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We introduce the mathematical concept of multifractality and describe various multifractal spectra
for dynamical systems, including spectra for dimensions and spectra for entropies. We support the
study by providing some physical motivation and describing several nontrivial examples. Among
them are subshifts of finite type and one-dimensional Markov maps. An essential part of the article
is devoted to the concept of multifractal rigidity. In particular, we use the multifractal spectra to
obtain a ‘‘physical’’ classification of dynamical systems. For a class of Markov maps, we show that,
if the multifractal spectra for dimensions of two maps coincide, then the maps are differentiably
equivalent. © 1997 American Institute of Physics. @S1054-1500~97!01201-9#

In the study of chaos one often encounters invariant sets
with a very complicated geometry. In general, these sets
are not self-similar, but can often be decomposed into
subsets each possessing some scaling symmetry. This de-
composition is called a multifractal decomposition and is
an essential part of the multifractal analysis of dynamical
systems. The physical data obtained in the numerical
study of dynamical systems contain ‘‘hidden’’ informa-
tion about multifractal decompositions. In order to reveal
this information in a way which is convenient for the
numerical analysis one can use the so-called multifractal
spectra. Since the available data comes often only through
‘‘physical’’ observables, it is an important and challeng-
ing problem to recover information from the ‘‘raw’’ data
about the dynamical system. We believe that for dynami-
cal systems of hyperbolic type one can use a finite num-
ber of ‘‘independent’’ multifractal spectra to fully ‘‘re-
store’’ the dynamics. In this article, we present several
results towards the solution of this problem.

I. INTRODUCTION

The multifractal analysis, i.e., the analysis of invariant
sets and measures with multifractal structure, has been re-
cently developed as a powerful tool for numerical study of
dynamical systems. Its main constituent component is di-
mension spectra which include Rényi spectrum for dimen-
sions, Hentschel-Procaccia spectrum for dimensions, and
f ~a!-spectrum for ~pointwise! dimensions. These spectra
capture information about various dimensions associated

with the dynamics. Among them are the well-known Haus-
dorff dimension, correlation dimension, and information di-
mension of invariant measures.

There is another dimension spectrum that is used to de-
scribe the distribution of Lyapunov exponents. It is called the
dimension spectrum for Lyapunov exponents and it yields
integrated information on the instability of trajectories.

Dimension spectra are examples of more general multi-
fractal spectra that we introduce in this article. Another ex-
ample of multifractal spectra is entropy spectra. They pro-
vide integrated information on the distribution of topological
entropy associated with pointwise dimensions, Lyapunov ex-
ponents, etc.

One of the main points of the article is to demonstrate
that multifractal spectra can be used in a sense to ‘‘restore’’
the dynamics—the phenomenon that we call the multifractal
rigidity. There are two main problems related to multifractal
rigidity. First, given a dynamical system of hyperbolic type
there exist finitely many independent multifractal spectra that
uniquely identify the main macro-characteristics of the sys-
tem ~such as its invariant measure, geometric structure of its
invariant sets, their dimensions, etc.!. These spectra can be
viewed as a special type of degrees of freedom, called mul-
tifractal degrees of freedom, and can be effectively used in
the numerical study of dynamical systems.

We demonstrate, in particular, that, for subshifts of finite
type and some conformal expanding maps, the dimension
spectrum alone is sufficient to determine all other multifrac-
tal spectra and, thus, these systems have one multifractal
degree of freedom.

Another problem is inspired by an attempt to produce a
‘‘physically meaningful’’ classification of dynamical sys-
tems that takes care of various aspects of the dynamics
~chaoticity, instability, geometry, etc.! simultaneously.

In the theory of dynamical systems there are various
types of classifications. The most prominent ones seem to be
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topological classification ~up to homeomorphisms! and
measure-theoretic classification ~up to measure preserving
automorphisms!. From a physical point of view, these clas-
sifications trace separate ‘‘independent’’ characteristics of
the dynamics. We suggest a new type of classification that is
based upon multifractal spectra and combines features of
each of the above classifications, in what we call the multi-
fractal classification. The new classification has a strong
physical content and identifies two systems up to a change of
variables. From a mathematical point of view, we establish
the smooth equivalence of two dynamical systems that are a
priori only topologically equivalent and have the same mul-
tifractal degrees of freedom. The multifractal classification is
much more rigid than the topological and measure-theoretic
classifications. Besides the smooth equivalence of the two
dynamical systems, it establishes the coincidence of their
dimension characteristics as well as the correspondence be-
tween their invariant measures.

II. A GENERAL CONCEPT OF MULTIFRACTALITY

We begin with the general concept of multifractal spec-
trum.

Let X be a set and let g: X!@2`,1`# be a function.
The level sets of g ,

Ka
g5$xPX:g~x !5a%, 2`<a<1`

are disjoint and produce a multifractal decomposition of X ,
that is,

X5 ¯
2`<a<1`

Ka
g . ~1!

Let G now be a set function, i.e., a real function that is
defined on subsets of X . Assume that G(Z1)<G(Z2) if
Z1,Z2 . We define the function F :@2`,1`#!R by

F ~a!5G~Ka
g !.

We call F the multifractal spectrum specified by the pair of
functions (g ,G), or the (g ,G)-multifractal spectrum. The
function F captures important information about the struc-
ture of the set X generated by the function g .

It often happens that the function g is defined only on a
subset Y,X . In this case the decomposition ~1! should be
replaced by

X5~X\Y !¯ ¯
2`<a<1`

Ka
g .

We still call this decomposition of X a multifractal decom-
position.

Given 2`<a<1`, let na be a probability measure on
X such that na(Ka

g )51. If

F ~a!5inf$G~Z !:na~Z !51%,

we call na a (g ,G)-full measure. Constructing a one-
parameter family of (g ,G)-full probability measures na
seems the most effective way of studying multifractal de-
compositions.

When X is a smooth compact manifold and g is a
smooth function, each level set Ka

g is a hypersurface for all a

but at most the critical values of g ~see Figure 1!; moreover,
the set of numbers a for which the set Ka

g is nonempty is an
interval. For smooth functions, typically the Lebesgue mea-
sure on Ka

g is a full measure, and the spectrum F is a delta
function.

We are mostly interested in the case where g is not even
continuous and, thus, the sets Ka

g can have a very compli-
cated structure ~see Figure 2!. In this case, we are going to
establish, in some situations, that

~1! the set of numbers a for which the set Ka
g is nonempty is

an interval;
~2! given a ~with nonempty Ka

g !, there is a measure na sup-
ported on Ka

g ;
~3! the set X\Y is negligible ~in some sense!;
~4! the function F is analytic and strictly convex.

We furthermore use families of full measures to classify
multifractal decompositions and the corresponding multifrac-
tal spectra. Namely, let F and F 8 be two multifractal spectra
specified by the pairs of functions (g ,G) and (g8,G8), re-
spectively. Assume that there exist families $na%aPR and
$na8 %aPR of (g ,G)-full measures and (g8,G8)-full measures,
respectively. We say that the spectra F and F 8 are equiva-
lent ~with respect to the families $na%aPR and $na8 %aPR! and
we write F ;F 8 if there exists a bijective map p :@2`,
1`#!@2`,1`# such that na 5 np(a)8 . The function p is
called a ~F ,F 8!-parametrization.

In this article we will be interested in multifractal de-
compositions associated with dynamical systems acting on
X . There may exist many such decompositions generated by
different ‘‘naturally chosen’’ functions g and G ~see Section
III!. We believe that, in studying dynamical systems with
chaotic behavior, the equivalence class of every such spec-
trum contains crucial information about the dynamics of f on
the invariant set X .

FIG. 1. A typical multifractal decomposition for a smooth function g .

FIG. 2. A typical level set Ka
g for a noncontinuous function g .
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III. EXAMPLES OF MULTIFRACTAL SPECTRA

We illustrate the general concept of multifractal spectra
by studying several explicit spectra.

A. Dimension and entropy spectra

Let X be a complete separable metric space and let
f :X!X be a continuous map. We begin with the choice of
the set function G . There are two ‘‘natural’’ set functions on
X . The first one is generated by the metric structure on X .
Namely, given a subset Z,X , we set

GD~Z !5dimHZ , ~2!

where dimHZ is the Hausdorff dimension of Z ~see the Ap-
pendix!.

The second function is generated by the dynamical sys-
tem f acting on X and the metric on X . Namely,

GE~Z !5h~ f uZ!, ~3!

where h( f uZ) is the topological entropy of f on Z ~see the
Appendix; notice that Z need not be compact nor
f -invariant!. We call the multifractal spectra generated by
the function GD dimension spectra, and the multifractal
spectra generated by the function GE entropy spectra.

We now describe some ‘‘natural’’ choices for the func-
tion g .

B. Multifractal spectra for pointwise dimensions

Let m be a Borel finite measure on X . Consider the sub-
set Y,X consisting of all points xPX for which the limit

dm~x !5 lim
r!0

log m~B~x ,r !!

log r

exists, where B(x ,r) denotes the ball of radius r centered at
x . The number dm(x) is called the pointwise dimension of m
at x . Whenever xPY , we say that the pointwise dimension of
m exists at the point x . We define the function gD on Y by

gD~x !5dm~x !.

We note that the corresponding multifractal decomposition
consists of the sets

Ka
gD5$x:dm~x !5a%.

We obtain two multifractal spectra DD5DD
(m) and DE5DE

(m)

specified by the pairs of functions (gD ,GD) and (gD ,GE),
respectively, where the set functions GD and GE are given
by ~2! and ~3!. We call them multifractal spectra for (point-
wise) dimensions.

Let us note that the spectrum DD is known in the litera-
ture as the dimension spectrum or fm~a!-spectrum for dimen-
sions. The concept of a multifractal analysis was suggested
by a group of physicists in Ref. 1 ~see Ref. 2 for more ref-
erences and details!.

In Ref. 3, Eckmann and Ruelle discussed the pointwise
dimension of hyperbolic measures ~that is, measures with
nonzero Lyapunov exponents almost everywhere!, invariant
under diffeomorphisms. They conjectured that the pointwise
dimension exists almost everywhere, that is, m(X\Y )50.

This claim has been known as the Eckmann-Ruelle conjec-
ture and has become a celebrated problem in the dimension
theory of dynamical systems. In Ref. 4, we establish the
affirmative solution of this conjecture for C11e diffeomor-
phisms ~an announcement appeared in Ref. 5!.

C. Multifractal spectra for local entropies

Let X be a complete separable metric space and let
f :X!X be a continuous map preserving a Borel probability
measure m. Consider a finite measurable partition j of X . For
every n.0, we write jn5j∨ f21j∨•••∨ f2nj , and denote by
jn(x) the element of the partition jn that contains point x .
Consider the set Y5Y j,X consisting of all points xPX for
which the limit

hm~ f ,j ,x !5 lim
n!`

2
1
n log m~jn~x !!

exists. We call hm( f ,j ,x) the m-local entropy of f at the
point x ~with respect to j!. Clearly, Y is f -invariant and
hm( f ,j , f x)5hm( f ,j ,x) for every xPY . By the Shannon-
McMillan-Breiman theorem, m(X\Y )50. In addition, if j is
a generating partition and m is ergodic, then

hm~ f !5hm~ f ,j ,x !

for m-almost all xPX , where hm( f ) is the measure-theoretic
entropy of f ~with respect to m!. We define the function gE
on Y by

gE~x !5hm~ f ,j ,x !.

Let us stress that gE may depend on j. We note that the
corresponding multifractal decomposition consists of the sets

Ka
gE5$x:hm~ f ,j ,x !5a%.

We obtain two multifractal spectra ED5ED
(m) and EE5EE

(m)

specified by the pairs of functions (gE ,GD) and (gE ,GE),
respectively, where the set functions are given by ~2! and ~3!.
We call them multifractal spectra for (local) entropies. In
Sections IV and V we will observe that in some situations
these spectra, in fact, do not depend on j for a broad class of
partitions.

We note that, in the study of the multifractal spectra for
local entropies, the Shannon-McMillan-Breiman theorem
plays the same role as the Eckmann-Ruelle conjecture in the
study of the multifractal spectra for pointwise dimensions.

D. Multifractal spectra for Lyapunov exponents

Let X be a differentiable manifold and let f :X!X be a
C1 map. Consider the subset Y,X of all points xPX for
which the limit

l~x !5 lim
n!1`

1
n logidx f ni

exists. By Kingman’s subadditive ergodic theorem, if m is an
f -invariant Borel probability measure, then m(X\Y )50. We
define the function gL on Y by
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gL~x !5l~x !.

We note that the corresponding multifractal decomposition
consists of the sets

Ka
gL5$x:l~x !5a%.

We obtain two multifractal spectra LD and LE specified,
respectively, by the pairs of functions (gL ,GD) and
(gL ,GE), where the set functions GD and GE are given by
~2! and ~3!. We call them multifractal spectra for Lyapunov
exponents. The spectrum LD was studied in Ref. 6 ~see also
the references in that paper!. The spectrum LE was intro-
duced in Ref. 7.

In the following sections we show how to compute the
above multifractal spectra in some particular cases.

IV. MULTIFRACTAL SPECTRA OF GIBBS MEASURES
FOR SUBSHIFTS OF FINITE TYPE

Let A be a p3p matrix whose entries are either 0 or 1.
The topological Markov chain SA

1 consists of the sequences
v5(i1i2•••)P$1,.. . ,p%N such that aikik11

51 for every
k>1. Let s(i1i2•••)5(i2i3•••) be the shift map on SA

1. We
assume that A is transitive, i.e., there exists a positive integer
k such that all entries of Ak are positive ~this holds if and
only if suSA

1 is topologically mixing!.
Fix a.1 and define a metric on SA

1 by

d~v ,v8!5 (
k51

`

a2k
uik2ik8u.

Notice that d(sv ,sv8)5a•d(v ,v8) for all v, v8PSA
1 with

d(v ,v8),a21.
Given a continuous function w on SA

1, a measure m on
SA

1 is said to be a Gibbs measure for w if there exist con-
stants C1 , C2.0, such that

C1<
m~Ci1 ...in!

exp~2nP~w!1(k50
n21w~ f kv!!

<C2

for every v5(i1i2•••)PSA
1 and nPN, where

Ci1 ...in5$~ j1 j2••• !PSA
1: j k5ik for k51,.. . ,n%

is the cylinder set of length n containing v, and P is the
topological pressure with respect to s ~see the Appendix!.

Let w be a Hölder continuous function on SA
1 and let m

be the corresponding Gibbs measure; the measure m exists
and is unique ~because suSA

1 is topologically mixing!. It is
more convenient to work with the ‘‘normalized’’ function
log c on SA

1 defined by log c5w2P~w!. Note that m is also
the Gibbs measure for log c.

For each qPR let us consider the function

wq52T~q !log a1q log c ,

where the number T(q) is chosen in such a way that
P(wq)50. See Figure 3 for a typical graph of the function
T(q). Clearly,

T~q !log a5P~q log c!. ~4!

Let h be the spectral radius of A ~which is also the topologi-
cal entropy of suSA

1!.
Proposition 4.1. The function T is a real analytic on R,

and satisfies T8(q)<0 and T9(q)>0 for every qPR. More-
over, T(0)5h/log a and T~1!50.

Proof. Since q∞P~qlog c! is analytic ~see Ref. 8!, the
function T is analytic. All the remaining statements are con-
sequences of well-known properties of the topological pres-
sure ~see, for example, Ref. 9!. If nq is the Gibbs measure for
wq ~and hence, for q log c!, we obtain

d
dq P~q log c!5E

SA
1
log c dnq5E

SA
1

w dnq2P~w!

<2hnq
~suSA

1!<0.

Therefore, T8(q)<0 for every qPR. Since the topological
pressure is convex, the function T is convex and hence
T9(q)>0 for every qPR. The identities in the proposition
follow immediately from ~4!. h

Only the four spectra DD , DE , ED , and EE make sense
for subshifts of finite type. We provide a complete descrip-
tion of all these spectra.

Denote by B the class of finite partitions of SA
1 into

disjoint cylinder sets ~not necessarily of the same length!.
Clearly, each jPB is a generating partition. We use it to
define the spectra for entropies ED and EE .

The following theorem establishes the relations between
the multifractal spectra for dimensions and entropies.

Theorem 4.2. For every aPR, we have

EE~a!5ED~a!log a

5DE~a/log a !5DD~a/log a !log a , ~5!

and the common value is independent of the partition jPB.
Moreover, the multifractal decompositions of the spectra
EE , ED , DE , and DD coincide, that is, the families of level
sets of these four spectra are equal up to the parametriza-
tions given by ~5!.

FIG. 3. A typical graph of the function TD(q).
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Proof. Notice that there exists a constant C.0 such that
diamjn(x)5Ca2n for every xPSA

1 and n>1. If the point-
wise dimension dm(x) or the local entropy hm( f ,j ,x) exists
for some xPSA

1, then

hm~ f ,j ,x !5 lim
n!`

2
1
n log m~jn~x !!

5log a lim
n!`

log m~jn~x !!

diam jn~x !
5log a•dm~x !.

~6!

This shows that dm(x) exists at a point x if and only if
hm( f ,j ,x) exists. The previous identity and the lemma in the
Appendix immediately imply the relations ~5!.

Since the spectra for dimensions DD and DE are inde-
pendent of the partition jPB, each of the values in ~5! is
independent of jPB. h

We begin with the description of the dimension spec-
trum for pointwise dimensions DD . The following theorem
shows ~with a minor exception! that DD is defined on an
interval, is analytic, and is strictly convex. It also establishes
a relationship between the functions DD~a! and TD(q);
namely, they form a Legendre pair. By virtue of Theorem 4.2
this also provides a description of the spectra DE , ED , and
EE .

Let mE be the measure of maximal entropy. The follow-
ing statement is a consequence of a general result proved by
Pesin and Weiss10 ~see also their paper in this volume11!. We
set a(q)52T8(q). The range of the function a(q) is the
interval @a1 ,a2#, where a15a~1`! and a25a~2`!.

Theorem 4.3.

~1! For m-almost every xPSA
1, the pointwise dimension of

m at x exists and

gD~x!5dm~x!52
1

log a ESA
1
log c dm.

~2! The domain of the function a∞DD~a! is a closed inter-
val in @0,1`! and coincides with the range of the func-
tion a(q). For every qPR, we have
DD~a~q !!5T~q !1qa~q !.

~3! If mfimE , then DD and T are analytic strictly convex
functions, and hence, ~DD ,T! is a Legendre pair with
respect to the variables a, q (see the Appendix).

Using Theorems 4.2 and 4.3 we describe the spectra DE ,
ED , and EE .

Theorem 4.4.

~1! There exists a set S,SA
1 with m(S)51 such that for

every partition jPB and every xPS , the local entropy
of m at x exists, has the same value for every j, and

gE~x!5hm~f,j,x!52E
SA

1
log c dm.

~2! The domain of each of the functions a∞DE~a!,
a∞ED~a log a!, and a∞EE~a log a! is the range of the
function a(q). For every qPR, we have

DE~a~q !!5T~q !log a1qa~q!log a,
ED~a~q !log a!5T~q!1qa~q!,
EE~a~q !log a!5T~q!log a1qa~q!log a.

~3! If mfimE , then DE , ED , and EE are analytic strictly
convex functions, and hence,
~DE /log a,T!, ~ED~•log a!,T!, ~EE~•log a!/log a,T!
are Legendre pairs with respect to the variables a, q .

Proof. The existence of the set S follows from the iden-
tity ~6!, which is valid for a set of full m-measure ~notice that
dm(x) does not depend on the partitions jPB!.

All the remaining statements follow easily from Theo-
rem 4.3 and Equation ~6!. h

Remarks.

~1! Let HPm and Rm be respectively the Hentschel-Procaccia
and Rényi spectra for dimensions ~see Ref. 2!. In Ref.
10, Pesin and Weiss proved that for every qPR,

T~q!5~12q!HPm~q!5~12q!Rm~q!

5 lim
n!`

1
n log a log(

C
m~C!q,

where the sum is taken over all cylinder sets of length n .
~2! It follows from results of Schmeling ~see Ref. 12! that

the level sets Ka
gD are empty for every aπ@a1 ,a2#, the

function q∞a(q) is invertible, and the numbers DD~a1!
and DD~a2! may not be zero. More precisely, for any
numbers t1 , t2P@0,dimHSA

1! there exists a Gibbs mea-
sure corresponding to a Hölder continuous function such
that DD~a1!5t1 and DD~a2!5t2 . On the other hand,
‘‘generically’’ DD~a1!5DD~a2!50. Similar conclusions
hold for the spectra DE , ED , and EE .

~3! One can show that the unique Gibbs measure nq corre-
sponding to the Hölder continuous function wq is a
(gD ,GD)-full measure for a(q). More precisely, for ev-
ery qPR we have nq(Ka(q)

gD ) 5 1 and dnq(x) 5 T(q)
1 qa(q) for nq-almost all x P Ka(q)

gD . See Section V for
more general results.

V. MULTIFRACTAL SPECTRA OF GIBBS MEASURES
FOR CONFORMAL REPELLERS

We consider Gibbs measures invariant under conformal
expanding maps, and describe the associated multifractal
spectra for dimensions, entropies, and Lyapunov exponents.

A. Preliminaries

Let M be a smooth Riemannian manifold and let
f :M!M be a C1 map. Consider a compact subset J of M .
We say that f is expanding and J is a repeller of f if

~1! there exist constants C.0 and b.1 such that
idx f nui>Cbn

iui for all xPJ , uPTxM , and n>1;
~2! J5˘n>0 f2nV for some open neighborhood V of J .

One can easily show that f J5J .
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We recall that a finite cover $R1 ,. . . ,Rp% of J by closed
sets is called a Markov partition of J ~with respect to f ! if

~1! int Ri5Ri for each i51,...,p;
~2! int Ri˘int R j5B if ifi j ;
~3! each f Ri is a union of sets R j .

It is well known that repellers admit Markov partitions of an
arbitrarily small diameter. Markov partitions are used to
build symbolic models of repellers by subshifts of finite type
~see Section IV!.

Let J be a repeller of an expanding map f , and let
j5$R1 ,. . . ,Rp% be a Markov partition of J with respect to f .
We define a p3p transfer matrix A5(ai j) by setting ai j51
if Ri˘ f21R jfiB , and ai j50 otherwise. Consider the asso-
ciated subshift of finite type ~SA

1,s!. For each
v5(i1i2 .. .)PSA

1, we set

x~v!5$xPX: f k21xPRik
for every k>1%.

The set x~v! consists of a single point in J , and we obtain a
coding map x:SA

1!J for the repeller. The map x is continu-
ous, onto, and the following diagram is commutative:

SA
1

——!
s

SA
1

x# #x

J
——!

f J .

We assume that the matrix A is transitive ~and thus, f is
topologically mixing!.

It is clear that any Markov partition j is a generat-
ing partition. The same is true for any partition of J by rect-
angles obtained from a Markov partition ~not necessarily all
of the same level! and corresponding to disjoint cylinder sets
in SA

1. We denote the class of such partitions by Bf . It is
easy to see that, for every partition jPBf , there is a partition
hPB such that xh5j.

A smooth map f :M!M is called conformal if dx f is a
multiple of an isometry at every point xPM . Well-known
examples of conformal expanding maps include one-
dimensional Markov maps ~see Section VII! and holomor-
phic maps. We write a(x)5idx f i for each xPM .

B. Multifractal spectra

Let J be a repeller of a conformal C11e expanding map f
for some e.0. Also let mD be the unique Gibbs measure
corresponding to the function x∞2dimHJ• log a(x) on J . It
is known that mD is a measure of maximal dimension, i.e.,
dimHJ5dimHmD ~see Ref. 8!. We denote by mE the measure
of maximal entropy for f :J!J , and by h the topological
entropy of f on J .

Let w be a Hölder continuous function on J and let m be
the corresponding Gibbs measure with respect to f . Write
log c5w2P~w!.

For each q , pPR, consider the functions

wD ,q52TD~q !log a1q log c

and

wE ,p52TE~p !1p log c ,

where the numbers TD(q) and TE(p) are chosen such that

P~wD ,q!5P~wE ,p!50.

Clearly, TE(p)5P~p log c!. See Figure 3 for a typical graph
of the function TD(q).

Proposition 5.1. The following properties hold:

~1! The function TD is real analytic and satisfies TD8 (q) < 0
and TD9 (q) > 0 for every qPR. We have TD~0!5dimHJ
and TD~1!50.

~2! The function TE is real analytic, and satisfies TE8 (p)
< 0 and TE9 (p) > 0 for every pPR. We have TE(0)5h
and TE~1!50.

The first property is proved in Ref. 10 @see also the paper
of Pesin and Weiss in this volume11; note that the equality
TD~0!5dimHJ follows the formula for the dimension of a
conformal repeller established by Ruelle in Ref. 8#. The sec-
ond property is a rewriting of Proposition 4.1. Set

aD~q !52TD8 ~q ! and aE~p !52TE8 ~p !.

We now give a full description of the four multifractal
spectra DD , EE , LD , and LE for Gibbs measures supported
on repellers of conformal smooth expanding maps.

We begin with the dimension spectrum for pointwise
dimensions DD . The following theorem shows ~with minor
exceptions! that DD is defined on an interval, is analytic, and
is strictly convex. It also establishes a relationship between
the functions DD~a! and TD(q); namely, they form a Leg-
endre pair. In Ref. 10, Pesin and Weiss effected a description
of the spectrum DD ~see also their paper in this volume11!.

Theorem 5.2.

~1! For m-almost every xPJ , the pointwise dimension of m
at x exists and

gD~x!5dm~x!52
*J log c dm
*J log a dm

.

~2! The domain of the function a∞DD~a! is a closed inter-
val in @0,1`! and coincides with the range of the func-
tion aD(q). For every qPR, we have
DD~aD~q !!5TD~q !1qaD~q !. ~7!

~3! If mfimD , then DD and TD are analytic strictly convex
functions and, hence, ~DD ,TD! is a Legendre pair with
respect to the variables a, q .

~4! If m5mD , then DD is the delta function

DD~a!5 H
dimHJ ,
0,

if a5dimHJ ,
if afidimHJ .

The identity ~7! is a consequence of property 1 in Theo-
rem 5.4. See Figure 4 for a typical graph of the function
DD~a!.

We now provide a description of the spectrum EE . The
following result is an immediate consequence of Theorem
4.4.
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Theorem 5.3.

~1! There exists a set S,X with m(S)51 such that for every
partition jPBf and every xPS , the local entropy of m
at x exists, does not depend on x and j, and

gE~x!5hm~f,j,x!52E
J
log c dm.

~2! The domain of the function a∞EE~a! is a closed inter-
val in @0,1`! and coincides with the range of the func-
tion aE(p). For every pPR, we have
EE~aE~p !!5TE~p !1paE~p !. ~8!

~3! If mfimE , then EE and TE are analytic strictly convex
functions and, hence, ~EE ,TE! is a Legendre pair with
respect to the variables a, q .

~4! If m5mE , then EE is the delta function

EE~a!5 H
h ,
0,

if a5h ,
if afih .

The identity ~8! is a consequence of property 2 in Theorem
5.4.

We now describe the full measures for the spectra DD
and EE . It turns out that these are the unique Gibbs measures
nq

DD and np
EE for the ~Hölder continuous! functions wD ,q and

wE ,p , respectively.
Theorem 5.4. The following properties hold:

~1! For every qPR, we have nq
DD(KaD(q)

gD ) 5 1 and

dn
q
DD~x !5TD~q !1qaD~q !

for nq
DD-almost all x P KaD(q)

gD . Moreover, nq
DD is a

(gD ,GD)-full measure for aD(q).

~2! For every pPR, we have np
EE(KaE(p)

gE ) 5 1 and

hn
p
EE~ f ,j ,x !5TE~p !1paE~p !

for np
EE-almost all x P KaE(p)

gE and every jPBf . More-

over, np
EE is a (gE ,GE)-full measure for aE(p).

The first statement is proved in Ref. 10. The proof of the
second statement is similar.

We now give a description of the spectra for Lyapunov

exponents. In Ref. 6, Weiss effected a complete analysis of
the spectrum LD .

Theorem 5.5. For every aPR, we have

LD~a!5DD
~mE!

~h/a!.

Moreover,

~1! if mEfimD , then LD is an analytic strictly convex func-
tion, defined on a closed interval containing h/dimHJ;

~2! if mE5mD , then LD is the delta function

LD~a!5H
dimHJ , if a5h/dimHJ ,
0, if afih/dimHJ .

We now give a complete description of the spectrum LE .
Theorem 5.6. For every aPR and jPBf , we have

LE~a!5EE
~mD!

~a dimHJ !.

Moreover,

~1! if mDfimE , then LE is an analytic strictly convex func-
tion, defined on a closed interval containing h/dimHJ;

~2! if mD5mE , then LE is the delta function

LE~a!5 H
h , if a5h/dimHJ ,
0, if afih/dimHJ .

Proof. Since f is conformal and of class C11e, there exist
positive constants C1 and C2 such that for each
x5x(i1i2•••)PJ and integer n>1,

C1<
diam Ri1•••in

Pk50
n21a~ f kx !21 <C2 .

Since mD is the Gibbs measure for 2dimHJ•log a , for every
xPJ we have

dmD~x !5 lim
n!`

log mD~Ri1•••in!

log diam Ri1•••in

5 lim
n!`

log mD~Ri1•••in!

log Pk50
n21a~ f kx !21 5dimHJ .

Therefore, for every x P J˘Ka
gL and jPBf ,

hmD~ f ,j ,x !5 lim
n!`

2
1
n log mD~Ri1•••in!

5dimHJ lim
n!`

2
1
n log diam Ri1•••in

5a dimHJ

and, hence, x P Ka dimHJ
gE . This implies that

LE~a!5EE
~mD!

~a dimHJ !.

Property 1 follows from Theorem 5.3. To obtain property 2
observe that for every xPJ ,

hmE~ f ,j ,x !5 lim
n!`

2
1
n log mE~Ri1•••in!5h .

FIG. 4. A typical graph of the function DD~a!.
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This completes the proof of the theorem. h
We now describe the full measures for the spectra LD

and LE . In the case of LD these are the Gibbs measures
nr

LD corresponding to the functions

2TLD
~r !log a2rh , ~9!

where TLD
(r) is chosen to satisfy P( 2 TLD

(r)log a) 5 rh.
Similarly, the full measures for LE are the Gibbs measures
ns

LE corresponding to the functions

2TLE
~s !1s dimHJ•log a , ~10!

where TLE
(s) 5 P(s dimHJ • log a). One can check that

TLD
(r) and TLE

(s) are real analytic functions. We set

aLD
~r !52TLD

8 ~r ! and aLE
~s !52TLE

8 ~s !.

Theorem 5.7. The following properties hold:

~1! For every rPR, we have nr
LD(KaLD

(r)
gL ) 5 1 and

dn
r
LD~x !5TLD

~r !1raLD
~r !

for nr
LD-almost all x P KaLD

(r)
gL . Moreover, nr

LD is a

(gL ,GD)-full measure for aLD
(r).

~2! For every sPR, we have ns
LE(KaLE

(s)
gL ) 5 1 and

hn
s
LE~ f ,j ,x !5TLE

~s !1saLE
~s !

for ns
LE-almost all x P KaLE

(s)
gL and every jPBf . More-

over, ns
LE is a (gL ,GE)-full measure for aLE

(s).
~3! LD;LE , i.e., nr

LD 5 ns
LE, where the parametrizations

r5r~s!5TLE
~s !/h and s5s~r!52TLD

~r !/dimHJ
are strictly monotonic and analytic.

Proof. We note that

dn
r
LD~x !5 lim

n!`

log nr
LD~Ri1•••in!

log diam Ri1•••in

5 lim
n!`

TLD
~r !log~Pk50

n21a~ f kx !21!2rhn

log diam Ri1•••in

5TLD
~r !2rh/l~x !

5TLD
~r !1rhY E

J
log a dnr

LD.

SinceP(2 TLD
(r)log a)5 rh, taking derivativeswith respect

to r we obtain

aLD
~r !E

J
log a dnr

LD5h ,

and, hence,

dn
r
LD~x !5TLD

~r !1raLD
~r !

for nr
LD-almost all x P KaLD

(r)
gL . The remaining properties in

statement 1 can be easily checked.

In a similar way, we obtain

hn
s
LE~ f ,j ,x !5TLE

~s !2s dimH J•l~x !

5TLE
~s !2s dimH JE

J
log a dns

LE.

Since aLE
(s) 5 2dimH J*J log a dns

LE, we conclude state-
ment 2.

Statement 3 follows immediately from the definitions.h
Remarks

~1! In Ref. 10, Pesin and Weiss proved that the m-measure
of any ball centered at any point of J is positive, and for
every qPR we have
TD~q!5~12q!HPm~q!5~12q!Rm~q!

52lim
r!0

1
log r log inf (

BPDr
m~B !q,

where the infimum is taken over all finite covers Dr of J
by balls of radius r .

~2! All the results in this section extend to continuous ex-
panding maps ~see Ref. 2 for the definition!. Similar re-
sults can also be obtained for hyperbolic sets ~see Ref.
13!.

It is an open problem in dimension theory to obtain a
description of the spectra DE and ED for Gibbs measures on
repellers of conformal smooth expanding maps.

VI. MULTIFRACTAL RIGIDITY I

We will show in Theorem 6.2 that if, for instance, the
spectra DD and EE are equivalent, with respect to the ‘‘ca-
nonical’’ families of measures $nq

DD%qPR and $np
EE%pPR ,

then ‘‘all other’’ spectra are equivalent. We call this phe-
nomenon multifractal rigidity. It indicates that the spectra
DD and EE are essentially independent.

We recall that two functions w1 and w2 on X are called
cohomologous ~with respect to f ! if there exist a Hölder
continuous function h :X!R and a constant k such that

w12w25h2h + f1k .

In this case we write w1;w2 . We recall some well-known
properties of cohomologous functions ~see, for example, Ref.
9!.

Proposition 6.1. Let w1 and w2 be Hölder continuous
functions on X . Then the following properties hold:

~1! if w1;w2 , then for every xPX , we have

lim
n!`

1
n (

k50

n21

@w1~ f kx !2w2~ f kx !#5k;

~2! if w1;w2 , then w12w2;0, cw1;cw2 , and w1;w21c for
any real number c;

~3! w1;w2 if and only if the equilibrium measures corre-
sponding to w1 and w2 on X coincide.

Let f :M!M be a conformal C11e expanding map
and let w be a Hölder continuous function on M . We
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consider the ‘‘canonical’’ families of full measures
$nq

DD%qPR , $np
EE%pPR , $nr

LD%rPR , and $ns
LE%sPR , for the

spectra DD , EE , LD , and LE , respectively.
Theorem 6.2. Assume that log a;” 0 ~i.e., mDfimE!.

Consider the following five pairs of multifractal spectra

~EE ,DD!, ~EE ,LD!, ~EE ,LE!,

~DD ,LD!, ~DD ,LE!.

If in at least one of these pairs the two spectra are equiva-
lent, then

~1! log c;t log a for some constant tfi0;
~2! DD;EE;LD;LE , i.e.,nq

DD 5 np
EE 5 nr

LD 5 ns
LE,where

the parametrizations

p52
TD~q!

t
1q, r5

qP~t log a!

h , s5
2TD~q!1qt
dimH J

are analytic coordinate transformations;
~3! TLD

(r)5TD(q)2qt52s dimH J ,
and

TLE
~s !5qP~t log a !5rh .

Proof.We assume that DD;EE . The proofs in the other
cases are similar. There exists a parametrization p5p(q)
such that

2TD~q !log a1q log c;2TE~p !1p log c .

It follows that

2TD~q !log a;~p~q !2q !log c .

Since log a;” 0, we have that the function 2TD(q) is strictly
monotonic, analytic, and convex. Moreover, TD(q)fi0 if
qfi1.

Furthermore, there exists qfi1 for which p(q)fiq ~oth-
erwise, log a;0!. It follows that

2TD~q !

p~q !2q log a;log c .

Set

t52TD~q !/~p~q !2q !

and notice that tfi0 is a constant independent of qfi1. Oth-
erwise, t~q1!log a;t(q2)log a for some q1fiq2 which is
impossible because log a;” 0. We conclude that

log c;t log a .

Therefore, nq
DD is the Gibbs measure corresponding to

the function

2TD~q !log a1q~t log a2P~t log a !!, ~11!

where TD(q) satisfies

P~~2TD~q !1qt!log a !5qP~t log a !. ~12!

Consider

r5r~q !5
qP~t log a !

h

and

s5s~q !5
2TD~q !1qt

dimH J .

These functions are strictly monotonic and analytic.
Substituting r5r(q) into ~12! we obtain that TLD

(r)
5 TD(q) 2 qt . Comparing ~9! and ~11! we conclude that
nr

LD 5 nq
DD. In a similar way, substituting s5s(q) into ~12!

and comparing ~10! and ~11!, we obtain that TLE
(s)

5 qP(t log a) and that ns
LE 5 nq

DD. The remaining state-
ments in properties 2 and 3 follow from property 3 in Theo-
rem 5.7. h

We now describe the case when log a;0, i.e., when
mD5mE .

Theorem 6.3. The following statements are equivalent:

~1! log a;0;
~2! the spectrum LD is a delta function;
~3! the spectrum LE is a delta function;
~4! ED;DD;EE;DE with respect to the family of mea-

sures $na
DD%aPR , and np

DD 5 np
EE for every p .

Proof. We first assume that log a;0. It follows from
statements 2 and 3 in Proposition 6.1 that

2TD~p !log a1p log c;p log c;2TE~p !1p log c
~13!

and, hence, np
DD 5 np

EE. This implies that DD;EE . On the
other hand, it follows from statement 1 in Proposition 6.1
that l(x)5k for every xPJ and some constant k, because
log a;0. This implies that the spectra LD and LE are delta
functions. Moreover, Ka

gE 5 Kak
gD for every number a. This

implies that ED;DD and that EE;DE , and the proof of
statement 4 is complete.

To complete the proof of the theorem it is sufficient to
prove that statement 4 implies that log a;0. But np

DD 5 np
EE

implies that ~13! holds and hence that log a;0. h

VII. MULTIFRACTAL RIGIDITY II

We now consider another interesting phenomenon in di-
mension theory of dynamical systems that we regard as a
multifractal rigidity phenomenon. Roughly speaking, it states
that if two dynamical systems are topologically equivalent
~via a homeomorphism! and some of their multifractal spec-
tra coincide, then they are smoothly equivalent ~via a diffeo-
morphism!. This leads to a classification of maps and Gibbs
measures using multifractal spectra and/or multifractal de-
compositions. We believe that this type of classification fits
well with the ‘‘physical’’ interpretation of the equivalence of
dynamical systems. We think that this is a nontrivial and
challenging problem, and we support that belief by the fol-
lowing observations.

Let f be a one-dimensional linear Markov map of the
unit interval, modeled by the full shift on two symbols. This
means that there are linear maps f 1 and f 2 defined, respec-
tively, on two disjoint closed intervals I1 , I2,@0,1# such that
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f 1(I1)5 f 2(I2)5[0,1], and the map f : I1¯I2!R is given by
f (x)5 f i(x) whenever xPI i , for i51, 2 ~see Figure 5!.

We consider the f -invariant set

J5 ˘
k51

`

f2k~I1¯I2!.

Clearly, f extends to a C` map on an open neighborhood of
J . Moreover, f uJ is conformal and J is a repeller of f .

The partition $J˘I1 ,J˘I2% is a Markov partition of J
~with respect to f ! and f uJ is topologically conjugate to the
full shift suS2

1, where S2
15$1,2%N.

We consider the Bernoulli measure on S2
1 with prob-

abilities b1 and b2512b1 ~which is a Gibbs measure!, and
let ci 5u f 8uIiu 5u f i8uIiu for i51, 2.

We define the functions a and w on J by

a~x !5ci and w~x !5log b i if xPI i , ~14!

for i51, 2. For every p , qPR, the functions TE(p) and
TD(q) satisfy the identities

e2TE~p !~b1
p1b2

p!51

and

c1
2TD~q !b1

q1c2
2TD~q !b2

q51. ~15!

One can explicitly compute the measures np
EE and nq

DD:
they are the Bernoulli measures with probabilities
e2TE(p)b1

p and e2TE(p)b2
p , and with probabilities

c1
2TD(q)b1

q and c2
2TD(q)b2

q , respectively.
Let f and f̂ be two one-dimensional linear Markov maps

of the unit interval, as above, with conformal repellers

J5 ˘
k51

`

f2k~I1¯I2! and Ĵ5 ˘
k51

`

f̂2k~ Î1¯ Î2!,

respectively. The underlying symbolics dynamics of f uJ and
f̂ u Ĵ coincide and are the full shift on two symbols suS2

1. Let
x :S21!J and x̂:S2

1! Ĵ be the corresponding coding maps.
We consider two Bernoulli measures m and m̂ on S2

1 with
probabilities b1 and b2 , and with probabilities b̂1 and b̂2 ,
respectively, where b11b25b̂11b̂251. We also consider
the numbers c1 , c2 and the numbers ĉ1 , ĉ2 , which are the
absolute values of the derivatives of the linear pieces of f
and f̂ , respectively.

We define the functions a and w on J by ~14!, as well as
the functions â and ŵ on Ĵ by

â~x !5 ĉ i and ŵ~x !5log b̂ i if xP Î i ,

for i51, 2. We note that the measures m and m̂ are the Gibbs
measures for w and ŵ .

Recall that an automorphism r of S2
1 is a homeomor-

phism r:S21!S2
1 which commutes with the shift map s. The

involution automorphism is defined by r(i1i2•••)
5 (i18i28•••), where in8 5 2 if in51, and in8 5 1 if in52, for
each integer n>1.

Since x and x̂ are invertible, one can define a homeo-
morphism u :J! Ĵ by u5x̂+x21. We note that u+ f5 f̂ +u on
J , and hence, u is a topological conjugacy between f uJ and
f̂ u Ĵ , i.e., the two maps are topologically equivalent. If r is an
automorphism of S2

1 , then the homeomorphism
u85x̂+r +x21 is also a topological conjugacy between f uJ and
f̂ u Ĵ , and all topological conjugacies are of this form. An
important question is whether the class of all conjugacies
contains a homeomorphism z preserving the differentiable
structure, i.e., a5 â+z . One can ask if, in addition, z is mea-
sure preserving, i.e., m5m̂+z. We give below a complete an-
swer to these questions.

We consider the spectra DD5DD
(m) and EE5EE

(m) speci-
fied by the measure m, as well as the spectra D̂D 5 DD

(m̂) and
ÊE 5 EE

(m̂) specified by the measure m̂ . Similarly, we consider
the spectra LD and LE , as well as the spectra L̂D and L̂E .

As before, we use the functions a and w to define the full
measures nq

DD, np
EE, nr

LD, and ns
LE. In a similar way, we use

the functions â and ŵ to define the full measures nq
D̂D, np

ÊE,

nr
L̂D, and ns

L̂E.
Theorem 7.1. If DD~a!5D̂D~a! for every a and these

spectra are not delta functions, then there is a homeomor-
phism z:J! Ĵ such that

~1! z+ f5 f̂ +z on J , that is, z is a topological conjugacy be-
tween f uJ and f̂ u Ĵ ;

~2! the automorphism r of S2
1 satisfying z +x5x̂ + p is either

the identity or the involution automorphism;
~3! a5 â+z , w5ŵ+z, and m5m̂+z;
~4! nq

DD 5 nq
D̂D + z , np

EE 5 np
ÊE + z , nr

LD 5 nr
L̂D + z , and ns

LE

5 ns
L̂E + z for every q , p , r , and s .

Proof. It is enough to prove that the spectrum DD
uniquely determines the numbers b1 , b2 , c1 , and c2 up to a
permutation of the indices 1 and 2.

By the uniqueness of the Legendre transform, the spec-
trum DD uniquely determines TD(q) for every qPR and,
hence, it is enough to prove that equation ~15! uniquely de-
termines the numbers b1 , b2 , c1 , and c2 up to a permutation
of the indices 1 and 2.

One can verify that the numbers a65aD~6`! can be
computed by

a652 lim
q!6`

~TD~q !/q !.

FIG. 5. A one-dimensional linear Markov map of the unit interval.
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We observe that, since the spectrum DD is not a delta func-
tion and, hence, TD(q) is not linear and is strictly convex,
then a1,dimHJ,a2 . Therefore, raising both sides of ~15!
to the power 1/q and letting q!6`, we obtain

max$b1c1
a1,b2c2

a1%5min$b1c1
a2,b2c2

a2%51.

We assume that b1c1
a1 5 1 ~the case when b2c2

a1 5 1 can be
treated in a similar way; in this case, r is the involution
automorphism!. Since a1,a2 , we must have b2c2

a2 5 1.
Setting q50 and q51 in equation ~15!, we obtain, re-

spectively,

c12dimHJ1c22dimHJ51 and b11b251.

Set x 5 c12dimHJ , a5a1/dim HJ,1, and
b5a2/dim HJ.1. Then, one can easily derive the equation

xa1~12x !b51.

One can verify with standard calculus arguments that this
equation has a unique solution xP~0,1!, which uniquely de-
termines the numbers c1 and c2 and, hence, also the numbers
b1 and b2 .

It follows from statement 2 in Theorem 7.1 that Figure 6
is commutative. A more general version of Theorem 7.1 can
be found in Ref. 14.

Remarks
~1! Let f be a one-dimensional linear Markov map of the

unit interval. It is straight-forward to verify that
~a!EE is a delta function if and only if b15b251/2;
~b! DD is a delta function if and only if
log c1/log b15log c2/log b2 ;

~c!EE;DD if and only if c15c2 .
Notice that none of these three properties specifies all
the numbers b1 , b2 , c1 , and c2 . On the other hand, the
dynamical system is completely specified if and only if
all these four numbers are known. In particular, we con-
clude that knowing any one of the three properties above
is not sufficient to restore the system.

~2! We have shown that for a one-dimensional linear Markov
map of the unit interval, one can determine the four num-
bers b1 , b2 , c1 , and c1 using the spectrum DD . How-
ever, from the spectrum EE one can only recover the two
numbers b1 and b2 : one can show that if b1>b2 , then

b15exp lim
p!1`

~TE~p !/p !

and

b25exp lim
p!2`

~TE~p !/p !.

In a similar way, using one of the spectra LD and LE ,
one can only recover the two numbers c1 and c2 . For
example, using the spectrum LE , one can prove that if
c1>c2 , then
c15exp lim

s!1`
~TLE

~s !/s !

and

c25exp lim
s!2`

~TLE
~s !/s !.

~3! Given two multifractal spectra F 1 and F 2 for the same
map f , the condition F 1;F 2 means that we can rep-
arametrize the ‘‘physical’’ variables used to describe the
dynamics and, hence, their multifractal decompositions
are equal. On the other hand, if F and F̂ are two mul-
tifractal spectra for the maps f and f̂ , respectively, the
condition F 5F̂ indicates the existence of a ‘‘symme-
try’’ between the two dynamical systems ~expressed by
the existence of a homeomorphism z!. Thus, it is a re-
quirement of ‘‘physical’’ nature, and Theorem 7.1 has a
strong physical content: if the spectra of two dynamical
systems are equal, then the systems are the same up to a
change of variables, and thus should be considered the
same from the physical point of view.
Another fundamental open problem of multifractal rigid-

ity is whether one can determine the main ‘‘macroscopic’’
characteristics of a given dynamical system using informa-
tion ‘‘hidden’’ in its multifractal spectra. In particular, one
can ask whether any subset of the six spectra is sufficient to
‘‘determine’’ the functions a and w. For the class of one-
dimensional linear Markov maps of the unit interval, the
phenomena described in Theorem 7.1 and in Remark 2 give
a complete affirmative answer to this question.
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APPENDIX: BASIC NOTIONS

Let (X ,d) be a complete separable metric space. Con-
sider a set Z,X and a positive number d. A cover of Z by
sets of diameter at most d is called a d-cover of Z . For any
s.0, we define the s-dimensional Hausdorff measure of Z
by

mH~Z ,s !5 lim
d!0

inf
U

(
UPU

~diam U !s,

where the infimum is taken over all finite or countable d-
covers U of Z . There exists a unique value of s at which

FIG. 6. The diagram gives a complete picture of the relation between the
conjugacies u and z.
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mH(Z ,s) jumps from 1` to 0. We call this value the Haus-
dorff dimension of Z and denote it by dimHZ . We have

dimHZ5inf$s:mH~Z ,s !50%5sup$s:mH~Z ,s !51`%.

Let f :X!X be a continuous map. If U is a finite open
cover of X , for each integer n>1 we denote by Sn~U! the
collection of strings U5U1 •••Un , where U1 ,. . . ,UnPU. For
each UPSn~U!, we write n~U!5n and define the open set

X~U!5$xPX: f k21xPUk for k51,.. . ,n%.

Consider a set Z,X . We say that a collection of strings G
covers Z if the union ¯UPGX(U).Z . For every real number
s , we define

M ~Z ,s ,U!5 lim
n!`

inf
G

(
UPG

exp~2n~U!s !,

where the infimum is taken over all collections
G,¯k>nSk~U! covering Z . There exists a unique value of s
at which M ~Z ,s ,U! jumps from 1` to 0, given by

h~Z ,U!5inf$s:M ~Z ,s ,U!50%5sup$s:M ~Z ,s ,U!51`%.

We define the topological entropy of f on the set Z by

h~ f uZ!5 lim
diam U!0

h~Z ,U!

~one can show that the limit always exists!. If Z is compact
and f -invariant, then h( f uZ) coincides with the classical to-
pological entropy ~see, for example, Ref. 2!. However, the
set Z need not be compact nor f -invariant for our definition.

The following simple statement follows from the special
type of metric on SA

1 introduced in Section IV.
Lemma. For any subset Z,SA

1 we have
h( f uZ)5dimHZ• log a .

For each nPN, we define the metric dn on X by

dn~x ,y !5max$d~ f kx , f ky !:0<k<n21%.

Given d.0, we say that a finite set E,X is a ~n ,d!-separated
set if dn(x ,y).d whenever x , yPE and xfiy . We define the
topological pressure of the continuous function w:X!R
~with respect to f ! by

P~w!5 lim
d!0

lim
n!`

1
n log supE

(
xPE

exp (
k50

n21

w~ f kx !,

where the supremum is taken over all ~n ,d!-separated sets E .
The Legendre transform of the function T is the function

D defined by D~a!5supq(aq2T(q)). We then say that the
pair ~D ,T! is a Legendre pair with respect to the variables a,
q . We say that a C2 function T is strictly convex if T9.0
everywhere on its domain. Given two strictly convex C2

functions D and T , one can show that the pair ~D ,T! is a
Legendre pair with respect to the variables a, q if and only if
D~a!5T(q)1qa , where a52T8(q) and q5D8~a!.
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