectangles in the class T(n) are obtained
 from the rectangles in rk(n) (that intersect r) by "filling in" the gaps in the
 "product structure" (see Fig. 1).

 We wish to compare the number of rectangles in R(n) and T(n) intersect-
 ing a given set. This will allow us to evaluate the deviation of the measure
 Au from the direct product structure at the level n. Our main observation is
 that for "typical" points y E r the number of rectangles from the class k(n)
 intersecting Ws(y) (respectively WU(y)) is "asymptotically" the same up to a
 factor that grows at most subexponentially with n.

 However, in general, the distribution of these rectangles along WS(y) (re-
 spectively WU(y)) may be different for different points y. This causes a devi-
 ation from the direct product structure. We will use a simple combinatorial
 argument to show that this deviation grows at most subexponentially with n.
 One can then say that the measure ,t has an "almost direct product structure."
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 LUIS BARREIRA, YAKOV PESIN, AND JORG SCHMELING

 WS(x)

 Figure 1. The procedure of "filling in" rectangles.

 To effect this, for each set A c P(x), we define

 N(n, A) = card {R E Z:(n) : Rn A 5 0},

 NS(n, y, A) = card {R E :(n) : Rn S(y) f F A f 0},

 NU(n, y, A) = card fR E :(n) : Rn nU(y) nr A # 0},

 NS(n, y, A) = card {R E (n) : R n S(y) n A ) 0},

 NU(n, y, A) = card {R E T(n) R n fU(y) n A Z 0}.

 Note that N(n, T(x)) is the cardinality of the set (R(n), and NS(n, y, ?(x))
 (respectively NU(n, y, ?(x))) is the number of rectangles in (r(n) that intersect
 r and the stable (respectively unstable) local manifold at y. The product
 NS(n, y, Y'(x)) x NU(n, y, T(x)) is the cardinality of the set 3(n) for a "typical"
 point y E P(x).

 Let Qn(y) be the set defined by (15).

 LEMMA 1. For each y E T(x) n r and integer n > no, we have:

 NS(n, y, Qn(y)) < !,(BS(y, 4e-n)) Ceanh+ane;

 NU(n, y, Qn(y)) < b (BU(y, 4e-n)) Ceanh+an.

 768

 R(n) n F(n) F(n) \ R(n)
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 DIMENSION AND PRODUCT STRUCTURE OF HYPERBOLIC MEASURES 769

 Proof. It follows from (17) that

 u(BS(y, 4e-7)) > Ay(Qn(y)) > N(n, y, Qn (Y))

 min{/,(R) : R E Ir(n) and R S(y)) n Qn(y) F r 0}.

 (Note that the condition R n 5S(y) n Qn(y) # 0 implies that R E 9I(n).) Let
 z C R n 0S(y) n Qn(y) n r for some R E 1(n). By Proposition 5 we obtain

 y(R=) = (o/P n(z)) = s(T?n(Z)). The first inequality in the lemma follows
 now from (6). The proof of the second inequality is similar. O

 LEMMA 2. For each y CE (x) n F and integer n > nl,

 ta(B(y, e-)) < N(n, Qn(y)). 2Ce-2anh+2an.

 Proof. It follows from (19) and (16) that

 /|(B(y, e-n)) < a(B(y, e-n) n r) < (Qn(y) n F)

 < N(n, Qn(y)) * max{/L(R) : R E i(n) and R n Qn(y) 7 0}.

 (Note that the condition R n Qn(y) $ 0 implies that R E 9k(n).) The desired
 inequality follows from (5). C

 We now estimate the number of rectangles in the classes k(n) and T(n).

 LEMMA 3. For ,L-almost every y E P(x) nr there is an integer n2(y) > nl
 such that for each n > n2(y), we have:

 N(n + 2, Qn+2(Y)) < NS(n, y, Qn(Y)) . N(n, y, Qn(Y)) * 2C2e4a(h+e)e4an.

 Proof. By the Borel density lemma (with A = F), for /u-almost every y E r
 there is an integer n2(y) > ni such that for all n > n2(y),

 2/t(B(y, e-n) n F) > t(B(y, e-n)).

 Since F C r, it follows from (16) that for all n > n2(y),

 (22) 2/((Qn(y) n F) > 2,u(B(y, e-n) ) ) > u(B(y, e-n))

 > /(B(y, 4e-n-2)) > I(Qn+2(Y)).

 For any m > n2(y), by (5) and property (e), we have

 t9(Qm(y)) = ~E / ~(Tamm(Z)) >' N(m, Qm(y)) c C-le-2amh-2am I'(Qm(y))= Z^am(
 Tam (z)CQm(y)

 Similarly, for every n > n2(y), we obtain

 I(n(Y) y) = r) I( an(z) n r) < Nn . Ce-2anh+2an,
 Pgan(z)c Qn(y)
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 LUIS BARREIRA, YAKOV PESIN, AND JORG SCHMELING

 where Nn is the number of rectangles Tan(z) E Rk(n) that have nonempty
 intersection with F.

 Set m = n + 2. The last two inequalities together with (22) imply that

 (23) N(n + 2, Qn+2(Y)) < Nn 2C2e4a(h+?)+4an.

 On the other hand, since y E r the intersections T'an(y) n ~U(y) n F and
 P?n(y) n ~S(y) n r are nonempty.

 Consider a rectangle an(v) C Qn(y) that has nonempty intersection
 with F. Then the rectangles TOPn(v)n T pn(y) and P?n(y) n Tan(v) are in Y(n)
 and intersect respectively the stable and unstable local manifolds at y. Hence,
 to any rectangle TPan(v) C Qn(y) with nonempty intersection with r, one can
 associate the pair of rectangles (TPan(v) n :oan(y), T?an(y) n Tpn(v)) in

 {R E 3(n): R n S(y) n Qn(y) / 0}] x {R E T(n): R n U(y) n Qn(y) # 0}.

 Clearly this correspondence is injective. Therefore,

 NS(n, y, Qn(y)). N (n, y, Qn(y)) > Nn.

 The desired inequality follows from (23). O

 Our next goal is to compare the growth rate in n of the number of rectan-

 gles in Y(n) with the number of rectangles in 3R(n). We start with an auxiliary
 result.

 LEMMA 4. For each x E r and integer n > ni, we have:

 NS(n, x, P(x)) < D-1C2eanh+3ane;

 NU(n, x, P(x)) < D-1C2eanh+3ane.

 Proof. Since the partition T is countable we can find points yi such that
 the union of the rectangles oan(yi) is P(x), and these rectangles are mutually
 disjoint. Without loss of generality we can assume that yi E r whenever
 yTn (Yi) nr F . We have

 (24) N(n, j(x)) NS(n, yi, oP (Yi)) > NS(n, yi, oan7 (y))
 i:aon(yi)nr0O
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 DIMENSION AND PRODUCT STRUCTURE OF HYPERBOLIC MEASURES 771

 We now estimate NS(n, Yi, Tpan(yi)) from below for yi E F. By Propositions 4
 and 5, and (6),

 ~~~~~~~~(25) ~lAS (pan(yi) n r) (25) NS(nr, Y,, Pann())> () r) F)()nr (25) N(, yAn. z 7(y )) > y}
 D

 max{u (Pan(z()): z E e((yi) n 2(x) n r}
 D

 max{/lM(TO?(z)) : z E S (yi) n P(x) n r}

 > DC-1eanh-an.

 Similarly (5) implies that

 (26) N(n, 9(x)) K [t(AP(x)) < Ce2anh+2ane
 min{/((Taanl(z)) z E T(x) n rF}

 We now observe that

 (27) NU(n, x, T(x)) = card {i : Tan(yi) n F q 0}.

 Putting (24), (25), (26), and (27) together we conclude that

 Ce2anh+2ane > N(n, TP(x))

 > Z NS(n, yi, TPn(y))
 i: ao (yi) r`0

 > Nu(n, x, 2(x)) ? DC-leah-ane.

 This yields NU(n, x,T(x)) < D-1C2eanh+3an. The other inequality can be
 proved in a similar way. D

 We emphasize that the procedure of "filling in" rectangles to obtain the
 class 3(n) may substantially increase the number of rectangles in the neigh-
 borhood of some points. However, the next lemma shows that this procedure
 of "filling in" does not add too many rectangles at almost every point.

 LEMMA 5. For ,u-almost every y E P(x) n r, we have:

 NS(n y, Qn(y))e-7ane < 1;
 n-++oo N(n, y, Q (Y))

 U(n, y, Qn(y)) e7ane < 1
 n-++oo NU(n y, Qn(y))

 Proof. By (17) and (20), for each n > n1 and y E r,

 (Qn(y)) > y(BS(y e-n) n r) > Ay(B(y e- )). y y 2 y /S/l -n)
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 LUIS BARREIRA, YAKOV PESIN, AND JORG SCHMELING

 Since Tan(z) C TPn(z) for every z, by virtue of (6) and (10) we obtain

 (28) N' N(n, Y, Qn(y)) _> 8 max{,/([p(an(z)) z E s (y) n P(x) n '}

 1 u/(Bs(y,e-n))
 > -

 - 2 max{(/(P,?n(z)): z E 5S(y) n T(z) n r}

 I e-dsn-ne
 - 2C e-anh+ane'

 Let us consider the set

 NS(n, y, Qn (y)) e > F = er: im e-7an > 1}.
 n -+oo NA(n, y,Qn(Y))

 For each y E F there exists an increasing sequence {mj }^jl {mj (y)}j=1 of
 positive integers such that

 (29) NS(mj, y, Qm (y)) > ?N(mj, y, Qmj(y))e7amji
 > e-dsmj+amjh+5amje

 -4C

 for all j (note that a > 1).
 We wish to show that ,u(F) = 0. Assume on the contrary that lu(F) > 0.

 Let F' C F be the set of points y E F for which there exists the limit

 log s(BS(y,r)) lim / Y - ds
 r-0o log r

 Clearly /((F') = ,i(F) > 0. Then we can find y E F such that

 y(F)= (F) = -a (F n T(y) n S(y)) > 0.
 It follows from Frostman's lemma that

 (30) dimH(F' n S (y)) = d.

 Let us consider the countable collection of balls

 =- {B(z, 4e-mj(z)) : z E Fl n CS(y); j = 1, 2, ... }.

 By the Besicovitch covering lemma (see, for example, [3]) one can find a sub-
 cover T C B of F' n JS(y) of arbitrarily small diameter and finite multiplic-
 ity p = p(dimM). This means that for any L > 0 one can choose a se-
 quence of points {zi E F/ n S(y)} l and a sequence of integers {ti}=l, where
 ti E {mj(zi)}^? and ti > L for each i, such that the collection of balls

 t= {B(zi, 4e-t): i-=1,2,...}
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 DIMENSION AND PRODUCT STRUCTURE OF HYPERBOLIC MEASURES 773

 comprises a cover of F' n s (y) whose multiplicity does not exceed p. We write
 Q(i) = Qti(zi). The Hausdorff sum corresponding to this cover is

 00

 (diam B)d-6 = (8ds ) e-ti(dS-?)
 BEe i=1

 By (29), we obtain
 00 00

 e-ti(d' ) < s (, , Q(i)) 4Ce-atih-4atie
 i=1 i=l

 00

 <4C e aqh4aqe N (qi, Q(i)).
 q=l i:ti=q

 Since the multiplicity of the subcover T is at most p, each set Q(i) appears in

 the sum Eiti =q NS(q, zi, Q(i)) at most p times. Hence,

 NS(q, zi, Q(i)) < pNs(q, y, P(y))
 i:ti=q

 From Lemma 4 it follows that

 (diamB)dS 4(8dS-e)C e-aqh-4aqepNS(q, y, (y))
 BEg q=1

 < 4(8d- e)D-1 C3p 5 e-aqh-4aqE+aqh+3aqe
 q=l

 = 4(8d'-e)D-1C3p ae-aqe < c.
 q=l

 Since L can be chosen arbitrarily large (and so also the numbers ti), it follows
 that dimH(F' n S(y)) < dS - e < ds. This contradicts (30). Hence ,A(F) = 0
 and this yields the first inequality in the lemma. The proof of the second
 inequality is similar. O

 By Lemma 5, for ia-almost every y E P(x) n r there exists an integer
 n3(y) > n2(y) such that if n > n3(y), then

 (31) NS(n, y, Qn(y)) < NS(n, y, Qn(y))e7an,

 (NU(n, y, Qn(y)) < NU(n, y, Qn(y))e7an6. (32)
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 LUIS BARREIRA, YAKOV PESIN, AND JORG SCHMELING

 Moreover, by Lusin's theorem, for every e > 0 there exists a subset r, C r
 such that

 p(re) > /(F) - e and n, d sup{nl, n3(y): y E } <oo,

 and the inequalities (31) and (32) hold for every n > n, and y E Fr.
 A version of the following statement was proved by Ledrappier and Young

 in [16]. For the sake of the reader's convenience we include its proof.

 LEMMA 6. For every e > 0, if y E rF and n > n, then

 su(B(y, e-n))/[y(BU(y, e-n)) < ,u(B(y, 4e-n)) 4C3ellanC .

 Proof. Let z E Fr ( Qn(y). By (32), if n > n? then

 NU(n, y, Qn(y)) < NU(n, y, Qn(y)) = NU(n, z, Qn(y)) < NU(n, z, Qn(y))e7an

 and

 (33) NU(n, y, Qn(y)) < inf{NU(n, z, Qn(y)) : z E F, n Qn(y))e7an.

 Since N(n, Qn(y)) is equal to the number of rectangles R c Qn(y) we have

 NS(n, y, Qn()) x inf{NU(n,z, Qn(y)) z E Qn(y)} < N(n, Qn(y)).

 By (33), if y E Fr and n > n? then

 NS(n, y, Q(y)) x NU(n, y, Qn(y)) < N(n, Qn(y))e7an.

 As in (28), if y E Fr and n > n, then

 NS(n, y, Q(y)) > t (BS(y, e-n))? (2C)-leanh-ane

 NU(n, y,Qn(y)) _> pu(B(y, e-n)) . (2C)-leanh-an?.

 Moreover, by (5) and (16),

 N(n, Qn(y)) ? n < (B(y, 4e-n))-Ce2anh+2an.
 min{,(Tan (z)) ' z C Qn(y) n r} - ))

 Putting together these inequalities we obtain the desired statement. Ol

 6. Proof of the Main Theorem

 Given e > 0, let the set r be as in the previous sections. By Lemmas 2
 and 3, for /-almost every y E T(x) n r and n > n2(y), we obtain

 /U(B(y, e--2))< ( yS(n, y, Qn(Y)) NU(n, y, Qn(y)) 4C3e4a(h+)e-2anh+6ane.
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 DIMENSION AND PRODUCT STRUCTURE OF HYPERBOLIC MEASURES 775

 By (31), (32), and Lemma 1 we obtain

 (34)
 A(B(y, e--2)) NS(n, y, Qn(y)) NU"(n, y, Qn(y)) ' 4C3e4a(h+e)e-2anh+20ane

 <s (BS(y, 4e-n)))u (B (y, 4e-n)) 4C5e4a(h+e)e22ane

 Statement 1 of the theorem follows now immediately from (34) and Lemma 6.
 By (34) and statement 1 in Proposition 2, we obtain

 lim log t(B(y, en))> ds+ du-22aE
 n7--+00 -n

 for ,u-almost every y E r. Since i(r) > 1- e and E > 0 is arbitrarily small, we
 conclude that

 d limlog (B(y,r)) = lim log (B(y, e-n)) dSd
 r-+O logr n--+oo -n

 for it-almost every y E M. Combining this property with statement 2 in
 Proposition 2, we obtain statement 2 of the theorem. D

 7. The case of nonergodic measures

 We show how to modify our arguments in the case when the measure ,
 is not ergodic. Notice that in this case Proposition 2 is still valid, i.e., for
 ,u-almost every x E M the stable and unstable dimensions dS(x) and dU(x)
 exist but may depend on the point. Moreover, given E > 0, there is a set r' of
 measure > 1 - and, for every x E r', a number h(x) such that (5)-(18) hold
 if h is replaced by h(x), dS by dS(x) and du by dU(x). Let us fix r > 0 and
 consider the sets

 r(x) = (y E M : Ih(x) - h(y)l < x, IdS(x) - dS(y)l < n, IdU(x) - dU(y)l < n}.

 The collection of these sets covers Fr. Moreover, there exists a countable
 subcollection of sets {rFi)ie which still covers r'. Let ,ui be the conditional
 measure generated by ,t on ri. We can apply the arguments in the proof of
 the Main Theorem to the measures bi and show that for almost every x E F'
 the following inequality holds

 d (x) + d(x) - < d(x),

 where di (x) is the pointwise dimension of the measure ,i and c does not depend
 on x or n. Since the cover {Fr}ieN is countable letting K go to zero yields that
 for Au-almost every x E M

 dS(x) + du(x) d(x).

 It follows from [16] that d(x) < dS(x) + du(x).

This content downloaded from 
����������132.174.254.159 on Thu, 03 Aug 2023 01:33:53 +00:00����������� 

All use subject to https://about.jstor.org/terms



 LUIS BARREIRA, YAKOV PESIN, AND JORG SCHMELING

 Appendix. Lipschitz property of intermediate foliations

 Let M be a smooth compact connected Riemannian manifold with dis-
 tance d and f: M -+ M a C1+a diffeomorphism. We denote the Lyapunov
 exponents at a point x E M by

 A1 (X) < ... < Akk(z)(X).

 Recall that a point x E M is called Lyapunov regular if there exists a decom-
 position TxM = 1)i= Ei(x), where Ei(x) is the vector space

 Ei(x)- {v TE M M\{0}: lihm log ljidfnvI =Ai(x) U {0}
 1"(r)= W B@d4 j()n- +?oo n

 such that
 k(x)

 lim log I det dxfnl = Ai(x) dim Ei(x).
 n-4?oo n

 i=1

 Note that Ai(f(x)) = Ai(x) and dxfEi(x) = Ei(f(x)) for each i.
 We denote by A c M the set of all Lyapunov regular points. Below

 we describe some notions and results on nonuniformly hyperbolic dynamical
 systems. For references, see [18], [14], [9], and [10].

 Set s(x) = max{i: Ai(x) < 0} and u(x) = min{i : i(x) > 0}. Fix x E A
 and r(x) > 0. For every i 1, ..., s(x) one defines the ith stable leaf at x by

 Wi(x) = y E B(x,r(x)) : limsup - logd(fn(x),fn(y)) < Ai(x)}
 n---+oo n

 and for every i = u(x), ..., k(x) the ith unstable leaf at x by

 Wi(x) y E B(x, r(x)) : limsup log d(f (x), fn (y)) < -Ai(x)}
 tn--+--o In\

 Clearly, Wi(x) c Wi+l(x) if i < s(x) and Wi(x) D Wi+l(x) if i > u(x). We
 write WS(x) = WS(x)(x) and WU(x) = WU(x)(x) and call them, respectively,
 the stable and unstable manifolds at x. One can prove that if r(x) is sufficiently
 small than Wi(x) is a Cl+ immersed submanifold.

 For every i < s(x), set D'(x) = j=1 Ej(x), and for every i > u(x), set
 Di(x) = e'=) EJ(x). If i is such that Ai(x) $ 0, then TxWi(x) = Di(x).

 Recall that a function A: A -+ R is called tempered (with respect to f) if
 for every x E A we have

 lim -log IjA(fn(x))l = 0.
 n-+c-oo n

 Given r E (0, r(x)) we denote by Bi(x, r) C Wi(x) the ball centered at x
 of radius r with respect to the induced distance on Wi(x).

 Given r > 0 and x E A, let (Ux, ',x) be a Lyapunov chart at x. This means
 the following:
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 1. Wpx: Ux - *I R is a local diffeomorphism with the property that the spaces
 Ei = px(expx Ei(x)) form an orthogonal decomposition of Rn;

 2. the subspaces Di = p?x(expx Di(x)) are independent of x;

 3. if i = 1, ..., k(x) and v E Ei(x) then

 (Al) eAi(x)-llpx(expx v)II < IPf(z)(expf(z) dxfv) l < exi(x)+llrpx(expx v)ll;

 4. there is a constant K and a tempered function A: A -. R such that if
 y, z E U then

 KIIxy - pxzll < d(y, z) < A(x)\(pxy - xZIll;

 5. there exists p(x) E (0, r(x)) such that Bi(x, p(x)) C Wi(x) fn U for every
 x E A and i = 1, ..., k(x) with Ai(x) 7 0. Moreover, for 1 < i < s(x),
 the manifolds px(Wi(x)) are graphs of smooth functions gi:Di -+ Di+l
 and for u(x) < i < k(x), of smooth functions gi:Di - Di-; the first
 derivatives of gi are bounded by 1/3.

 It follows that if i < s(x) then

 f(wi(x) n Ux) C wi(f(x)) n Uf(),

 and if i > u(x) then

 f-l(wi(x) n x) c wi(f-l(x)) n Uf-l().

 Each set A can be decomposed into sets A, in which the numbers k(x),
 dimEi(x), and Ai(x) are constant for each i. For every ergodic measure /,
 invariant under f there exists a unique 3 for which the set A, has full ,u-
 measure. From now on we restrict our consideration to a subset A: C A and

 set k(x) = k, s(x) = s, u(x) = u, and Ai(x) = Ai for each i and x E Aa.
 Given t > 0, consider a set

 Ap = {x E Ap : p(x) > 1/t, A(x) < e,

 Z(Ei(x), Ej(x)) > l/e, i 1=... ,k}.
 j#i

 Let Ac be the closure of A/. For each x E A' there exists an invariant

 decomposition TxM = 3k)Ei(x), invariant ith stable and unstable leaves
 Wi(x), and Lyapunov chart (Ux,lx) at x with the above properties. In
 particular, the functions p(x) and A(x) can be extended to A1e such that

 p(x) > lle, A(x) < e, and Z(Ei(x),(*j#iEj(x)) > 1/t for i = 1... , k
 The set A,e is obviously compact. We also have that Ate C A,(e+l) and A, =
 Ue>o A,e (mod 0).
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 LUIS BARREIRA, YAKOV PESIN, AND JORG SCHMELING

 Let us fix c > 0, e > 0, x E Ape, and y' E Aet n Bi+l(x,c/e). For each
 i < s, consider two local smooth manifolds Ex and Sy/ in Wi+l(x), containing
 x and y', respectively and transversal to Wi(z) for all z E Ae n Bi+l(x, c/e).
 The holonomy map

 Ii = nIi(Ex, y): Ex n Ae n A Bi+l(x,c/e) -) y E
 is defined by

 ni (x') = Wi(xi) n sy,

 with x' E Ex. This map is well-defined if c is sufficiently small (c may depend
 on ? but does not depend on x and y).

 Our goal is to prove the following theorem.

 THEOREM. Let f be a C1+? diffeomorphism. For each t > 0, i < s,
 x E A3,e and y' E Aft n Bi(x, c/f) the holonomy map HIi(Ex, Sy) is Lipschitz
 continuous with the Lipschitz constant depending only on 3 and t.

 Proof. We need a series of lemmas. First we observe that the Lipschitz
 property does not depend on the choice of transversal sections.

 LEMMA Al. For any local smooth manifolds ES and E', in Wi+l(x) con-
 taining x and y' respectively and transversal to Wi(z) for z E Bi+l (x, c/i)nAte,
 the holonomy map II (E, S,) is Lipschitz continuous if and only if the map
 IIi(EX, Ey) is Lipschitz continuous (possibly with a different Lipschitz constant
 depending only on the angles between the tangent spaces to the transversals).

 Proof. Since the foliation Wi is continuous on the compact set

 Bi (x, c/i) n hA

 and its leaves are at least C1, the angle between any transversal section to
 Wi(z) (in Wi+l(x)) and any leaf of Wi is uniformly bounded away from 0.
 Therefore, if z E Ex and z' = E n Wi(z) then the ratio d(x, z)/d(x, z') is
 bounded from below and above (uniformly in z) by constants (depending only
 on those angles). This implies the desired result. E

 For each z E M and n E N, we will write Zn = fn(z). Given x E Ap,
 consider a map bx: Bi+l(x, p(x)) --Ii D Ei'1 by

 (xy = (7l(rxY), x2 (PxY)),

 where 7rl:1'i+1 -+ )i and r2:Di+1 -Y Ei+l are the orthogonal projections.
 The following two lemmas are immediate consequences of the properties of the
 Lyapunov charts.

 LEMMA A2. The map 1?x is a diffeomorphism with all derivatives tem-
 pered. Moreover, there is a constant C1 (depending only on t) such that for
 every x E Afe, n E N, and y, z E Bi+l(x, p(x)) we have

 778
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 DIMENSION AND PRODUCT STRUCTURE OF HYPERBOLIC MEASURES 779

 1. II,XnYn - ,nZnll < Cle(Xi+1+T)nlllaxy- 11;

 2. if 117rl( xy - bxz)\II/II\2(l xY - Ixz)\I < 3e then

 Ilrli(x2nYn - X,nZn)II < Cle(Ail+T)n1|1)rlr(4jxy - xz) 11,

 1h2(DYxn - YDn Zn)|| ? Cle(Ai+l+T)nh1Ir2Q(xy - z)II||.

 For each x E A/ we introduce the map Fx: Px(Bi+l (x, p(x))) -+ Di ? Ei+l
 by

 F,(v) = 4 f(x)f( -(v)).
 We write

 FXn o .. FoF n>O

 Fx Id n = 0.

 F-lo.oFxI 1 n<0

 LEMMA A3. For every x E AO, the map Fx is a Cl+a diffeomorphism
 onto its image, the Holder constant d(x) of the differential dFx(O) at 0 is a
 tempered function of x, for every e > 0 there exists a constant de > 0 such that

 d(x) < dt for every x E Apt, and, finally, dFx(O)Ei = Ei for every x E A and
 every i.

 LEMMA A4. There is a constant C2 (depending only on ?) such that if
 n E N, x E Afe, y, z E Bi+l(x, p(x)), and

 Il|r(i(Xy - XZ)II/II7r2(DxY - Dz)lII < 3e

 then

 (A2) C2-1I!r2(xy - 1z)l| < 1172dF2n(0)( nYn - nZn)II
 < C2IlIr2(=( y - xz)11.

 Proof. We first observe that

 11 4IXn Yn -xn Zn I I

 < max{I|Iri (xn Yn, - 4,xn Zn) , 1172( Xny,n - 4xn Zn) II}

 < max{Cle(Ai+r)n 117rl (Ixy - xz) 11, C1e(XA+l+T)nll r2 (Qy - z) I }

 < max{Cie(xi+T)n3Illr2 (J?y - 12z) ll, Cle(Xi+l+)n 17r2 (xy - 1xz) }

 < C3e(-x++r)nJll7r2(xy - xz)II

 < C4e- llwr(Onyn - 4nz,n) I,
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 LUIS BARREIRA, YAKOV PESIN, AND JORG SCHMELING

 where C3 > 0 and C4 > 0 are constants. By Lemma A3 there is a constant
 C5 > 0 (depending only on ?) such that if n E N then

 1lr2(4Ixn-_yn-l - Dxn-Zn-I - dFx-n (xnYn XnYn - (XnZn))

 < I)x,_ Yn-i1 - xnx,_l n-l -dFx nl(Xn,n)(4,Xnn - 4xnZn)ll

 ? C5e 11 xn,Yn - (IXn Zn 1+.

 If 7r24)xy = 7r2aIxz, then the statement follows from the Lyapunov block form
 of dFx,n(0). Assume now that 7r2(xYy 7 -r2Ixz. By Lemma A2 and (Al) there
 are positive constants C6 and C7 (depending only on t) such that if n E N
 then, letting Wn = )xnYn - x, Zn ,

 17r2dFxnn(O)(Dxnyn -xZn)ll

 -7r2dF -1) (0)((xnl Yn-1 -Ix_ n-li)

 7r2dFxn(n 1)(w)(w n1 - dF1- (O)w)n)I
 <l-fn

 < + dFIFl x)>(0)[w2 (wn,_ - dFx-l(O)wn)}] 1'
 \\7r2dFx 1\)(O)[Wn-1 II

 < 1 + C6ern I1 (Wn-l - dF(Q)Wn) \\

 I|r2wn-I1 1

 < 1 ? 0Tn I l7r2 (Wn-l - dFwl (yn)Wn) WI < m + ce2 1

 + I(wn X2 (( - Fx -dFl)- (O))w)ll
 < 1+ COe n )W)

 |I722Wn_-1| C,rnlClelnll2I]Wn,-dnn

 < 1 + CeeT -Cle llujw +
 17r2Wn_2Wn1

 +0c6ern IIdFll (dFyx ) - dFxn (?) IdF-)Wnll
 117r2Wn-1 11

 < 1 + C5C6C4e4 |l|WnlI| + C7en C4e2Tn

 < 1 + (C5 + C7)C6C4CI?e[(Ai+l+T)a+4+]n.

 780
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 DIMENSION AND PRODUCT STRUCTURE OF HYPERBOLIC MEASURES 781

 Set C8 = (C5 + C7)C6C3C1a. Choosing r sufficiently small we may assume
 that 4r + (Ai+l + r)a < ay < 0. Therefore,

 00

 | 7I2dFn (0) ('xn Yn 4x,., Zn) ll I + C8e[4r+(ji+r)

 < (1 +o) <
 < IT (1 + C8e^tn) C2 < +)C

 n=O

 and the upper estimate in (A2) follows. The lower estimate can be obtained
 in a similar way. D

 We now proceed with the proof of the theorem. By Lemma Al we may
 specify the choice of the transversals.

 We say that a transversal section S is good if px (S) is the graph of a
 function

 hi: ox (Bi+l(x, p(x))) n Ei+ -- Di+1

 whose first derivative is bounded by 1/3. If 2r < I i - Ai+11 and x E Age,
 then, by the properties of the Lyapunov charts, all the images fn(E) are good
 provided S is good. Moreover, there is a constant Co > 0 such that

 (A3) Cold,,x (oxY, yxz) < 117T2 (xY - pxz)11 < CodxE (pxy, (x z)

 for any good transversal section where dpe is the induced distance on pxE.
 Let x E A,e. We fix good transversals Ex and Sy with y' E Bi+1(x, c/e) n

 A,R. Let y = Hi(x) and y' = IIi(x'). Since the transversals are good we know
 that

 111ri(xY - Y 'xY')/lllIr2(,xY - xy')II < 3t.

 We also have that

 11i7r l ( x') l/ll1r2( 2xX')ll < 3e.
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 LUIS BARREIRA, YAKOV PESIN, AND JORG SCHMELING

 Set C = 102Co2C22. By Lemma A4 and (A3), for every n E N

 d(y, y') d 0 (y, y')
 d(x,x') d- dE(x,x')

 1< 9w^^~y ^I < I7r2@-') < 1 02do() <, 112 7r2(x-/)11

 < C lr2dFx(n(O)(,x Yn, xnY ) 11
 -11F2dF;-n (o)x n' x 11

 < C l + 112dFx-n(o)(4xXl'n - -xnyYn + ,xn,Yn))l
 ll 2dFx-nn(O)4xnX\11

 ?< 0 11[2dF-n( (O)(~,,n -(,Y)11 + ) ~2dF;n(O)~Y,n11
 <r(C ?Tnd^ 1 + eTnr2dZiy-nnO) \)xn n J

 ~< C (1 nd(, +e(Ai+l -r)n y

 < C(1 + e(37r+X-A+l)n).

 Choosing r such that 3r + Ai - Ai+i < 0, we conclude that 1Hi is Lipschitz. 21
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