
Ergod. Th. & Dynam. Sys. (2013), 33, 1748–1785 c© Cambridge University Press, 2012
doi:10.1017/etds.2012.109

A volume preserving flow with essential
coexistence of zero and non-zero

Lyapunov exponents

JIANYU CHEN†, HUYI HU‡ and YAKOV PESIN†

† Department of Mathematics, Pennsylvania State University, University Park,
PA 16802, USA

‡ Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA

(Received 11 January 2012 and accepted in revised form 10 May 2012)

Abstract. We demonstrate essential coexistence of hyperbolic and non-hyperbolic
behavior in the continuous-time case by constructing a smooth volume preserving flow on a
five-dimensional compact smooth manifold that has non-zero Lyapunov exponents almost
everywhere on an open and dense subset of positive but not full volume and is ergodic on
this subset while having zero Lyapunov exponents on its complement. The latter is a union
of three-dimensional invariant submanifolds, and on each of these submanifolds the flow
is linear with Diophantine frequency vector.

1. Introduction
The goal of this paper is to extend the main result in [10] to dynamical systems with
continuous time thus demonstrating coexistence of regular and chaotic dynamics in an
‘essential’ way.

THEOREM 1.1. (Main theorem) There exists a compact smooth Riemannian manifold M
of dimension five and a C∞ flow ht

:M→M such that the following hold.
(1) ht preserves the Riemannian volume m on M.
(2) ht (t 6= 0) has non-zero Lyapunov exponents (except for the exponent in the flow

direction) almost everywhere on an open, dense and connected subset U ⊂M;
moreover, ht

|U is an ergodic flow.
(3) The complement U c has a positive volume and is a union of three-dimensional

invariant submanifolds; ht is a non-identity linear flow with Diophantine frequency
vector on each invariant submanifold, and ht has zero Lyapunov exponents
on U c.
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We stress that each of the three-dimensional invariant submanifolds is, in turn, a union
of two-dimensional invariant tori on which ht is a linear flow with Diophantine frequency
vector (see §3 for details). This fact makes our construction non-trivial†.

We emphasize the requirement that the open set U is everywhere dense‡. Donnay [8]
constructed an example of a surface on which the geodesic flow exhibits the coexistence
phenomenon. It is obtained by inserting a light-bulb cap into a negatively curved surface.
In this example the set of geodesics, which are trapped in the cap, is invariant, and has a
positive volume, and almost every point in this set has zero Lyapunov exponents. Since it
has non-empty interior, the stochastic sea in this example, i.e., the analog of the set U in
our case, is not dense.

While this paper deals only with dynamical systems with continuous time, it is worth
mentioning that, in the discrete-time case, the essential coexistence of chaotic and regular
behavior has been demonstrated in various situations by Przytycki and Liverani for area
preserving diffeomorphisms and by Bunimovich for billiards; see the paper [5], which
surveys recent results on essential coexistence, and references therein.

We split the proof of Theorem 1.1 into several steps. In §2, we present some background
information and basic notations from the theory of partial hyperbolicity and, in particular,
introduce the notion of pointwise partial hyperbolicity on open sets for flows. In §3, we
construct the manifold M and the open set U , and introduce the ‘start-up’ flow f t that
satisfies statement (3) of the theorem. In §4, we construct a volume preserving flow gt ,
which is a small perturbation of f t and does not affect the action of f t on the set U c. The
flow gt has non-zero Lyapunov exponents on a subset of positive volume in U . Finally, in
§5, we construct the desired flow ht as a small perturbation of the flow gt . The proof of
the main theorem is given in §6.

In our construction of the flows gt and ht we use the perturbation techniques developed
in [10] for the case of diffeomorphisms (these techniques originated in [6, 7, 15]).
However, there is a crucial difference between the discrete-time and continuous-time cases.
To effect our construction we ought to make perturbations of the vector fields that generate
the required flows, but we want these perturbations to produce similar effects on the time-1
maps of the flows, as in [10]. This is made possible due to the crucial fact that the ‘start-up’
flow f t has a global cross-section, and in our construction we ensure that both perturbation
flows gt and ht preserve this cross-section. We achieve this by using specific formulae for
perturbations of the vector fields. At the core of our construction lies a new concept of
pointwise partially hyperbolic flows on open sets. In §2, we introduce such flows, and we
study their ergodicity.

† Indeed, consider the C∞ volume preserving diffeomorphism P constructed in [10]. It has non-zero Lyapunov
exponents almost everywhere on an open, dense and connected subset U ⊂M, and P|U is ergodic. Furthermore,
the complement U c has positive volume, and P|U c is the identity map and has zero Lyapunov exponents.
A special flow P t over P has non-zero Lyapunov exponents (except for the exponent in the flow direction)
almost everywhere on an open, dense and connected subset U × [0, 1]/∼ (where ∼ means that the points (x, 1)
and (Px, 0) are identified) which is not of full volume. However, P t is a periodic flow on its complement
U c
× [0, 1]/∼.

‡ To some extent this justifies the view of our example as ‘KAM-type’, despite the fact that the flow ht is not
close to a completely integrable one.
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2. Preliminaries
See [2, 10, 13] for more details.

Consider a diffeomorphism f acting on a compact smooth Riemannian manifold M.
It is called uniformly partially hyperbolic on a compact invariant subset 3⊂M if the
following hold.
(1) For every x ∈3 the tangent space at x admits an invariant splitting

Tx M= E s(x)⊕ Ec(x)⊕ Eu(x) (2.1)

into stable E s(x)= E s
f (x), central Ec(x)= Ec

f (x) and unstable Eu(x)= Eu
f (x)

subspaces.
(2) There are numbers 0< λ < λ̃≤ 1≤ µ̃ < µ such that for every t = 1, 2, . . .

‖d f tv‖ ≤ λt
‖v‖, v ∈ E s(x),

λ̃t
‖v‖ ≤ ‖d f tv‖ ≤ µ̃t

‖v‖, v ∈ Ec(x), (2.2)

µt
‖v‖ ≤ ‖d f tv‖, v ∈ Eu(x).

In this paper we need a weaker property than uniform partial hyperbolicity. Let S ⊂M
be an invariant open subset. We say that a diffeomorphism F is pointwise partially
hyperbolic on S if for every x ∈ S the tangent space at x admits an invariant splitting
(2.1) and there are continuous functions 0< λ(x) < λ̃(x)≤ 1≤ µ̃(x) < µ(x) such that
(2.2) holds with constants λ, λ̃, µ̃ and µ replaced with these functions. Pointwise partially
hyperbolic diffeomorphisms on compact manifolds were introduced in [4] where their
ergodic properties were studied. If a diffeomorphism is pointwise partially hyperbolic
on an open subset of a compact manifold then it could fail to have ‘nice’ properties and, in
particular, could be not ergodic (see the discussion below).

We now consider a smooth flow f t on M which is generated by the vector field
X f (x)= (d/dt) f t (x)|t=0. We say that the flow is uniformly partially hyperbolic on a
compact invariant subset 3⊂M if for every x ∈M the tangent space at x admits an
invariant splitting (2.1) into stable E s(x)= E s

f (x), central Ec(x)= Ec
f (x) and unstable

Eu(x)= Eu
f (x) subspaces such that the vector field X f (x) is contained in the central

subspace Ec(x) and there are numbers 0< λ < λ̃≤ 1≤ µ̃ < µ such that (2.2) holds for
all t ∈ [0, 1]. Note that if a flow f t is uniformly partially hyperbolic, then for every t 6= 0
the time-t map is uniformly partially hyperbolic with the same invariant splitting.

Given an invariant open subset S ⊂M we call a flow f t pointwise partially hyperbolic
on S if its time-1 map f 1 is pointwise partially hyperbolic on S .

Given δ > 0, we say that a flow gt is (C1, δ)-close to f t on an invariant set 3 if
Xg = X f outside 3 and ‖Xg − X f ‖ ≤ δ. Uniformly partially hyperbolic flows form an
open set in the C1 topology (see Lemma B.8 in Appendix B).

Given a an open subset S ⊂M, we call a partition P of S a (δ, q)-foliation with smooth
leaves if there exist continuous functions δ = δ(x) > 0, q = q(x) > 0, and an integer k > 0
such that for each x ∈ S the following hold.
(1) There exists a smooth immersed k-dimensional manifold W (x) containing x for

which P(x)=W (x), where P(x) is the element of the partition P containing x .
The manifold W (x) is called the global leaf of the foliation at x ; the connected
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component of the intersection W (x) ∩ B(x, δ(x)) that contains x is called the local
leaf at x and is denoted by V(x).

(2) There exists a continuous map φx : B(x, q(x))→ C1(D, M) (where D is the
unit ball) such that V (y) is the image of the map φx (y) : D→M for each y ∈
B(x, q(x)); the number q(x) is called the size of V (x).

We say that a foliation with smooth leaves is absolutely continuous if for almost every
x ∈ S and almost every y ∈ B(x, q(x)) the conditional measure on the local leaf V(y),
generated by the volume m on M and the partition of B(x, q(x)) by the local leaves, is
absolutely continuous with respect to the leaf volume mV (y) on V (y)†.

Let W1 and W2 be two foliations of S with smooth leaves that are transversal to each
other at every point z ∈ S . Let also S1 ⊂ S be an open subset. We say that the pair W1

and W2 has the accessibility property on S1 if any two points z, z′ ∈ S1 are accessible via
a (u, s)-path in S ; that is, the following hold.
(1) There exists a collection of points z1, . . . , zn ∈ S such that z = z1, z′ = zn and

zk ∈Wi (zk−1) for i = 1, 2 and k = 2, . . . , n.
(2) The points zk−1 and zk can be connected by a smooth curve γk ⊂ Vi (zk−1) in S for

i = 1 or 2 and k = 2, . . . , n‡.
The collection of the leaf-wise paths γk is called a (u, s)-path and is denoted by
[z1, . . . , zn].

For a uniformly partially hyperbolic flow f t , one can construct stable and unstable
local manifolds of uniform size at every point in 3. This may not be true for a flow
that is pointwise partially hyperbolic on an open set S . However, all pointwise partially
hyperbolic flows that we consider in this paper will have global stable and unstable
transverse foliations with smooth leaves. We denote these foliations by W s

=W s
f and

W u
=W u

f respectively.
More precisely, let f t be a flow that is pointwise partially hyperbolic on an open set S

and let gt be a sufficiently small perturbation of f t in the C1 topology.

Definition 2.1. We call the perturbation gt gentle if there exists an open set U ⊂ S such
that Ū ⊂ S , U is invariant under both f t and gt and f t

|U c
= gt
|U c.

THEOREM 2.2. Assume that the strongly stable and unstable subspaces E s
f t and Eu

f t for

f t are integrable to continuous strongly stable and unstable foliations W s
f t and W u

f t ,
respectively, with smooth leaves, and that these foliations are transverse. Then, for
any sufficiently small gentle perturbation gt in the C1 topology, the strongly stable and
unstable subspaces, E s

gt and Eu
gt for gt are integrable to continuous strongly stable and

unstable foliations W s
gt and W u

gt , respectively, with smooth leaves, and these foliations are
transverse.

We call a flow f t that is pointwise partially hyperbolic on an open set S dynamically
coherent if the subbundles Ecu

= Ec
⊕ Eu , Ec and Ecs

= Ec
⊕ E s , are integrable to

† The leaf volume mV (y) is generated by the restriction of the Riemannian metric on M to the smooth
submanifold V (y).
‡ We stress that Vi (zk−1) is the local leaf of Wi at zi . In particular, the length of the curve γk (the leg of the path)
does not exceed δ(zk−1).
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continuous foliations with smooth leaves W cu , W c and W cs , called respectively the center–
unstable, center and center–stable foliations. Furthermore, the foliations W c and W u are
subfoliations of W cu , while W c and W s are subfoliations of W cs .

The following result is an extension of the classical result in [9, 14] to the case of
flows that are pointwise partially hyperbolic on an open subset. It shows that dynamical
coherence is a robust property within the class of gentle perturbations. The proof of this
result is a simple modification of the argument in [9].

THEOREM 2.3. Suppose that f t is a flow that is pointwise partially hyperbolic on an
open set S . Assume that f t possesses transverse strongly stable and unstable foliations
with smooth leaves. Assume also that the center distribution is integrable to a smooth
center foliation W c. Then f t is dynamically coherent. Moreover, any flow that is close to
f t in the C1 topology and is a gentle perturbation of f t is dynamically coherent.

Since both subbundles Ecu and Ecs vary continuously with the map, so does Ec and the
corresponding center foliation W c.

Given a smooth flow f t , we denote by

λ(x, v)= λ(x, v, f t )= lim sup
t→∞

1
t

log ‖d f tv‖

the Lyapunov exponent of a non-zero vector v at x ∈M and by λi (x)= λi (x, f t ),
i = 1, . . . , dim M, the values of the Lyapunov exponents at x in decreasing order. We
also write

Lk( f t )=

∫
M

k∑
i=1

λi (x, f t ) dm(z), (2.3)

where m is the Riemannian volume. We call this number the kth average Lyapunov
exponent of f t .

Consider a C2 flow f t of a compact smooth manifold M that is pointwise partially
hyperbolic on an open invariant set S . Assume that f t preserves a smooth measure on
M. We say that f t has positive central exponents if there is an invariant set A⊂ S
of positive measure such that for every x ∈A and every v ∈ Ec(x)\Span{X f (x)} the
Lyapunov exponent λ(x, v) is positive. The following theorem plays an important role
in the proof of our main theorem.

THEOREM 2.4. Assume that the following conditions hold.

(1) f t has strongly stable and unstable (δ, q)-foliations W s and W u , where δ = δ(x)
and q = q(x) are continuous functions on S .

(2) The foliations W s and W u are absolutely continuous.
(3) f t has the accessibility property via the foliations W s and W u on S .
(4) f t has positive central exponents.
(5) The Lyapunov exponents in the stable subspace E s(x) are all negative and the

Lyapunov exponents in the unstable subspace Eu(x) are all positive for almost
every x.
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Then f t has positive central exponents at almost every point x ∈ S , and f t
|S is an ergodic

flow.

Proof. Following [10, Theorem 2.2], we first show that f t has positive central exponents
at almost every point x ∈ S and that f t

|S is an ergodic flow.
There is a set A⊂ S of positive measure such that the flow f t

|A has non-zero Lyapunov
exponents except along the flow direction. Hence, it has at most countably many ergodic
components of positive measure in A (see [2]). Each such component contains the set

A(x)=
⋃

y∈V cu(x)

V s(y),

where x is the density point of A and V cu(x) is a center–unstable local manifold at x .
Since the strong stable foliation W s is continuous, the set A(x) is open (mod 0) in M†
and hence the set A is itself open (mod 0). We shall show that the trajectory of almost
every point in S is dense, which yields that A= S (mod 0) and that f t

|S is ergodic.
The proof of this claim for partially hyperbolic diffeomorphisms is given in [1] and

can be extended to our case literally. We present the argument here for the reader’s
convenience. We call a point p good for a given open set U if p has a neighborhood in
which the orbit of almost every point enters U . It suffices to show that an arbitrary point p
is good. Since f t is accessible, there is a (u, s)-path [z0, . . . , zk] with z0 ∈U and zk = p.
We will show by induction on j that each point z j is good. This is obvious for j = 0. Now
suppose that z j is good; then z j has a neighborhood N such that Orb(x) ∩U 6= ∅ for almost
every x ∈ N . Let B be the subset of N consisting of points with this property that are also
both forward and backward recurrent. It follows from the Poincaré recurrence theorem
that B has full measure in N . If x ∈ B, any point y ∈W s(x) ∪W u(x) has the property that
Orb(y) ∩U 6= ∅. The absolute continuity of the foliations W s and W u means that the set⋃

x∈B

W s(x) ∪W u(x)

has full measure in the set ⋃
x∈N

W s(x) ∪W u(x).

The latter is a neighborhood of z j+1. Hence, z j+1 is good. 2

3. Construction of the ‘start-up’ flow f t

Let A be an Anosov automorphism of the 2-torus X = T2 with expanding rate η > 1
along the unstable direction. Consider the suspension flow St on the suspension manifold
N = X × R/∼, with the identification (x, τ + 1)∼ (Ax, τ ). The action of the suspension
flow on N is exactly St (x, τ )= (x, τ + t). See Appendix A for more details of the
geometric structure of N .

Given α ∈ T2, let T t
α :N →N be a linear flow defined by (x, τ ) 7→ (x + tα, τ). It

preserves each level set X × {τ }.

† That is, there is an open set V ⊂M such that A(x)= V (mod 0) with respect to the volume m.
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Set Y = T2 and M=N × Y . To effect our construction we choose:
(A1) a Cantor set C ⊂ Y of positive area whose complement U = Y\C is a non-empty

open and connected set;
(A2) an open square U0 such that U0 ⊂U ;
(A3) an open neighborhood U1 of U0 such that U1 ⊂U , whose choice will be specified in

§5.2(1).
We also choose a C∞ function κ : Y → R such that:
(κ1) κ(y) > 0 for y ∈U and κ(y)= 0 for y ∈ C ;
(κ2) κ(y)= 1 for y ∈U1;
(κ3) ‖κ‖C1 ≤ 1.
(The existence of such a function κ follows from the specific construction of the Cantor set
and the choice of the set U1 in §5.1.) We also choose a C∞ map α : Y → R2 such that:
(α1) α(y)= 0 for y ∈U1;
(α2) α(y)= α0 > 0 for all y ∈ C where α0 is a Diophantine vector;
(α3) supy∈Y ‖α(y)‖ ≤ ᾱ, where ᾱ is a positive number determined in §5.2.

We now set U =N ×U and U c
=N × C and define the flow f t on M by the formula

f t ((x, τ ), y)= ((x + tα(y), τ + tκ(y)), y) (3.1)

where (x, τ ) ∈N and y ∈ Y . The following proposition describes the properties of the
flow f t and its proof follows immediately from the definitions.

PROPOSITION 3.1. The following statements hold.
(1) f t is a C∞ volume preserving flow.
(2) f t preserves each fiber N × {y}, on which f t is the composition of the scaled

suspension flow Stκ(y) and the linear flow T t
α(y); in particular, f t is exactly the

suspension flow St on N × {y} for y ∈U1.
(3) f t is pointwise partially hyperbolic on U with one-dimensional stable E s

f , one-
dimensional unstable Eu

f and three-dimensional center Ec
f subbundles; E s

f and Eu
f

are integrable to strongly stable and unstable foliations W s
f and W u

f with smooth
leaves, which are absolutely continuous, uniformly transversal and have local leaves
of uniform size.

(4) f t is uniformly partially hyperbolic on N × A where A ⊂U is a subset, and hence
f t is dynamically coherent with the central foliation W c

f =W c
St × Y .

(5) f t preserves every two-dimensional torus X × {τ } × {y} (τ ∈ [0, 1], y ∈ C are fixed)
and acts on it as a linear flow with a Diophantine frequency vector; moreover, f t

|U c

has all zero Lyapunov exponents on U c.
(6) For every z = ((x, τ ), y) ∈M the Lyapunov exponents of f t are as follows:

λ1(z, f t )= κ(y) log η ≥ 0= λ2(z, f t )= λ3(z, f t )= λ4(z, f t )

≥ λ5(z, f t )=−κ(y) log η.

Moreover, if z ∈ U , then λ1(z, f t )= λu(z, f t ) > 0 is the Lyapunov exponent in the
Eu

f (z) subspace, λ5(z, f t )= λs(z, f t ) < 0 is the Lyapunov exponent in the E s
f (z)

subspace, and λ2(z, f t ), λ3(z, f t ) and λ4(z, f t ) are Lyapunov exponents in the flow
direction and two directions in Y respectively.
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4. Removing zero exponents
In this section we will construct a gentle perturbation gt of the original flow f t with
positive central Lyapunov exponents on a set of positive volume but not necessarily
ergodic. Then we will perturb gt to the desired flow ht of the main theorem in §5.

Given z ∈M, there is a local Cartesian coordinate system (u, s, τ, a, b) (see
Appendix A) such that

Fu(z) :=
∂

∂u
= Eu

f (z), F s(z) :=
∂

∂s
= E s

f (z), Fτ (z) :=
∂

∂τ
= Eτf (z)

are the unstable, stable and flow directions of f t respectively, and

Fa(z) :=
∂

∂a
= Ea

f (z), Fb(z) :=
∂

∂b
= Eb

f (z)

are the other two central directions tangent to Y .
The following statement describes properties of the flow gt .

PROPOSITION 4.1. Given δg > 0, there is a C∞ volume preserving flow gt on M such
that the following hold.
(1) gt is (C1, δg)-close to f t ; i.e., ‖X f − Xg‖ ≤ δg , where X f and Xg are the vector

fields of the flows f t and gt respectively.
(2) gt

= f t outside N ×U0, and hence gt is a gentle perturbation of f t and satisfies
statements (3)–(5) of Proposition 3.1.

(3) gt preserves the subbundles Eωf , ω = uab, uabτ ; moreover,

det(dgt
|Eωf (z))= det(d f t

|Eωf (z)) for all z ∈M. (4.1)

(4) The average Lyapunov exponents of gt satisfy

L5(g
t )= 0< L1(g

t ) < L2(g
t ) < L3(g

t )= L4(g
t ). (4.2)

To prove this proposition, we extend the approach in [10] to the case of flows and
obtain the flow gt as a result of two consecutive perturbations. First, we perturb the
start-up flow f t to a flow g̃t by adding a rotational vector field X̃ R to the vector field
X f †. This produces two positive average Lyapunov exponents for the flow g̃t in the Eua

f
subbundle, i.e., L1(g̃t ) < L2(g̃t ). Next, we perturb g̃t to the desired flow gt by adding
another rotational vector field X R to the vector field Xg̃ for the flow g̃t . As a result
the flow gt has three positive average Lyapunov exponents in the Euab

f subbundle, i.e.,
L1(gt ) < L2(gt ) < L3(gt ).

The vector fields X̃ R and X R are chosen to be supported on disjoint open subsets �̃R

and �R of N ×U0 respectively such that X̃ R = 0 outside �̃R , X R = 0 outside �R and
‖X̃ R‖C1 , ‖X R‖C1 < δg/2. Since N ×U0 is invariant under f t , we have that gt

= g̃t
= f t

outside N ×U0.
Our construction utilizes the following crucial feature of the flow f t : the set

50 = X × {0} ×U0 (4.3)

† That is, the flow generated by X̃ R is concentrated in a small neighborhood of a point in M where it acts as a
small rotation around this point; see (4.6).
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is a global cross-section of f t
|N ×U0, and the time-1 map restricted to 50 is exactly the

Poincaré return map of f t to 50. Furthermore, we make the construction of vector fields
X̃ R and X R in such a way that 50 is also a global cross-section for both flows g̃t and gt

with the time-1 maps to be the Poincaré return map to 50. This fact allows us to apply
arguments similar to those in [10] to our flow case by focusing on the time-1 maps.

4.1. Construction of the flow g̃t . In this section we construct the flow g̃t by perturbing
the vector field X f inside the set N ×U0.

To effect our construction we choose distinct periodic points q , pa , pb and pτ of the
Anosov automorphism A of X , which are close to each other. Let V s

A(q), V u
A(q), V s

A(p
i )

and V u
A(p

i ), i = a, b, τ , be the stable and unstable local manifolds at these periodic points.
We may assume that each intersection V u

A(q) ∩ V s
A(p

i ) and V u
A(p

i ) ∩ V s
A(q) consists of a

single point, which we denote by [q, pi
] and [pi , q] respectively. Let γ i denote the closed

quadrilateral path with the collection of points q , [q, pi
], pi , [pi , q] and q , and let

γ (q)= V u
A(q) ∪ V s

A(q), γ (pi )= V u
A(p

i ) ∪ V s
A(p

i ).

Choose ν > 0 and set, for i = a, b, τ ,

�i
0(ν)=

( ⋃
t∈[0,ι(pi )]

BN ( f t (pi , 0), ν)
)
×U0,

�̂i
0(ν)=

( ⋃
(x,τ )∈(γ (q)×[0,ι(q)])∪(γ (pi )×[0,ι(pi )])

BN ((x, τ ), ν)

)
×U0,

�0 =�0(ν)=

( ⋃
i=a,b,τ

�i (ν)

)
∪

( ⋃
i=a,b,τ

�̂i (ν)

)
,

(4.4)

where ι(q) and ι(pi ) are the periods of q and pi respectively, and BN ((x, τ ), r) is the ball
in N of radius r centered at the point (x, τ ) ∈N . We choose a sufficiently small number
ν to ensure that

m(Proj50
�0)≤ 0.05m(50),

where 50 is given by (4.3), and Proj50
:N ×U0→50 is the natural projection onto 50

given by the formula
Proj50

((x, τ ), y)= ((x, 0), y).

To construct the vector field X̃ R we choose a C∞ function ψ : R→ [0, 1] such that:
(1) ψ = 1 on (−0.9, 0.9);
(2) ψ > 0 on (−1, 1) and ψ = 0 outside (−1, 1);
(3) ‖ψ‖C1 ≤ 10.
Observe that N ×U0 is invariant under the flow f t and that

f t ((x, τ ), y)= ((x, τ + t), y)

for ((x, τ ), y) ∈N ×U0. In other words, f t
|N ×U0 is the product of the suspension

flow on N and the identity map on U0. It follows that 50 is a global cross-section
for the flow f t

|N ×U0, and the time-1 map restricted to 50 is f 1
= A × Id and is

https://doi.org/10.1017/etds.2012.109 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2012.109


Coexistence of zero and non-zero Lyapunov exponents 1757

exactly the Poincaré return map of f t to 50. Given a subset 5⊂50, we call a set
5× [τ1, τ2] ⊂50 × R/∼=N ×U0 a tube if

f t (5× {τ1}) ∩ (5× {τ1})= ∅ for all t ∈ [0, τ2 − τ1].

It is easy to check that 5× [τ1, τ2] is a tube if and only if the sets
5, f 1(5), f 2(5), . . . , f l(5) are pairwise disjoint, where l = bτ2 − τ1c. Choose a non-
periodic point z0 = (x0, 0, y0) ∈50\Proj50

�0, where x0 is a non-periodic point of the
Anosov automorphism A, y0 is the center of the square U0 and�0 is the set given by (4.4).

In what follows we will use the local Cartesian coordinate system in a neighborhood
of 50 originated at z0 given by (u, s, t, a, b), where (u, s) are the coordinates in X along
the stable and unstable directions of the hyperbolic diffeomorphism A, t is the coordinate
along the time direction and (a, b) are coordinates in Y . In this coordinate system a point
z ∈50 is given as z = (u, s, 0, a, b). We will also use the ua-cylindrical coordinates
(r, θ, τ, s, b), where u = r cos θ , a = r sin θ . Given ε > 0, one can choose a ua-cylinder
B ⊂50 centered at z0 of size ε, i.e.,

B = {(r, θ, 0, s, b) : r ≤ ε, |s| ≤ ε, |b| ≤ ε}.

Given a sufficiently large N0 ≥ 20k0 (the number k0 is defined below in Lemma 4.5), we
can choose ε so small that f i (B) ∩ B = ∅ for i = 1, . . . , N0. Consider the tube

�̃R = B × [0, 1/2]. (4.5)

Since z0 6∈ Proj50
�0, we can further reduce ε to ensure that B ∩ Proj50

(�0)= ∅. Hence,
�̃R ∩�0 = ∅.

Given β > 0, define a C∞ rotational vector field X̃ R = X̃ R,β on M as follows:

X̃ R,β(z)=

βψ̃(z)
∂

∂θ
, z ∈ �̃R,

0, z ∈M\�̃R,
(4.6)

where

ψ̃(z)= ψ̃(r, θ, τ, s, b)= ψ

(
r2

ε2

)
ψ

(
s

ε

)
ψ

(
b

ε

)
ψ

(
τ − (1/4)

1/4

)
.

It is easy to see that ‖ψ̃(∂/∂θ)‖ ≤ c where c > 0 is a constant, which is independent of ε.
Hence, ‖X̃ R,β‖→ 0 as β→ 0. Furthermore, X̃ R,β is divergence free. Let g̃t

= g̃t
β be the

flow generated by the vector field

Xg̃ = Xg̃,β = X f + X̃ R,β .

PROPOSITION 4.2. There exists β > 0 such that g̃t
= g̃t

β is a C∞ volume preserving flow
with the following properties.
(1) g̃t is (C1, δg/2)-close to f t ; i.e., ‖X f − Xg̃‖C1 ≤ δg/2, where X f and Xg̃ are the

vector fields corresponding to the flows f t and g̃t respectively.
(2) g̃t

= f t outside N ×U0, and hence g̃t is a gentle perturbation of f t and satisfies
statements (3)–(5) of Proposition 3.1.

(3) g̃t preserves the subbundles Eωf , ω = ua, uab, uabτ ; moreover,

det(dg̃t
|Eωf (z))= det(d f t

|Eωf (z)) for all z ∈M. (4.7)
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(4) The average Lyapunov exponents of g̃t satisfy

L5(g̃
t )= 0< L1(g̃

t ) < L2(g̃
t )= L3(g̃

t )= L4(g̃
t ). (4.8)

(5) 50 is a global cross-section of the flow g̃t
|N ×U0, and the time-1 map g̃1 is the

Poincaré return map of gt to 50; furthermore, there exist λ > 0 and a g̃1-invariant
subset 5⊂50 such that

m(5)≥ 20k0m(5 ∩ B) > 0

and for any z ∈5 the flow g̃t has two positive Lyapunov exponents λ1(z, g̃t ) >

λ2(z, g̃t )≥ λ along the Eua
f subbundle.

Proof. Statements (1) and (2) are easy corollaries of the construction of the flow g̃t . To
prove statement (3) we will first show that dg̃t preserves the subbundle Eua

f . It suffices

to check that for any smooth vector field X ∈ Eua
f and any z ∈ �̃R , the Lie bracket

[Xg̃(z), X (z)] ∈ Eua
f (z). Indeed, we have

Xg̃(z)=
∂

∂τ
+ βψ̃(z)

∂

∂θ
=
∂

∂τ
+ βψ̃(z)

(
−a

∂

∂u
+ u

∂

∂a

)
,

and the direct calculation yields[
Xg̃,

∂

∂ω

]
= β

(
∂(aψ̃)

∂ω

∂

∂u
−
∂(uψ̃)

∂ω

∂

∂a

)
∈ Eua

f , ω = u, a.

Since dg̃t preserves the subbundle Eua
f , it also preserves the subbundles Euab

f and Euabτ
f .

Next, consider the variational differential equations

d

dt
f t
= DX f d f t ,

d

dt
g̃t
= DXg̃dg̃t .

The determinants along Eωf with ω = ua, uab, uabτ , satisfy

d

dt
det(d f t

|Eωf )= div(X f |E
ω
f ) det(d f t

|Eωf ),

d

dt
det(dg̃t

|Eωf )= div(Xg̃|E
ω
f ) det(dg̃t

|Eωf ).
(4.9)

Direct calculations show that X̃ R = Xg̃ − X f is divergence free along Eωf and thus

div(X f |Eωf )= div(Xg̃|Eωf ). Therefore, using (4.9) and the fact that det(dg0
|Eωf )=

det(d f 0
|Eωf )= 1 we find that

det(dg̃t
|Eωf (z))= det(d f t

|Eωf (z)),

and statement (3) follows.
It remains to prove statements (4) and (5). We need the following lemma showing that

50 is a global cross-section for the flow g̃t
|N ×U0.

LEMMA 4.3. Given z ∈ B, the r-, s-, b- and τ -coordinates of g̃t (z) and f t (z) are the same

for t ∈ [0, 1/2]. Consequently, g̃
1
2 (B)= f

1
2 (B) and 50 is a global cross-section for the

flow g̃t
|N ×U0.
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Proof. Let us compare the orbit segments of g̃t (z) and f t (z) for t ∈ [0, 1/2]. Note that for
any smooth function ϕ and any vector field X we have that

d

dt
ϕ(F t (z))= L Xϕ|F t (z),

where L X (·) is the Lie derivative and F t is the flow that is generated by X . This implies
that, for ω = r, s, b,

d

dt
τ(g̃t (z))= L Xg̃τ =

∂τ

∂τ
+ βψ̃(g̃t (z))

∂τ

∂θ
= 1= L X f τ =

d

dt
τ( f t (z)),

d

dt
ω(g̃t (z))= L Xg̃ω =

∂ω

∂τ
+ βψ̃(g̃t (z))

∂ω

∂θ
= 0= L X f ω =

d

dt
ω( f t (z)).

Under the same initial condition at t = 0, we get that the r -, s-, b- and τ -coordinates
of g̃t (z) and f t (z) are the same. Since B has the cylindrical structure, we obtain

that g̃t (z) ∈ B × τ( f t (z))= B × {t}. In particular, g̃
1
2 (B)= f

1
2 (B)= B × { 12 }. Since

Xg̃ = X f outside �̃R = B × [0, 1/2], we have that g̃1(50)= f 1(50)=50. In other
words, 50 is also a global cross-section for g̃t

|N ×U0. 2

It follows from the lemma that 50 is a global cross-section for the flow g̃t
|N ×U0 and

the time-1 map g̃1 restricted to50 is the Poincaré return map of g̃t on50. Therefore, (4.8)
is equivalent to

L4(G̃)= 0< L1(G̃) < L2(G̃)= L3(G̃), (4.10)

where G̃ = G̃β = g̃1
|50. In fact, by (4.7), we have that Lk(G̃)= Lk( f 1

|50) for k =
2, 3, 4, and thus we only need to show that

L1(G̃) < L1( f 1
|50). (4.11)

To this end we will use the following lemma.

LEMMA 4.4. For all z ∈50 the derivative of G̃ = g̃1
|50 along Eua

f has the form

dG̃β(z)|E
ua
f (z)=

(
ηA(β, z) ηB(β, z)
C(β, z) D(β, z)

)
, (4.12)

where

A = A(β, z)= 1− βrσr sin θ cos θ −
β2σ 2

2
− β2rσσr cos2 θ + O(β3),

B = B(β, z)=−βσ − βrσr sin2 θ − β2rσσr sin θ cos θ + O(β3),

C = C(β, z)= βσ + βrσr cos2 θ − β2rσσr sin θ cos θ + O(β3),

D = D(β, z)= 1+ βrσr sin θ cos θ −
β2σ 2

2
− β2rσσr sin2 θ + O(β3).

Proof. The desired relation (4.12) is apparent for z ∈50\B since G̃ = f 1 and σ = 0 on
50\B. Given z = (r, θ, 0, s, b) ∈ B in the ua-cylindrical coordinate, by Lemma 4.3, we
have that g̃t (z)= (r, θ + θ(t), t, s, b), where θ(t)= β

∫ t
0 ψ̃(g̃

τ (z)) dτ for 0≤ t ≤ 1/2. In

particular, the coordinate of g̃
1
2 (z) is (r, θ + βσ, 1/2, s, b), where

σ = σ(r, s, b)=
1
4
ψ

(
r2

ε2

)
ψ

(
b

ε

)
ψ

(
s

ε

) ∫ 1

−1
ψ(u) du.
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Back in the Cartesian coordinate system (u, a, τ, s, b), we obtain that

g̃
1
2 (z) = (u1, a1, 1/2, s, b)

:= (u cos(βσ)− a sin(βσ), u sin(βσ)+ a cos(βσ), 1/2, s, b),

and hence

G̃(z)= g̃1(z)= f
1
2 g̃

1
2 (z)= (u1, a1, 1, s, b)= (ηu1, a1, 0, η−1s, b).

The last equality follows from (A.1) and the fact that g̃1(z0)= f 1(z0), where z0 is the
center of B. Since G̃ preserves the Eua

f subbundle, we have that

dG̃β(z)|E
ua
f (z)=

(
ηA(β, z) ηB(β, z)
C(β, z) D(β, z)

)
,

where

A(β, z)=
∂u1

∂u
, B(β, z)=

∂u1

∂a
, C(β, z)=

∂a1

∂u
, D(β, z)=

∂a1

∂a
.

Then

A =
∂u1

∂u
= cos(βσ)+ [−u sin(βσ)− a cos(βσ)]βσu

= cos(βσ)− βr sin(θ + βσ)σr cos θ

= 1− βrσr sin θ cos θ −
β2σ 2

2
− β2rσσr cos2 θ + O(β3).

Similarly, we can obtain the formulae for B, C and D. 2

Lemma 4.4 allows us to follow the line of argument in [10, proof of Lemma 4.1] to
establish (4.11). For the reader’s convenience we outline the argument here.

Denote by eβ(z) the unique number such that the vector vβ(z)= (1, eβ(z))t ∈ Eu
G̃β
(z)

for all z ∈50. One can show that

Lβ = L1(G̃β)=

∫
50

log η dm(z)−
∫
50

log[D(β, z)− ηB(β, z)eβ(G̃β(z))] dm(z).

Note that L0 = L1( f 1
|50); we will show that

d Lβ
dβ

∣∣∣∣
β=0
= 0,

d2Lβ
dβ2

∣∣∣∣
β=0

< 0, (4.13)

which immediately implies that (4.11) holds for all sufficiently small β > 0.
To show (4.13) observe that

d Lβ
dβ

∣∣∣∣
β=0
=−

∫
50

Dβ |β=0 dm(z)= 0,

thus proving the first relation in (4.13). To prove the second relation, note that

d2Lβ
dβ2

∣∣∣∣
β=0
=

∫
50

[
(Dβ)

2
− Dββ + 2ηBβ

∂

∂β
(eβ(G̃β(z)))

]
β=0

dm(z).
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This integral can be written as∫
50

[(Dβ(0, z))2 − Dββ(0, z)+ 2ηBβ(0, z)Cβ(0, z)] dm(z)

+

∫
50

∞∑
i=1

1
ηi 2Bβ(0, z)Cβ(0, f −i (z)) dm(z). (4.14)

The first term in (4.14) is bounded from above by

−(1− ε)
∫
50

σ 2 dm(z)−
1
8

∫
50

r2σ 2
r dm(z).

To estimate the second term in (4.14) note that∫
50

2Bβ(0, z)Cβ(0, F−i (z)) dm(z)≤ 4
∫
50

(σ 2
+ r2σ 2

r ) dm(z)

and that Bβ(0, z)Cβ(0, f −i (z))= 0 for all z ∈50\B and all i . Moreover,
Bβ(0, z)Cβ(0, f −i (z))= 0 for every z ∈ B and i = 1, . . . , N0 − 1 since f i (B) ∩ B = ∅.
This allows us to take N0 > 0 large enough to ensure that the second term is bounded by

1
10

∫
B
(σ 2
+ r2σ 2

r ) dm(z).

Hence,

d2Lβ
dβ2

∣∣∣∣
β=0
≤−

(
9
10
− ε

) ∫
50

σ 2 dm(z)−
1

40

∫
50

r2σ 2
r dm(z) < 0.

This completes the proof of the inequality (4.11) thus guaranteeing that for any sufficiently
small λ > 0 the level set

5= {z ∈50 : λ1(z, G̃)≥ λ2(z, G̃) > λ}

has positive volume. It is also invariant under G̃. Since f i (B) ∩ B = ∅ for i = 1, . . . , N0,
we obtain that the sets g̃i (5 ∩ B)=5 ∩ g̃i (B)=5 ∩ f i (B) corresponding to different i
are pairwise disjoint subsets of 5. This implies that

m(5)≥ N0m(5 ∩ B)≥ 20k0m(5 ∩ B) > 0,

thus completing the proof of Proposition 4.2. 2

4.2. Construction of the flow gt . We perturb the flow g̃t to a flow gt by adding a vector
field X R to the vector field Xg̃ . We obtain X R as a sum of rotational vector fields in the
ab-direction along several pairwise disjoint tubes so that the total rotation along an orbit
that passes through these tubes is π/2. This ensures positive Lyapunov exponents along
the Euab

f subbundle for the flow gt .

Note that there is M0 > 0 such that for any flow F t that is sufficiently C1-close to the
flow f t

‖F1
− f 1
‖C1 ≤ M0‖X F − X f ‖C1 . (4.15)
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According to Lemma B.5, M0 depends only on the Riemannian metric and the start-up
flow f t .

Let the number λ > 0 and the subset 5⊂50 be as in statement (5) of Proposition 4.2.
Given K > 0, let

3′ =3′(K )=

{
z ∈5 :

∣∣∣∣1k log ‖dg̃k(z, v)‖ − λ

∣∣∣∣≤ 0.1λ,

for all v ∈ Eua
f (z), ‖v‖ = 1 and all |k| ≥ 0.5K

} (4.16)

and

3=3(K )=
k0−1⋂
i=0

g̃−i3′(K ), (4.17)

where k0 > 0 is a number which will be defined later (see Lemma 4.5). Since m(3′(K ))→
m(5) as K →∞ and hence m(3(K ))→ m(5) as K →∞, one can choose K so large
that

Kλ≥max{5k0λ, 10 log 2,−10k0 log(1− M0δg)}, (4.18)

λm(5)+ 40 log(1− M0δg)m(5\3) > 0, (4.19)

20m(5\3)≤ m(5). (4.20)

Set

3∗ =3
∖ k0−1⋃

i=0

g̃−i (Proj50
(�0 ∪ �̃R)), (4.21)

where�0 and �̃R are given by (4.4) and (4.5) respectively. If the number ν is chosen small
enough, statement (5) of Proposition 4.2 allows us to assume that

m(Proj50
�0 ∩5)≤ m(5)/20k0,

m(Proj50
�̃R ∩5)= m(B ∩5)≤ m(5)/20k0.

(4.22)

Combining (4.20)–(4.22), we find that

m(3∗)≥ 0.8m(5). (4.23)

By statement (5) of Proposition 4.2, the set 5 is invariant under the time-1 map of the
flow g̃t .

We will approximate the set 5 by constructing an appropriate Rokhlin–Halmos tower
(see [11]) for the map g̃1. More precisely, we choose a measurable subset 0′ ⊂5 such
that the sets g̃i (0′) are pairwise disjoint for −K ≤ i ≤ 6K + k0 − 1 and

m

(6K+k0−1⋃
i=−K

g̃i0′
)
≥ 0.9m(5). (4.24)

Consider the set 00 of first entries of orbits {g̃i (z)}5K−1
i=0 (with z ∈ 0′) to the set 3∗. More

precisely, set

00 = {g̃
j (z) : z ∈ 0′, 0≤ j ≤ 5K − 1, g̃ j (z) ∈3∗, g̃i (z) 6∈3∗ for i < j}
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and let

0i = g̃i (00), 0 =

K+k0−1⋃
i=−K

0i . (4.25)

Clearly, the sets {0i } are pairwise disjoint for−K ≤ i ≤ K + k0 − 1. We then approximate
00 by finitely many disjoint ab-cylinders B0 j of the form

B0 j = Bu(z j , r ′j )× Bs(z j , r ′′j )× Bab(z j , r j )

= {(u j , s j , a j , b j ) : |u j | ≤ r ′j , |s j | ≤ r ′′j , a2
j + b2

j ≤ r2
j }

= {(u j , s j , ρ j , ϕ j ) : |u j | ≤ r ′j , |s j | ≤ r ′′j , ρ j ≤ r j },

where r ′j , r ′′j , r j > 0 for j = 1, . . . , J and z j = (u j , s j , a j , b j )= (u j , s j , ρ j , ϕ j ) ∈50

is the center of B0 j . For i =−K , . . . , K + k0 − 1 set

Bi j = g̃i (B0 j ), 1i =

J⋃
j=1

Bi j . (4.26)

We can choose the sets B0 j in such a way that:
(1) Bi j ∩ Bkl = ∅ for (i, j) 6= (k, l) with −K ≤ i, k ≤ K + k0 − 1 and 1≤ j, l ≤ J ;
(2) for each i = 0, 1, . . . , k0

m(0i41i )≤ 0.05 max{m(0i ), m(1i )}; (4.27)

(3) Bi j ∩ Proj50
(�0 ∪ �̃R)= ∅ for 0≤ i ≤ k0 − 1, 1≤ j ≤ J .

The last property implies that the set Bi j = g̃i (B0 j )= f i (B0 j ) lies in a neighborhood
around f i (z j ) and hence is still an ab-cylinder if the numbers r j , r ′j , r ′′j are chosen small
enough.

We need the following lemma.

LEMMA 4.5. Given δ > 0, there is θ0 = θ0(δ) > 0 such that for any θ ∈ [0, θ0] and any
tube T = C × [0, 1/2], where C ⊂50 is an ab-cylinder of the form

C = Bu(z, r ′)× Bs(z, r ′′)× Bab(z, r),

there exist a subtube T ′ = C ′ × [1/40, 19/40] ⊂ T , where C ′ ⊂ C is a cylinder of the form

C ′ = Bu(z, r ′0)× Bs(z, r ′′0 )× Bab(z, r0),

and a C∞ vector field X = XT,θ on M such that the following hold.
(1) X is a rotation vector field with speed θ in the ab-plane; i.e.,

X (z)= X (u, s, a, b, τ )= θ

(
−b

∂

∂a
+ a

∂

∂b

)
, z ∈ T ′.

(2) X = 0 outside T .
(3) m(C ′)/m(C)≥ 0.75.
(4) r0/r, r ′0/r ′, r ′′0 /r ′′ ≥ 0.9.
(5) ‖X‖C1 < δ.

https://doi.org/10.1017/etds.2012.109 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2012.109


1764 J. Chen et al

Moreover, let k0 > 0 be such that

θ̄ :=
2π

k0
∫ 1
−1 ψ(t) dt

< θ0(δg/2), (4.28)

where ψ(t) is the function in §4.1 and δg is given by Proposition 4.1. Then ‖XT,θ̄‖ ≤ δg/2.

Proof. Given 0< α < 1, we define a subcylinder

Cα = Bu(z, αr ′)× Bs(z, αr ′′)× Bab(z, αr)⊂ C.

By (A.2), the volume of Cα and C is induced by the flat metric du2
+ ds2

+ da2
+ db2,

and hence the ratio m(Cα)/m(C) depends only on α but not on the cylinder C . It follows
that m(Cα)/m(C)→ 1 as α→ 1.

Fix α > 0.9 such that m(Cα)/m(C) > 0.75, and set C ′ = Cα . Let us choose a C∞

function ξ : R→ [0, 1] satisfying:
(1) ξ = 1 on (−α, α);
(2) ξ > 0 on (−1, 1) and ξ = 0 outside (−1, 1);
(3) ‖ξ‖C1 ≤ 2/(1− α).
We introduce the ab-cylindrical coordinate (u, s, ρ, ϕ), and define a C∞ rotational vector
field X = XT,θ by the formula

XT,θ (z)=

θ ξ̃ (z)
∂

∂ϕ
, z ∈ T,

0, z ∈M\T,
(4.29)

where

ξ̃ (z)= ξ̃ (u, s, ρ, ξ, τ )= ξ

(
u

r ′

)
ξ

(
s

r ′′

)
ξ

(
ρ

r

)
ψ

(
τ − 1/4

1/4

)
and ψ is the smooth function in §4.1. Note that ‖̃ξ(∂/∂ϕ)‖ ≤ c where c > 0 depends only
on α but not on the choice of the cylinder C . Thus for any δ > 0, there is θ0 = θ0(δ) > 0
such that ‖X‖C1 < δ for any θ ∈ [0, θ0]. 2

Consider the tubes Ti j = Bi j × [0, 1/2]. Applying Lemma 4.5 with T = Ti j , we
obtain a vector field X R,i j = XTi j ,θ̄

such that ‖X R,i j‖ ≤ δg/2, where θ̄ is given by
(4.28). Moreover, there is a sub-cylinder B ′i j ⊂ Bi j such that m(B ′i j )/m(Bi j )≥ 0.75.

Furthermore, by Lemma 4.5, we may assume that g̃i (B ′0 j )= B ′i j for i = 1, . . . , k0.
Finally, let

1′i =

J⋃
j=1

B ′i j , �R =

k0−1⋃
i=0

J⋃
j=1

Ti j , (4.30)

and define the vector field X R by

X R =

k0−1∑
i=0

J∑
j=1

X R,i j . (4.31)

We obtain a new flow gt generated by the vector field Xg = Xg̃ + X R . Clearly, gt is a C∞

volume preserving flow since X R is divergence free. We will show that the flow gt has all
the desired properties stated in Proposition 4.1.
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Proof of Proposition 4.1. Statements (1) and (2) follow immediately from the construction
of the flow gt , and statement (3) can be proved in the same way as statement (3) of
Proposition 4.2.

We will prove statement (4). We need the following statement whose proof is very
similar to the proof of Lemma 4.3.

LEMMA 4.6. Given z ∈ Bi j , the ρ j -, u j -, s j - and τ -coordinates of gt (z) and f t (z) are

the same for t ∈ [0, 1/2]. Consequently, g
1
2 (Bi j )= f

1
2 (Bi j ), and hence 50 is a global

cross-section for the flow gt
|N ×U0.

By the lemma, the time-1 map g1 restricted to 50 is the Poincaré return map of gt on
50. Therefore, (4.2) is equivalent to

L4(G)= 0< L1(G) < L2(G) < L3(G), (4.32)

where G = g1
|50. In fact, by (4.1) and (4.7) we have for k = 3, 4 that

Lk(G)= Lk( f 1
|50)= Lk(g̃

1
|50)= Lk(G̃).

Hence, we only need to show that

L2(G) < L3(G). (4.33)

We follow the argument in [10, §4.2], and give a sketch of the proof of (4.33).
Set 1∗0 =1

′

0 ∩3, where 1′0 and 3 are given by (4.30) and (4.17) respectively, and

U1 = G−K1∗0, U2 =10\1
∗

0,

U3 = Gk0((10 ∩3)\1
∗

0), U4 = Gk0(10\3).

Consider the first return map G = G R on the set

U =U1 ∪U2 ∪U3 ∪U4 ⊂50,

where R = R(z) is the first return time of z ∈U to U under G. Note that the flow gt

preserves the Euab
f -subbundle, and so does G.

We intend to show that∫
U
(log ‖∧3 (dG|Euab

f (z))‖ − log ‖∧2 (dG|Euab
f (z))‖) dm(z) > 0, (4.34)

where
∧

k(dG|Euab
f (z)) : ∧k(Euab

f (z))→∧k(Euab
f (z))

is the kth exterior power of dG|Euab
f (z). Indeed, assuming that (4.34) holds, consider the

G-invariant set

5′ =

∞⋃
i=−∞

Gi (U )⊂50.

For k = 2, 3 we have that∫
U

log ‖∧k(dG|Euab
f (z))‖ dm(z)=

∫
5′

log ‖∧k(dG|Euab
f (z))‖ dm(z)

=

∫
5′

k∑
i=1

λi (z, G) dm(z)= Lk(G|5
′)
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and hence (4.34) implies that L2(G|5′) < L3(G|5′). Since G = G̃ outside 5′, we obtain
that L2(G) < L3(G).

To show (4.34) we split the integral over U into four integrals I1, I2, I3 and I4 over the
domains U1, U2, U3 and U4 respectively, and we obtain lower bounds for each of them.
Namely, we will show that

I1 ≥ 0.85Kλ · 0.7m(10), I2 ≥ k0 log(1− M0δg) · 0.25m(10),

I3 ≥ 0, I4 ≥ 2 log(1− M0δg)m(5\3).
(4.35)

The lower bounds for I2, I3 and I4 can be obtained using arguments in [10, proof of Lemma
4.2]. However, the proof of the lower bound for I1 in our continuous-time case requires
substantial changes and we shall present it here. We need the following lemma.

LEMMA 4.7. Let z ∈U1 = G−K (1∗0). Then for any v ∈ Euab
f (z), we have

‖dzG(v)‖ ≥

√
2

2
‖v‖e0.9Kλ. (4.36)

Proof. Note that for any z ∈ G−K (1∗0), the first return time R(z) is at least 2K + k0. Set

z1 = G K (z), z2 = Gk0(z1)= G K+k0(z), z3 = G(z)= G R(z)(z).

Since the orbit segments {gt (z)}0≤t≤K from z to z1 and {gt (z2)}0≤t≤R(z)−K−k0 from z2 to
z3 are outside the set �R , we have that

z1 = G K (z)= G̃ K (z), z3 = G R(z)−K−k0(z2)= G̃ R(z)−K−k0(z2).

On the other hand, since z1 ∈1
∗

0 =1
′

0 ∩3, we can assume that z ∈ B ′0 j for some j ,

and, by our construction, we have Gi (z1) ∈ B ′i j for i = 1, . . . , k0 − 1, and every cylinder
B ′i j is inside a local coordinate neighborhood of its center. Therefore, we write z1 =

(u, s, a, b, 0) ∈ B ′0 j , and, applying similar arguments to those in the proof of Lemma 4.4,
we have that

G(z1)= f
1
2 g

1
2 (z1)= f

1
2 (u, s, a cos φ − b sin φ, a sin φ + b cos φ, 1/2)

= (u, s, a cos φ − b sin φ, a sin φ + b cos φ, 1)

= (ηu, η−1s, a cos φ − b sin φ, a sin φ + b cos φ, 0),

where

φ =
1
4
θ̄

∫ 1

−1
ψ(t) dt =

π

2k0
.

Repeating this calculation for G1(z1), G2(z1), . . . , Gk0−1(z1) and observing that k0φ =

π/2, we obtain that

z2 = Gk0(z1)= (η
k0u, η−k0s, a cos(k0φ)− b sin(k0φ), a sin(k0φ)+ b cos(k0φ), 0)

= (ηk0u, η−k0s,−b, a, 0).

This formula means that dz1 Gk0 is non-contracting along the Euab
f subbundle and rotates

the vector in Eab
f by the angle π/2.

To obtain (4.36), we write v = vua
+ vb
∈ Eua

f (z)⊕ Eb
f (z) and consider the following

two cases.
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(1) If ‖vb
‖ ≤ (
√

2/2)‖v‖, since dzG K
= dzG̃ K and z ∈ G−K1′0 ⊂ G̃−K3′, by (4.16)

and (4.17), we find that

‖dzG K v‖ = ‖dzG̃ K v‖ ≥ ‖dzG̃ K vua
‖ ≥ ‖vua

‖e0.9Kλ
≥

√
2

2
‖v‖e0.9Kλ,

and hence

‖dzGv‖ = ‖dz2 G̃ R(z)−K−k0dz1 Gk0dzG̃ K v‖ ≥ ‖dzG̃ K v‖ ≥

√
2

2
‖v‖e0.9Kλ.

(2) If ‖vb
‖ ≥ (
√

2/2)‖v‖, since dz1 Gk0 rotates the vector in Eab
f by the angle π/2, we

have

dzG K+k0vb
= dz1 Gk0(dzG̃ K vb) ∈ Eua

f (z2).

Since z2 ∈3
′, by (4.16) we obtain

‖dzGv‖ ≥ ‖dzGvb
‖ = ‖dz2 G̃ R(z)−K−k0dzG K+k0vb

‖

≥ ‖dzG K+k0vb
‖e0.9Kλ

≥

√
2

2
‖v‖e0.9Kλ. 2

By the lemma and (4.18), we find that

log ‖dzG(v)‖ ≥ 0.9Kλ− 0.5 log 2+ log ‖v‖ ≥ 0.85Kλ+ log ‖v‖,

for any z ∈U1 and v ∈ Euab
f (z). Hence,

log ‖∧3 (dG|Euab
f (z))‖ − log ‖∧2 (dG|Euab

f (z))‖ ≥ 0.85Kλ.

On the other hand, it is proved in [10] that m(U1)≥ 0.7m(10). Therefore,

I1 =

∫
U1

(log ‖∧3 (dG|Euab
f (z))‖ − log ‖∧2 (dG|Euab

f (z))‖) dm(z)

≥ 0.85Kλ · 0.7m(10).

It follows from (4.35) that∫
U
(log ‖∧3 (dG|Euab

f (z))‖ − log ‖ ∧2 (dG|Euab
f (z))‖)

≥ 0.595λK m(10)+ 0.25k0 log(1− M0δg)m(10)+ 2 log(1− M0δg)m(5\3)

≥ 0.57λK m(10)+ 2 log(1− M0δg)m(5\3)

≥ 0.0627λm(5)− 0.05λm(5)= 0.0127λm(5) > 0.

The last two inequalities follow from (4.18), (4.19) and [10, Sublemma 4.4], which
states that m(10)≥ 0.11K−1m(5). This completes the proof of statement (4) of
Proposition 4.1. 2
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5. Accessibility
Notice that the flow gt has positive central exponents on a set of positive volume but is not
necessarily ergodic. We will perturb gt to a flow ht that is pointwise partially hyperbolic
on the open set U and still has positive central exponents. Furthermore, we will ensure
that the flow ht possesses two transversal strongly stable and unstable foliations, W s

h and
W u

h , of U and satisfies the accessibility property on U via these two foliations. In view of
Theorem 2.4, ht is indeed the desired flow in our main theorem.

We will follow the arguments in [10] and make some necessary modifications for the
flow case. We choose two sequences of open subsets Un, Ũn ⊂U , n = 1, 2, . . . such that:
(A4) U0 ⊂ Ũ1;

(A5) Ũn ⊂ Ũn ⊂Un ⊂Un ⊂U and
⋃

n≥1 Un =U ;
(A6) Ũn and Un are connected sets for any n ≥ 1.
Set

Un =N ×Un, Ũn =N × Ũn . (5.1)

We will construct a sequence of flows {ht
n}n≥0, whose limit is the desired flow ht . The goal

of this section is to prove the following statement.

PROPOSITION 5.1. Given δh > 0, one can find a sequence of positive numbers {δn} with
δn ≤min{δh/2n, d(C,Un)

2
} as well as a sequence of C∞ divergence-free vector fields

Xn on M, generating a sequence of volume preserving flows ht
n , such that for n ≥ 0 the

following hold.
(1) X0 = Xg , and hence ht

0 = gt .
(2) ‖Xn+1 − Xn‖Cn+1 ≤ δn .
(3) Xn = X f on M\Un , and Xn = Xn−1 on Un−2; in particular, each flow ht

n is a gentle
perturbation of f t , and hence satisfies statements (3)–(5) of Proposition 3.1.

(4) For every z ∈M, we have

Euabτ
hn

(z)= Euabτ
g (z), det(dht

n|E
uabτ
hn

(z))= det(dgt
|Euabτ

g (z)).

(5) For all z ∈ U j , j = 1, . . . , n, and ω = u, s, c,

6 (Eωhn
(z), Eωhn−1

(z))≤ δ j/2n− j .

(6) If the number δg in Proposition 4.1 is sufficiently small, then each flow ht
n is stably

accessible in the following sense: let a flow h̃t be a gentle perturbation of the flow
f t , and assume that 6 (Eω

h̃
(z), Eωhn

(z))≤ δn for all z ∈ Un and ω = u, s, c. Then any

two points z1, z2 ∈ Ũn are accessible via a (u, s)h̃t -path in U . In particular, ht
n has

the accessibility property in Ũn .

Statements (1)–(3) imply that the limit vector field Xh = limn→∞ Xn exists. Moreover,

‖Xn − Xk‖Ck+1 ≤

n−1∑
j=k

‖X j+1 − X j‖C j+1 ≤

n−1∑
j=k

δ j ≤ δh/2k−1

for any n ≥ k ≥ 0. It follows that Xn converges to Xh uniformly in the Ck+1 topology.
Since k is arbitrary, Xh is a C∞ vector field. In the following section we will show that the
flow ht generated by Xh has all the desired properties.
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5.1. Construction of the sets Un and Ũn . We view the 2-torus Y as the square [0, 8] ×
[0, 8] whose opposite sides are identified. For each n ≥ 1, consider the partition of Y into
squares

Ẑ (n)i j =

[
i

2n ,
i + 1

2n

]
×

[
j

2n ,
j + 1
2n

]
, i, j = 0, 1, . . . , 2n+3

− 1.

Without loss of generality we will assume that the square U0, constructed in §3, is
contained in some Ẑ (1)i0 j0

so that

d(U0, Ẑ (1)i0 j0
)≥ 1/24 and d(C, Ẑ (1)i0 j0

) > 2,

where C is the Cantor set constructed in §3. Consider the open squares

Z (n)i j =

(
i

2n −
1

2n+2 ,
i + 1

2n +
1

2n+2

)
×

(
j

2n −
1

2n+2 ,
j + 1
2n +

1

2n+2

)
,

Z̃ (n)i j =

(
i

2n −
1

2n+5 ,
i + 1

2n +
1

2n+5

)
×

(
j

2n −
1

2n+5 ,
j + 1
2n +

1

2n+5

)
.

Clearly, these squares have the same center as Ẑ (n)i j and Ẑ (n)i j ⊂ Z̃ (n)i j ⊂ Z (n)i j . For n ≥ 1
consider the set

Yn = {y ∈ Y : d(y, C)≥ 1/2n−2
}.

Since U0 ⊂ Y1, we let Y ′n be the connected component of Yn that contains U0. Finally,
consider the sets

Û1 = Ẑ (1)i0 j0
, U1 = Z (1)i0 j0

and Ũ1 = Z̃ (1)i0 j0
,

and, for n > 1,

Ûn =
⋃

Ẑ (n)i j ∩Y ′n 6=∅

Ẑ (n)i j , Un =
⋃

Ẑ (n)i j ∩Y ′n 6=∅

Z (n)i j , Ũn =
⋃

Ẑ (n)i j ∩Y ′n 6=∅

Z̃ (n)i j .

It is clear that the sets Un and Ũn satisfy conditions (A4)–(A6).
Let Ẑn = {Ẑ

(n)
i j : Ẑ

(n)
i j ⊂ Ûn\Ûn−1} and Zn = {Z

(n)
i j : Ẑ

(n)
i j ⊂ Ẑn}. Relabeling elements

of Zn , we will denote them by Z (n)1 , . . . , Z (n)kn
, and we will use the notations Ẑ (n)l and Z̃ (n)l

for the corresponding squares contained in Z (n)l . Thus we have

Un =Un−1 ∪

( kn⋃
l=1

Z (n)l

)
.

Clearly the collection of sets {Ẑ (n)l : n = 1, 2, . . . , l = 1, . . . , kn} forms a countable

partition of U up to a set of zero volume while the collection of sets {Z (n)l : n =
1, 2, . . . , l = 1, . . . , kn} forms a cover of U of multiplicity at most 4. The following
lemma is proved in [10].

LEMMA 5.2. There is a labeling of the squares {Z (n)l } by integers from 1 to 8 such that for

any y ∈U, the labels of the squares Z (n)l containing y are all different. In particular, Z (1)1
can be labeled by 1.
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5.2. Construction of the vector fields Xn . The construction is similar to the one in [10,
§5.2], with a slightly modification on the choice of the collection of periodic points. We
need the following preparations before we construct the vector fields Xn .

Let q j , j = 1, . . . , 8, be eight periodic points of the Anosov automorphism A whose
orbits are pairwise disjoint. There is ε0 > 0 such that

BX (A
i q j , ε0) ∩ BX (A

i q j ′ , ε0)= ∅

whenever j 6= j ′ and i =−1, 0, 1. For each q j we choose three periodic points pi
j ∈

BX (Ai q j , ε0/3) for A, i = a, b, τ , whose orbits are pairwise disjoint. Write [q j , pi
j ] =

V u
A(q j ) ∩ V s

A(p
i
j ), i = a, b, τ , where V s

A and V u
A are the stable and unstable local

manifolds respectively. For i = a, b, τ and j = 1, . . . , 8, consider the closed quadrilateral
(u, s)A-path γ i

j with the collection of points q j , [q j , pi
j ], pi

j , [p
i
j , q j ], and q j . Without

loss of generality, we will assume q1 = q , pi
1 = pi and γ i

1 = γ
i for i = a, b, τ , where q ,

pi and γ i are chosen as in the beginning of §4.1.
For j = 1, . . . , 8 and i = a, b, τ , we have

Aι(q j )(q j )= q j , Aι(p
i
j )(pi

j )= pi
j ,

where ι(q j ) and ι(pi
j ) are periods of q j and pi

j respectively. There exists ᾱ( j, i) > 0 such

that for any α ∈ Y = T2 with ‖α‖ ≤ ᾱ( j, i), the Anosov affine map A + α has a ι(q j )-
periodic point q j (α) close to q j and a ι(pi

j )-periodic point pi
j (α) close to pi

j . Moreover,
we can choose the number ᾱ (in condition (α3) at the beginning of §3) to be less than
min{ᾱ( j, i) : j = 1, . . . , 8, i = a, b, τ } such that any two points from the set of periodic
points

{q j (α), pi
j (α) : j = 1, . . . , 8, i = a, b, τ, ‖α‖ ≤ ᾱ}

are disjoint.
Given n ≥ 1 and l = 1, . . . , kn , let j be the label of Z (n)l in Lemma 5.2, and y0(n, l)=

(a0(n, l), b0(n, l)) the center of Z (n)l . We take the points associated to Z (n)l as follows:

q(n, l)= q j (α(y0(n, l))), pi (n, l)= pi
j (α(y0(n, l))), (5.2)

where i = a, b, τ . Recall that η is the expanding rate of A along its unstable direction, and
the function κ : Y → R is given in the beginning of §3. For n ≥ 1 let us choose a square
Z (n)l ∈ Zn . In the case n > 1, we write for simplicity q = q(n, l) and pi

= pi (n, l), and

we let η−(n, l)=min{ηκ(y) : y ∈ Z (n)l }. Define the numbers

αi
u = α

i
u(n, l)= d(pi , [pi , q]),

αi
s = α

i
s(n, l)= d(pi , [q, pi

]),

ᾰi
u = ᾰ

i
u(n, l)= αi

u(n, l)/η−(n, l),

ᾰi
s = ᾰ

i
s(n, l)= αi

s(n, l)/η−(n, l)

(5.3)

and the rectangles in X

5i (n, l)= BFu (pi , αi
u)× BFs (pi , αi

s),

5̆i (n, l)= BFu (pi , ᾰi
u)× BFs (pi , ᾰi

s).
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We will assume that the rectangles 5i (n, l), n ≥ 1, l = 1, . . . , kn and i = a, b, τ , are
pairwise disjoint if the number ᾱ is chosen sufficiently small. Finally, we let

ετ = ετ (n, l)=min{κ(y)/2 : y ∈ Z (n)l },

ε̆τ = ε̆τ (n, l)= 5ετ (n, l)/6.
(5.4)

In the case n = 1, we have Z (1)1 =U1 and q(1, 1)= q1, pi (1, 1)= pi
1 since the function

α = 0 on U1. Choose l i
u and l i

s such that

A−li
u ([pi

1, q1]) ∈ BX (p
i
1, ν/2), Ali

s ([q1, pi
1]) ∈ BX (p

i
1, ν/2),

where ν is given in (4.4). Then we set

αi
u = α

i
u(1, 1)= d(pi

1, A−li
u [pi

1, q1]), αi
s = α

i
s(1, 1)= d(pi

1, Ali
s [q1, pi

1])

with other quantities and sets to be defined in a similar way.
In addition to the squares Ẑ (n)i j , Z̃ (n)i j and Z (n)i j constructed in the previous subsection,

we need to consider the squares,

Z̆ (n)i j =

(
i

2n −
1

2n+3 ,
i + 1

2n +
1

2n+3

)
×

(
j

2n −
1

2n+3 ,
j + 1
2n +

1

2n+3

)
,

Z̄ (n)i j =

(
i

2n −
1

2n+4 ,
i + 1

2n +
1

2n+4

)
×

(
j

2n −
1

2n+4 ,
j + 1
2n +

1

2n+4

)
,

as well as the intervals,

In = Jn =

(
−

3

2n+2 ,
3

2n+2

)
, Ĭn = J̆n =

(
−

5

2n+3 ,
5

2n+3

)
,

and

K = (−1/4, 1+ 1/4), K̆ = (−1/8, 1+ 1/8), K̄ = (−1/16, 1+ 1/16).

Note that we have
Ẑ (n)i j ⊂ Z̃ (n)i j ⊂ Z̄ (n)i j ⊂ Z̆ (n)i j ⊂ Z (n)i j

and similar relations for In and Jn .
Fix n ≥ 1 and l = 1, . . . , kn , and write αi

ω = α
i
ω(n, l), ᾰi

ω = ᾰ
i
ω(n, l) for i = a, b, τ ,

ω = u, s, and ετ = ετ (n, l), ε̆τ = ε̆τ (n, l). We choose functions as follows.
(1) φi and ψ i are C∞ functions on R such that:

• φi
= constant on (−ᾰi

u, ᾰ
i
u) and ψ i

= constant on (−ᾰi
s, ᾰ

i
s);

• φi (r)= 0 for |r | ≥ αi
u , ψ i (r)= 0 for |r | ≥ αi

s ;

•
∫ ±αi

u
0 φi (r) dr = 0, and ψ i (r) > 0 for any |r |< αi

s ;
• ‖φi

‖Cn , ‖ψ i
‖Cn ≤ 1.

(2) ξτ and ξY are C∞ functions supported on K and In respectively such that:
• ξτ = constant on K̆ , and ξY = constant on Ĭn ;
• ξτ (r) > 0 for r ∈ K , and ξY (r) > 0 for r ∈ In ;
• ξτ (r)= 0 for r 6∈ K , and ξY (r)= 0 for r 6∈ In ;
• ‖ξτ‖Cn , ‖ξY ‖Cn ≤ 1.
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(3) ζτ and ζY are C∞ functions supported on (−ετ , ετ ) and In respectively such that:
• ζτ = constant on (−ε̆τ , ε̆τ ), and ζY = constant on Ĭn ;
• ζτ (r) > 0 for r ∈ (−ετ , ετ ), and ζY (r) > 0 for r ∈ In ;
• ζτ (r)= 0 for r 6∈ (−ετ , ετ ), and ζY (r)= 0 for r 6∈ In ;
• ‖ζτ‖Cn , ‖ζY ‖Cn ≤ 1.

Now we are ready to construct the sequence of vector fields Xn . Given n ≥ 1,
l = 1, . . . , kn and i = a, b, τ , take the Cartesian coordinate system z = (u, s, τ, a, b)=
(x, τ, a, b) with the origin at (pi (n, l), 1/2, y0(n, l)). In this coordinate system the
interval K is in the symmetric form (−3/4, 3/4). Take the boxes for i = a, b,

�i
=�i

n,l = {(x, τ, y) : x ∈5i (n, l), |τ | ≤ ετ (n, l), y ∈ Z (n)l },

and
�τ =�τn,l = {(x, τ, y) : x ∈5τ (n, l), τ ∈ K , y ∈ Z (n)l }.

By the construction of the rectangles 5i (n, l), we have that �i (n, l) ∩�i ′(n′, l ′)= ∅ if
(i, n, l) 6= (i ′, n′, l ′). Similarly, we can choose �̆i , i = a, b, τ , by taking 5̆i , ε̆τ , K̆ and
Z̆ (n)l . Next we define three divergence-free vector field

X a
= X a

n,l = ζY (b)ζτ (τ )ψ
a(s)

(
−ξ ′Y (a)

∫ u

0
φa(r) dr, 0, 0, ξY (a)φ

a(u), 0
)
,

X b
= X b

n,l = ζY (a)ζτ (τ )ψ
b(s)

(
−ξ ′Y (b)

∫ u

0
φb(r) dr, 0, 0, 0, ξY (b)φ

b(u)

)
,

X τ
= X τ

n,l = ζY (a)ζY (b)ψ
τ (s)

(
−ξ ′τ (τ )

∫ u

0
φτ (r) dr, 0, ξτ (τ )φτ (u), 0, 0

)
.

Clearly each vector field X i
n,l vanishes outside the corresponding box �i

n,l , and it is

constant on the smaller box �̆i
n,l . Finally, we set

X̂n =

kn∑
l=1

(X a
n,l + X b

n,l + X τ
n,l), Xn = Xg +

n∑
k=1

βk X̂k, (5.5)

where the sequence of small positive numbers {βn} is determined inductively to ensure
statements (2) and (5) of Proposition 5.1. Let ht

n be the flow on M generated by the vector
field Xn .

5.3. Proof of Proposition 5.1. Statements (1)–(4) follow directly from our construction.
It remains to show how to choose the sequence of positive numbers δn such that ht

n satisfies
statements (5) and (6) of the proposition. Note that these two statements only concern those
invariant subbundles Eω and foliations Wω, ω = u, s, c, cs, cu, which are the same for the
flow and its time-1 map. Therefore, the choice of δn and related arguments are similar to
the diffeomorphism case in [10]. We will outline the proof here.

For any gentle perturbation ht
\ of f t (see Definition 2.1), we denote by W c

h\
(z) the

center manifold of ht
\ at the point z ∈M. Given a square Z (n)l with the center y0(n, l),

let q(n, l), pi (n, l), i = a, b, τ , be the associated periodic points given by (5.2), and
z0 = z0(n, l)= (q(n, l), 1/2, y0(n, l)). We denote by W c

h\
(z0, K , Z (n)l ) the connected
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component of W c
h\
(z0) ∩ (X × K × Z (n)l ) that contains z0. We will also use similar

notations W c
h\
(z0, K̆ , Z̆ (n)l ), etc.

Next we will introduce two important families of maps 2 and 9 for a gentle
perturbation ht

\ of f t .

Fixing n ≥ 1 and l = 1, . . . , kn , we take the collection of points q = q(n, l), pi
=

pi (n, l), i = a, b, τ . Consider a quadrilateral (u, s)ht
\
-path γ̂ i

= {z1, . . . , z5} with initial
point z1 defined by

z2 = V u
h\(z1) ∩ V cs

h\ (p
i , 1/2, a0, b0),

z3 = V s
h\(z2) ∩ V cu

h\ (p
i , 1/2, a0, b0),

z4 = V u
h\(z3) ∩ V cs

h\ (z1),

z5 = V s
h\(z4) ∩ V cu

h\ (z1).

(5.6)

This path defines a map 2i
=2i

n,l,h\
given by 2i (z1)= z5. It is easy to see that

z5 ∈ V c
h\
(z1), and 2i maps W c

h\
(z0, K , Z (n)l ) into itself. Reparameterizing the curve on

V u
h\
(z1) from z1 to z2 by σ : [0, 1] → V u

h\
(z1) so that σ(0)= z1 and σ(1)= z2, we obtain

a parameterized family of quadrilaterals γ̂ i (ϑ)= {z1(ϑ), . . . , z5(ϑ)}, ϑ ∈ [0, 1], where
z1(ϑ)= z1, z2(ϑ)= σ(ϑ), and zk(ϑ), k = 3, 4, 5, are obtained in the way similar to (5.6).
Then we define 2i

ϑ =2
i
ϑ,n,l,h\

given by 2i
ϑ (z1)= z5(ϑ). Clearly 2i

0 = Id, 2i
1 =2

i , 2i
ϑ

maps W c
h\
(z0, K , Z (n)l ) into W c

h\
(z0) and depends continuously on ϑ ∈ [0, 1].

On the other hand, given z = ((x, τ ), y) ∈ U , there is a (u, s) f t -path γ f (z) connecting
z to z′ = ((q, τ ), y) whose length does not exceed 2d(x, q). This generates a map
9 f =9 f,n,l from U to {q} × K × G given by 9 f (z)= z′. Furthermore, given a gentle

perturbation ht
\ of f t and a point z ∈ Z (n)l , we can find a (u, s)h\ -path γh\(z) that is close

to γ f (z) and connects z to a point z′ = z′(ht
\) ∈W c

h\
(z0, K , Z (n)l ). We can then define

9h\ =9h\,n,l by 9h\(z)= z′(ht
\).

Note that the maps 9h\,n,l , 2
i
n,l,h\

and 2i
ϑ,n,l,h\

, i = a, b, τ , depend continuously on

ht
\ as long as ht

\ is a gentle perturbation of f t with ht
\ = f t outside some fixed Un and

with 6 (Eωh\(z), Eωf (z)) sufficiently small for all z ∈ Un and ω = u, s, c. Moreover, the
continuity is uniform with respect to z.

Given a set 0 ⊂M and a gentle perturbation ht
\ of f t , set

Ah\(0) = {z ∈M : there exists y ∈ 0 such that

y is accessible to z via a (u, s)ht
\
-path}.

For n ≥ 1 denote by εn =min{1/2n+5, ε̆τ (n, l), l = 1, . . . , kn}, where ε̆τ (n, l) is defined
by (5.4).

We now briefly describe how to choose the sequence {δn}. See [10] for more details.
Recall that U1 = Z (1)1 , Ũ1 = Z̃ (1)1 , and U1 =N ×U1, Ũ1 =N × Ũ1. Choose θ0 > 0 such
that the families of maps 9h\ and 2i

h\
are well defined for any gentle perturbation ht

\

of f t with 6 (Eωh\(z), Eωf (z))≤ 2θ0 for ω = u, s, c. We assume that the number δg in

Proposition 4.1 is so small that the flow ht
0 = gt satisfies 6 (Eωh0

(z), Eωf (z))≤ θ0 and

d(2i
ϑ,1,1,h0

(z), z)≤ ε1/4 for z ∈N ×U0, ϑ ∈ [0, 1] and i = a, b, τ .
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Now choose θ ′1 with 0< θ ′1 ≤ θ0/2 such that d(9h\(z), 9h0(z))≤ 1/28 if 6 (Eωh\(z),

Eωh0
(z))≤ 2θ ′1 for all z ∈N × Z (1)1 . Also choose δ′1 > 0 such that if ‖X1 − X0‖ ≤ δ

′

1,
then 6 (Eωh1

(z), Eωh0
(z))≤ θ ′1. Finally set θ1 =min{θ ′1, θ

′′

1 } and δ1 =min{δ′1, δ
′′

1 , θ1},
where δ′′1 and θ ′′1 are given by Lemma 5.3 below. We can show:

(1) d(9h1(z), 9h0(z))≤ 1/28 for all z ∈N × Z (1)1 ;

(2) d(2i
ϑ,2,l,h1

(z), z)≤ ε2/4 for all z ∈W c
h1
(z0(2, l), K , Z (2)l ), i = a, b, τ , ϑ ∈ [0, 1]

and l = 1, . . . , k2;
(3) Ah\(z0(1, 1))⊃W c

h\
(z0(1, 1), K̄ , Z̄ (1)1 ) for any gentle perturbation ht

\ of f t , close

to ht
1, with 6 (Eωh\(z), Eωh1

(z))≤ θ ′1, ω = u, s, c and z ∈N × Z (1)1 .

Moreover, the above statements imply that Ah\(z0(1, 1))⊃N × Z̃ (1)1 ; in particular, ht
1 has

the accessibility property on N × Z̃ (1)1 .
Proceeding inductively, we can choose δn such that statements (5) and (6) of

Proposition 5.1 hold. Furthermore, we have for i = a, b, τ , ϑ ∈ [0, 1] and l =
1, . . . , kn+1:
(1) d(9hn (z), 9hn−1(z))≤ 1/2n+7 for all z ∈N × Z (n)l ;

(2) d(2i
ϑ,n+1,l,hn

(z), z)≤ εn+1/4 for all z ∈W c
hn
(z0(n + 1, l), K , Z (n+1)

l );

(3) Ah\(z0(n, l))⊃W c
h\
(z0(n, l), K̄ , Z̄ (n)l ) for any gentle perturbation ht

\ of f t , close to

ht
n , with 6 (Eωh\(z), Eωhn

(z))≤ δn , ω = u, s, c and z ∈N × Z (n)l .

Therefore, Ah\(z0(n, l))⊃N × Z̃ (n)l for all l = 1, . . . , kn+1. In other words, ht
\ has the

accessibility property on N × Z̃ (n)l .
Note that

Ũn = Ũn−1 ∪

( kn⋃
l=1

N × Z̃ (n)l

)
,

and the intersection of any two sets among Ũn−1 and N × Z̃ (n)l , l = 1, . . . , kn , contains a
non-empty open set whenever they intersect. Since Ũn is connected, we obtain accessibility
of ht

\ on Ũn . In particular, ht
n has the accessibility property on Ũn when we apply that

ht
\ = ht

n .

5.4. A technical lemma. The proof of Proposition 5.1 heavily relies on the following
technical statements.

LEMMA 5.3. Suppose for some n > 0, d(2i
ϑ,n,l,hn−1

(z), z)≤ εn/4 for all i = a, b, τ ,

ϑ ∈ [0, 1], z ∈W c
hn−1

(z0(n, l), K , Z (n)l ), l = 1, . . . , kn . Then there are δ′′n , θ ′′n > 0 such
that the following hold.
(1) If ‖Xn − Xn−1‖Cn ≤ δ′′n , then

d(2i
ϑ,n+1,l,hn

(z), z)≤ εn+1/4 as z ∈W c
hn
(z0(n + 1), K , Z (n+1)

l ), (5.7)

for all i = a, b, τ , ϑ ∈ [0, 1], and l = 1, . . . , kn+1.
(2) For any gentle perturbation ht

\ of f t , close to ht
n and with

6 (Eωh\(z), Eωhn
(z))≤ θ ′′n for all z ∈N × Z (n)l , ω = u, s, c,
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we have

Ah\(z0(n, l))⊃W c
h\(z0(n, l), K̄ , Z̄ (n)l ) for all l = 1, . . . , kn . (5.8)

In particular, (5.8) holds with ht
\ = ht

n .

This lemma is an adaptation of [10, Lemma 5.2] to the flow case. It can be proved in a
similar fashion subject to the following sublemma.

SUBLEMMA 5.4. For each n > 0, there exists δ′′n > 0 such that if ‖Xn − Xn−1‖Cn =

βn‖X̂n‖Cn ≤ δ′′n , then, for all l = 1, . . . , kn:
(1) 2a((q, 1/2, a, 0))= (q, 1/2, a′, 0) with a′ < a for any a ∈ In;
(2) 2b((q, 1/2, a, b))= (q, 1/2, a, b′) with b′ < b for any a ∈ In , b ∈ Jn;
(3) 2τ ((q, τ, a, b))= (q, τ ′, a, b) with τ ′ < τ for any a ∈ In , b ∈ Jn and τ ∈ K , where

q = q(n, l) is given by (5.2), and 2i
=2i

n,l,hn
for i = a, b, τ .

Proof. The proof is similar to that in [6] (see Lemma B.4; see also [10, Sublemma 5.3])
but is adapted to the language of vector fields.

We will prove the first statement. Consider the coordinate system (u, s, τ, a, b) in
�a

n,l with the origin at (pa(n, l), 1/2, y0(n, l)). Write q = q(n, l), pa
= pa(n, l) and

y0 = y0(n, l). We may assume that the square Z (n)l is parameterized as (a, b) ∈ In × Jn ,

that the center y0(n, l) of Z (n)l is (0, 0) and that the local coordinates of the points
q , [q, pa

], [pa, q] and pa are (u0, s0), (0, s0), (u0, 0) and (0, 0) respectively, where
u0 = α

a
u (n, l) and s0 = α

a
s (n, l) given by (5.3).

Consider the case n > 1 first. Note that the vector field Xn inside �a(n, l) is exactly
X f + βn X a

n,l . For any a1 = a ∈ In , b ∈ Jn , and τ ∈ (1/2− ετ , 1/2+ ετ ), choose the point
z1 = (q, τ, a1, b)= (u0, s0, τ, a1, b). Note that under the original flow f t , we have a
closed quadrilateral (u, s) f t -path γ = {z1, z2, z3, z4, z5}, where

z2 = ([q, pa
], τ, a2, b)= (0, s0, τ, a2, b),

z3 = (p
a, τ, a3, b)= (0, 0, τ, a3, b),

z4 = ([p
a, q], τ, a4, b)= (u0, 0, τ, a4, b),

z5 = ([q, pa
], τ, a5, b)= (u0, s0, τ, a5, b)= z1,

and ak = a1 = a for k = 1, 2, 3, 4, 5.
Let us compare the vector field Xn = X f + βn X a

n,l on each leg Lk = [zk, zk+1] for
k = 1, 2, 3, 4. In fact, X a

n,l ≡ 0 on legs L1 and L4. Since the u-component of every point
on the leg L2 is 0, the u-component of the vector field X a

n,l is 0, and the a-component
does not depend on the u-coordinate. On the leg L3 = [z3, z4], the u-component of X a

n,l
is negative at the interior points and it is zero at two endpoints z3 and z4, while the
a-component is positive, with the value smoothly changing from a constant to zero.

Now choose the point z1 = z1, and we have the quadrilateral (u, s)ht
n
-path γ =

{z1, z2, z3, z4, z5}. By the above comparison, the τ - and b-coordinate are the same for
each zk , k = 1, 2, 3, 4, 5. By the construction of the vector fields Xn , the image of the
leg [z3, z4] under the flow ht

n is contained in �a . Now let ak be the a-coordinate of
zk , k = 1, 2, 3, 4, 5. Since the a-component of Xn is the same for all points on L1, L2
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and L4, and it changes from a constant to zero along the unstable leg L3, then we have
a1 = a2 = a3 > a4 = a5. This shows statement (1) for the case n > 1.

In the case n = 1, similar arguments can be used with the following modification,
and we will obtain a1 = a2 ≥ a3 > a4 = a5. This completes the proof of statement (1).
Statements (2) and (3) can be proved in a similar way. 2

6. Proof of main theorem
Since each Xn is divergence free, so is Xh , and hence ht is volume preserving. The first
statement of the main theorem follows.

Note that ht
= f t on U c and is of the form

ht ((x, τ ), y)= ((x + tα0, τ ), y)

for each z = ((x, τ ), y) ∈ U c
=N × C , where α0 is a Diophantine vector (see §3). Hence,

ht preserves each three-dimensional submanifold N × {y}, y ∈ C , and ht
|N × {y} is

a non-identity linear flow since α(y) 6= 0. Moreover, the frequency vector α(y) is
Diophantine if y ∈ C . Thus statements (1) and (3) of the main theorem follow.

It remains to prove the second statement. By Proposition 4.1, each diffeomorphism
ht

n is pointwise partially hyperbolic on U and uniformly partially hyperbolic on U n . By
Theorem B.1 in Appendix B, if the sequence δn decreases sufficiently fast, the limit flow
ht is pointwise partially hyperbolic on U .

We now claim that the one-dimensional strongly stable E s
h and unstable Eu

h subbundles
are integrable to invariant strongly stable W s

h and unstable W u
h foliations with smooth

leaves, which are transversal and absolutely continuous. Recall that the ‘start-up’ flow
f t has strongly stable and unstable local manifolds V s

f (z) and V u
f (z) respectively at each

z ∈ U . Moreover, these local manifolds are of uniform size, larger, say, than a certain
number 4r > 0. By Proposition 5.1(3), ht

n|U c
n = f t

|U c
n , and thus V ω

hn
(z)= V ω

f (z) for all
z ∈ U\Un , ω = s, u. On the other hand, each ht

n is a perturbation of ht
n−1 on the compact

set Un , on which both ht
n and ht

n−1 are uniformly partially hyperbolic if δn is sufficiently
small. Furthermore, let rn be the size of V ω

hn
(z) for z ∈ Un . One can have rn/rn−1 ≥ 2−1/2n

,
and thus by induction we have that the size of local manifolds of ht

n|Un is bigger than r .
Therefore, given z ∈ U , we obtain that the size of V ω

hn
(z) has a lower bound r > 0, which

is independent of z and n.
Write each V s

hn
(z) in the coordinate chart as

V s
hn
(z)= expz{(v, ψ

s
hn
(v)) : v ∈ Bs(0, rn)},

where Bs(0, rn)⊂ E s
hn
(z) is the ball centered at origin of radius rn and ψ s

hn
: Bs(0, rn)→

Ecu
hn
(z) is a C1 map satisfying the following.

(1) ψ s
hn
(0)= 0 and dψ s

hn
(0)= 0.

(2) If the numbers δn and θn decay sufficiently fast then there are r > 0 and 1> 0 such
that rn ≥ r and ‖ψ s

hn
‖C1 ≤1 for all n ≥ 0.

This implies that z ∈ V s
hn
(z) and Tz V s

hn
(z)= E s

hn
(z). Furthermore:

(1) ht
n(V

s
hn
(z))⊂ V s

hn
(ht

n(z));
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(2) d(ht
n(z), ht

n(y))≤ λ̃(z)d(z, y) for each y ∈ V s
hn
(z) and some continuous function

λ̃(z) on U for which 0< λ(z)≤ λ̃(z) < λ′(z) (where λ′(z) is the function in the
definition of pointwise partial hyperbolicity).

The sequence of functionsψ s
hn
(v), ‖v‖ ≤ r , is compact in the C1 topology, and hence there

is a subsequence ψ s
hnk

that converges to a C1 function ψ satisfying ψ(0)= 0, dψ(0)= 0
and ‖ψ‖C1 ≤1. Setting

V (z)= expz{(v, ψ(v)) : v ∈ Bs(0, r)} (6.1)

we have:
(1) z ∈ V (z) and Tz V (z)= E s

h(z);
(2) ht (V (z))⊂ V (ht (z));
(3) d(ht (z), ht (y))≤ λ̃(z)d(z, y) for each y ∈ V (z).
This implies that if mk is any subsequence for which ψ s

hmk
converges in the C1 topology

to a function ψ̃ , then ψ̃ = ψ . Thus the formula (6.1) determines uniquely a local strongly
stable manifold through z and the formula W (z)=

⋃
n≥0 h−t (V (ht (z))) defines the global

strongly stable manifold through z. These manifolds form a continuous strongly stable
foliation with smooth leaves for ht . In a similar fashion we can obtain strongly unstable
local manifolds and construct a strongly unstable foliation with smooth leaves for ht . These
two foliations are transverse at every point z ∈ U .

We will now show that the Lyapunov exponent λs
h(z) in the direction E s

h(z) is negative
at almost every point z ∈ U . Indeed, let Z ⊂ U be the set of points at which λs

h(z)= 0. If
m(Z) > 0 then

0=
∫

Z
λs

h(z) dm =
∫

Z
lim

n→∞

1
n

log
n−1∏
i=0

λh(h
i (z)) dm(z)

= lim
n→∞

1
n

∫
Z

n−1∑
i=0

log λh(h
i (z)) dm(z)

=

∫
Z

log λh(z) dm(z) < 0

(recall that λh(z) is the contraction coefficient along E s
h(z)). This contradiction proves our

claim. Similarly, one can prove that the Lyapunov exponent λu
h(z) in the direction Eu

h (z)
is positive at almost every point z ∈ U .

Since ht is non-uniformly partially hyperbolic on U , by [2, Theorem 8.6.1], we obtain
that its strongly stable and unstable foliations are absolutely continuous.

Next we will show that the flow ht has the accessibility property on U via its invariant
foliations W s

h and W u
h . Indeed, by Proposition 5.1(5), for any n > k, ω = s, u, c, and any

z ∈ Uk ⊂ U ,
6 (Eωhn

(z), Eωhk
(z))≤ δk(1− 1/2n−k) < δk .

Taking the limit as n→∞, we obtain that 6 (Eωh (z), Eωhk
(z))≤ δk on Uk . Hence, by

Proposition 5.1(6), the flow ht has the accessibility property on each Ũk . Since k is
arbitrary, we obtain that the flow ht has the accessibility property on U .
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To show that the flow ht has positive central Lyapunov exponent, we first recall
that the average Lyapunov exponents of the flow gt are arranged as in (4.2). Set c =
L3(gt )− L2(gt ) > 0. By the upper semicontinuity of L i (·), we choose the number δh > 0
in Proposition 5.1 to be so small that L2(ht ) < L2(gt )+ c/2. On the other hand, it follows
from Proposition 5.1(4) that

L4(h
t
n)=

∫
M

det(dht
n|E

uabτ
hn

(z)) dm =
∫

M
det(dgt

|Euabτ
g (z)) dm = L4(g

t ).

Taking the limit as n→∞ we obtain L4(ht )= L4(gt )= L3(gt ). Therefore,

L4(h
t )− L2(h

t )=

∫
M
(λ3(z, ht )+ λ4(z, ht )) dm(z)≥ c/2> 0.

Then there is a subset A⊂ U such that λ3(z, ht )+ λ4(z, ht ) > 0 for all z ∈A, and
thus λ2(z, ht )≥ λ3(z, ht )≥ 1

2 [λ3(z, ht )+ λ4(z, ht )]> 0 for all z ∈A. Since the center
subspace Ec

h(z) is three-dimensional and the flow direction Span{Xh} corresponds to
a zero exponent, we conclude that λ2(z, ht ) and λ3(z, ht ) correspond to vectors in
Ec

h(z)\Span{Xh}. Thus the flow ht has positive central Lyapunov exponents.
By Theorem 2.4, we obtain that ht has positive central exponents at almost every point

in U , and ht
|U is an ergodic flow.

Acknowledgement. J. Chen and Ya. Pesin are partially supported by NSF grant DMS-
1101165.

A. Appendix. The differential and metric structures of the suspension manifold
We specify the differential and metric structure of the suspension manifold N and the five-
dimensional manifold M in §3. Associated to the Anosov automorphism A of X = T2,
one can find smooth local charts (Ux , φx ) around each x ∈ X such that

φx :Ux → (−u0(x), u0(x))× (−s0(x), s0(x))

satisfies φx (x)= (0, 0) and

φAx ◦ A ◦ φ−1
x (u, s)= (ηu, η−1s),

where u0(x), s0(x) > 0 are sizes of charts depending on x , and η > 1 is the expanding rate
along the unstable direction. In fact, ∂/∂u and ∂/∂s are the unstable and stable directions
of A respectively.

Recall that the suspension manifold N is the quotient space X × R/∼ with the
equivalence relation (x, τ + 1)∼ (Ax, τ ). Let π : X × R→N be the natural projection.
Following [12] there is a natural differential structure on N with atlas (U 1

(x,τ ), φ
1
(x,τ )) for

τ ∈ (−1/4, 3/4) and (U 2
(x,τ ), φ

2
(x,τ )) for τ ∈ (1/4, 5/4), where

U 1
(x,τ ) = π(Ux × (−1/4, 3/4)), φ1

(x,τ )(π(φ
−1
x (u, s), τ ))= (u, s, τ ),

U 2
(x,τ ) = π(Ux × (1/4, 5/4)), φ2

(x,τ )(π(φ
−1
x (u, s), τ ))= (u, s, τ ).
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It is easy to verify that

φi
(x ′,τ ′) ◦ φ

i
(x,τ )(π(φ

−1
x (u, s), τ ))= (φx ′ ◦ φ

−1
x (u, s), τ ), i = 1, 2,

φ1
(x ′,τ ′) ◦ φ

2
(x,τ )(π(φ

−1
x (u, s), τ ))= (φAx ′ ◦ A ◦ φ−1

x (u, s), τ − 1).

In particular,

φ1
(x,τ ′) ◦ φ

2
(x,τ )(π(φ

−1
x (u, s), τ ))= (ηu, η−1s, τ − 1). (A.1)

There are three subbundles Eu , E s and Eτ on N generated by independent vector fields
dπ(∂/∂u), dπ(∂/∂s) and dπ(∂/∂τ) respectively. By [3], we can choose the Riemannian
metric on N which has the local representation η2τ du2

+ η−2τds2
+ dτ 2. Under this

metric, the suspension flow St
:N →N satisfies

‖d Stv‖ = ηt
‖v‖, v ∈ Eu,

‖d Stv‖ = η−t
‖v‖, v ∈ E s,

‖d Stv‖ = ‖v‖, v ∈ Eτ .

For the 2-torus Y = T2, we choose the local coordinate (a, b) centered at each y ∈ Y .
Given z = (x, τ, y) ∈M=N × Y , we can hence choose a local coordinate system
(u, s, τ, a, b) endowed with the product Riemannian metric η2τ du2

+ η−2τds2
+ dτ 2

+

da2
+ db2. In particular, the metric on the cross-section X × {0} × Y is given by the flat

metric

du2
+ ds2

+ da2
+ db2. (A.2)

B. Appendix. Partial hyperbolicity of the limit flow
Let M be a compact smooth Riemannian manifold and S ⊂M an open subset. Let also
H t be the flow on M that is pointwise partially hyperbolic on S . Further, let Un ⊂ S ,
n ≥ 1 be a sequence of open subsets such that the following hold.
(1) Un ⊂ Un ⊂ Un+1 and

⋃
Un = S .

(2) Each Un is H t -invariant.
(3) H t

|Un is uniformly partially hyperbolic.
The goal of this appendix is to prove the following statement.

THEOREM B.1. There exists a sequence of positive numbers εn such that if smooth vector
fields Xn on M satisfy

X0 = X H , Xn = Xn−1 on M\Un

and

‖Xn − Xn−1‖C1 ≤ εn,

then for every n ≥ 1 the corresponding flow ht
n is uniformly partially hyperbolic on the

invariant set Un and hence pointwise partially hyperbolic on S . Moreover, the limit vector
field X = limn→∞ Xn is of class C1 and generates a pointwise partially hyperbolic flow
ht on S .
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We need the following technical statements.

LEMMA B.2. Given a sequence of positive numbers {an}n≥1 satisfying
∑
∞

n=1 an ≤
1
4 , we

have
∞∏

n=1

(1+ an)≤ 1+ 2
∞∑

n=1

an,

∞∏
n=1

(1− an)≥ 1− 2
∞∑

n=1

an .

LEMMA B.3. (Gronwall’s inequality) Let η(t) be a non-negative C1 function on [0, T ]
satisfying

η′(t)≤ φ(t)η(t)+ ψ(t),

where φ(t) and ψ(t) are non-negative integrable functions. Then, for all 0≤ t ≤ T ,

η(t)≤ e
∫ t

0 φ(s) ds
[
η(0)+

∫ t

0
ψ(s) ds

]
.

LEMMA B.4. Set K := 2‖X H‖C1 . If εn < K/2n+1, then ‖Xn‖C1 ≤ K for all n ≥ 0.
Moreover, given a flow F t with ‖X F‖C1 ≤ K , we have for any x ∈M and t ∈ R+

e−t K
≤ m(dx F t )≤ ‖dx F t

‖ ≤ et K .

In particular,
e−K
≤ min

0≤t≤1
m(dx F t )≤ max

0≤t≤1
‖dx F t

‖ ≤ eK .

Proof. Since ‖X H‖C1 = K/2, we find that

‖Xn − X H‖C1 ≤

n∑
k=1

‖Xk − Xk−1‖C1 ≤

n∑
k=1

εk < K/2.

This implies that ‖Xn‖C1 ≤ K .
Let F t be a flow and X F the corresponding vector field. Consider the variational

differential equation
d

dt
dx F t

= DX F (F
t (x))dx F t,

for any x ∈M and t ∈ R+. Then

d

dt
‖dx F t

‖ ≤

∥∥∥∥ d

dt
dx F t

∥∥∥∥≤ ‖DX F‖‖dx F t
‖ ≤ K‖dx F t

‖.

Since ‖dx F0
‖ = 1, by Lemma B.3, we obtain that ‖dx F t

‖ ≤ et K . Noting that m(dx F t )=

‖dx F−t
‖
−1 and the flow F−t corresponds to the vector field−X F , we get that m(dx F t )≥

e−t K . 2

Let F t and G t be flows on M, and X F and XG the corresponding vector fields. Assume
that ‖X F‖C1 , ‖XG‖C1 ≤ K , where K is given in Lemma B.4.

LEMMA B.5. Set

M := e3K
‖X F‖C2 + e2K , εF,G := ‖XG − X F‖C1 .

Then for t ∈ [0, 1],
ρC1(G t, F t )≤ 2t MεF,G , (B.1)

where ρC1(G t, F t )=maxx∈M(dist(G t (x), F t (x))+ ‖dx F t
− dx G t

‖) is the distance
between the flows in the C1 topology.
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Proof. Consider the family of flows F t (τ ) generated by the family of vector fields
(1− τ)X F + τXG with τ ∈ [0, 1]. Given x ∈M and t ∈ [0, 1], the curve ct = cx

t : τ 7→

F t (τ )(x) is of length

L(ct )=

∫ 1

0

∥∥∥∥∂ct

∂τ

∥∥∥∥ dτ =
∫ 1

0

∥∥∥∥ ∂∂τ F t (τ )(x)

∥∥∥∥ dτ,

and hence

d

dt
L(ct ) ≤

∫ 1

0

∥∥∥∥ ∂∂τ d

dt
F t (τ )(x)

∥∥∥∥ dτ

≤ ‖XG − X F‖ + [(1− τ)‖DX F‖ + τ‖DXG‖]

∫ 1

0

∥∥∥∥∂ct

∂τ

∥∥∥∥ dτ

≤ εF,G + K L(ct ).

Recall that L(c0)= 0, ct (0)= F t x and ct (1)= G t x . By Lemma B.3, we obtain

dist(F t x, G t x)≤ L(ct )≤ tet K εF,G ≤ t MεF,G . (B.2)

On the other hand,

d

dt
‖dx F t

− dx G t
‖ ≤ ‖DX F (F

t x)dx F t
− DXG(G

t x)dx G t
‖

≤ ‖DX F (F
t x)dx F t

− DX F (F
t x)dx G t

‖

+ ‖DX F (F
t x)dx G t

− DX F (G
t x)dx G t

‖

+ ‖DX F (G
t x)dx G t

− DXG(G
t x)dx G t

‖

≤ ‖DX F‖‖dx F t
− dx G t

‖

+ ‖D2 X F‖dist(F t x, G t x)‖dx G t
‖

+ ‖DX F − DXG‖‖dx G t
‖

≤ K‖dx F t
− dx G t

‖ + Me−K εF,G ,

where in the last inequality we use Lemma B.4 and the inequalities (B.2). By Lemma B.3,
we obtain

‖dx F t
− dx G t

‖ ≤ t Me(t−1)K εF,G ≤ t MεF,G . (B.3)

Now (B.1) follows by combining (B.2) and (B.3). 2

Given flows F t and G t and invariant distributions EF and EG on S respectively, let

1F t,Gt,EF ,EG (x)=max
{∣∣∣∣‖dx G t

|EG(x)‖

‖dx F t |EF (x)‖
− 1

∣∣∣∣, ∣∣∣∣m(dx G t
|EG(x))

m(dx F t |EF (x))
− 1

∣∣∣∣},
δF t,Gt =‖G t

− F t
‖C1 , θEF ,EG (x)= 6 (EF (x), EG(x)).

(B.4)

LEMMA B.6. Assume that ‖X F‖C1 ≤ K . Then

1F t,Gt,EF ,EG (x)≤ eK
[δF t,Gt + CeK θEF ,EG (x)]

for any x ∈ S and t ∈ [0, 1], where C > 0 is a constant which depends only on the
Riemannian metric of M.
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Proof. Similarly to the proof of Lemma B.4, we can show that if ‖X F‖C1 ≤ K then for
any x ∈ S and t ∈ [0, 1],

e−K
≤ m(dx F t )≤ ‖dx F t

‖ ≤ eK .

We have that

|‖dx G t
|EG(x)‖ − ‖dx F t

|EF (x)‖|

≤ |‖dx G t
|EG(x)‖ − ‖dx F t

|EG(x)‖| + |‖dx F t
|EG(x)‖ − ‖dx F t

|EF (x)‖|

≤ ‖dx G t
− dx F t

‖ + ‖dx F t
‖dist(EG(x), EF (x))

≤ ‖dx G t
− dx F t

‖ + C‖dx F t
‖6 (EG(x), EF (x))

for some constant C > 0 depending only on the Riemannian metric of M. Dividing both
sides of the inequality by ‖dx F t

|EF (x)‖ and noting that ‖dx F t
|EF (x)‖ ≥ m(dx F t ), we

obtain that∣∣∣∣‖dx G t
|EG(x)‖

‖dx F t |EF (x)‖
− 1

∣∣∣∣ ≤ 1
m(dx F t )

[‖dx G t
− dx F t

‖ + C‖dx F t
‖6 (EG(x), EF (x))]

≤ eK
[δF t,Gt + CeK θEF ,EG (x)].

Similarly, one can show that |(m(dx G t
|EG(x))/m(dx F t

|EF (x)))− 1| admits the same
upper bound. 2

LEMMA B.7. A flow F t is uniformly partially hyperbolic on a compact invariant subset
3⊂ S if and only if the time-1 map F1

|3 is uniformly partially hyperbolic.

Proof. See [9]. 2

LEMMA B.8. Suppose that F t is uniformly partially hyperbolic on a compact invariant
subset 3⊂ S . Pick numbers 0< λ < λ̃≤ 1≤ µ̃ < µ such that

λ≥ λ(F1, 3)= sup
x∈3
‖ds

x F1
‖, λ̃≤ λ̃(F1, 3)= inf

x∈3
m(dc

x F1),

µ̃≥ µ̃(F1, 3)= sup
x∈3
‖dc

x F1
‖, µ≤ µ(F1, 3)= inf

x∈3
m(du

x F1),

where dωx F t
= dx F t

|EωF (x), ω = s, c, u. Given1> 0, there is ε = ε(1, λ, λ̃, µ̃, µ) such
that if ‖XG − X F‖C1 < ε and XG = X F on S\3, then G t

|3 is also a uniformly partially
hyperbolic flow and

1ωF t,Gt (x) :=1F t,Gt,EωF ,E
ω
G
(x)≤1t, ω = s, c, u, x ∈3, t ∈ [0.5, 1]. (B.5)

In particular,

1−1≤
λ(G1, 3)

λ(F1, 3)
,

λ̃(G1, 3)

λ̃(F1, 3)
,

µ̃(G1, 3)

µ̃(F1, 3)
,

µ(G1, 3)

µ(F1, 3)
≤ 1+1. (B.6)

Proof. Consider the time-1 map F1. By [13], there is ε < 1e−K /4M depending on
1, λ, λ̃, µ̃, µ such that if ‖XG − X F‖C1 < ε and XG = X F on S\3, then G1

|3 is
uniformly partially hyperbolic on 3 with

sup
x∈3

6 (EωG1(x), EωF1(x)) <
1

4Ce2K
. (B.7)
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By Lemma B.7, the flow G t is uniformly partially hyperbolic on3 with the same invariant
distributions as its time-1 map G1. Moreover, it follows from Lemmas B.5 and B.6 that

1F t,Gt,EωF ,E
ω
G
(x)≤

1t

2
+
1

4
≤1t, ω = s, c, u, x ∈3, t ∈ [0.5, 1].

In particular,
‖ds

x G1
‖ ≤ ‖ds

x F1
‖(1+1)≤ λ(1+1),

and hence λ(G1, 3)/λ(F1, 3)≤ 1+1. The other inequalities in (B.6) can be shown in
a similar fashion. 2

We will now specify how to choose the sequence of numbers εn in the theorem. First
choose four sequences of numbers 0< λn < λ̃n ≤ 1≤ µ̃n < µn such that the following
hold.
(1) λn ≥ λ(H1, Un), λ̃n ≤ λ̃(H1, Un), µ̃n ≥ µ̃(H1, Un), and µn ≤ µ(H1, Un).
(2) λn, µ̃n are strictly increasing while λ̃n, µn are strictly decreasing.
For all x ∈ S , let

γ (x)=min
{

min{1, m(dc
x H1)}

‖ds
x H1‖

,
m(du

x H1)

max{1, ‖dc
x H1‖}

}
,

and choose a strictly decreasing sequence of numbers γn such that

0< γn ≤ inf
x∈Un

γ (x)− 1
8

. (B.8)

Now choose a sequence of positive numbers 1n such that

max
{
λ̃n+1

λ̃n
,
µn+1

µn

}
≤ 1−1n < 1+1n ≤min

{
λn+1

λn
,
µ̃n+1

µ̃n

}
, (B.9)

1n <
1

2n+2 ,

∞∑
k=n

1k < γn . (B.10)

Finally, choose

εn <
1
2

min
{

K

2n+1 , ε(1n, λn, λ̃n, µ̃n, µn)

}
,

where ε(1, λ, λ̃, µ̃, µ) is given by Lemma B.8.

Proof of Theorem B.1. First we shall show that for every n > 0 the map ht
n is uniformly

partially hyperbolic on Un . This is clearly true for ht
0 and we will use induction assuming

that ht
k |Uk for k = 1, . . . , n − 1 are uniformly partially hyperbolic. By Lemma B.6, we

obtain that

1−1k ≤
λ(h1

k, Uk)

λ(h1
k−1, Uk)

,
λ̃(h1

k, Uk)

λ̃(h1
k−1, Uk)

,
µ̃(h1

k, Uk)

µ̃(h1
k−1, Uk)

,
µ(h1

k, Uk)

µ(h1
k−1, Uk)

≤ 1+1k .

Note that
λ(h1

k, Uk+1)≤max{λ(H1, Uk+1), λ(h
1
k, Uk)}

≤max{λk+1, λ(h
1
k, Uk)}

≤max{λk+1, λ(h
1
k−1, Uk)(1+1k)}.
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The fact that λ(h1
0, U1)≤ λ1 and the choice of 1n in (B.9) guarantee that

λ′n := λ(h
1
n−1, Un)≤ λn .

Similarly, we have

λ̃′n := λ̃(h
1
n−1, Un)≥ λ̃n, µ̃′n := µ̃(h

1
n−1, Un)≤ µ̃n,

µ′n := µ(h
1
n−1, Un)≥ µn .

It follows that

εn ≤ ε(1n, λn, λ̃n, µ̃n, µn)≤ ε(1n, λ
′
n, λ̃
′
n, µ̃

′
n, µ

′
n).

Since ‖Xn − Xn−1‖C1 ≤ εn , by Lemma B.8, we obtain that ht
n|Un is uniformly partially

hyperbolic.
Next we will show that X = limn→∞ Xn exists and is smooth. In fact, {Xn} is a Cauchy

sequence in the C1 topology since, for any n, m ∈ N,

‖Xn+m − Xn‖C1 ≤

m∑
l=1

‖Xn+l − Xn+l−1‖C1 ≤

m∑
l=1

εn+l ≤
K

2n+1 .

Hence X = limn→∞ Xn exists and is C1.
It remains to show that the flow ht generated by X is pointwise partially hyperbolic on

S . First we construct invariant distributions for ht . Given x ∈ S , we have

6 (Eωhn
(x), Eωhn−1

(x))≤
1n

4Ce2K
<

1

2n+4Ce2K
, ω = s, c, u.

Hence the sequence of subspaces Eωhn
(x) is Cauchy and converges to

Eωh (x)= lim
n→∞

Eωhn
(x),

which is clearly dht -invariant for all t ∈ R+.
Now we would like to estimate 1ω

h1,H1(x). Fixing x ∈ Un\Un−1, we have

1ω
h1

k ,h
1
k−1
(x)

{
= 0, k < n,

≤1k, k ≥ n.

Noting that

‖dωx h1
l ‖

‖dωx H1‖
=

l∏
k=1

‖dωx h1
k‖

‖dωx h1
k−1‖

,
m(dωx h1

l )

m(dωx H1)
=

l∏
k=1

m(dωx h1
k)

m(dωx h1
k−1)

,

and
∑
1k < 1/4, we obtain, by Lemma B.2,

1ω
h1

l ,H
1(x)≤

l∏
k=1

(1+1ω
h1

k ,h
1
k−1
(x))− 1≤

∞∏
k=n

(1+1k)− 1≤ 2
∞∑

k=n

1k .

Letting l→∞, we have

1ωh1,H1(x)≤ 2
∞∑

k=n

1k, ω = s, c, u, x ∈ Un\Un−1.
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Therefore,
‖ds

x h1
‖

min{1, m(dc
x h1)}

≤
1+ 2

∑
∞

k=n 1k

1− 2
∑
∞

k=n 1k

‖ds
x H1
‖

min{1, m(dc
x H1)}

< (1+ 8γn)
‖ds

x H1
‖

min{1, m(dc
x H1)}

≤ γ (x)
‖ds

x H1
‖

min{1, m(dc
x H1)}

< 1.

Similarly, one can show that m(du
x h1) >max{1, ‖dc

x h1
‖}. It follows that h1 is pointwise

partially hyperbolic on S , and so is the flow ht by definition. 2

REFERENCES

[1] K. Burns, D. Dolgopyat and Ya. Pesin. Partial hyperbolicity, Lyapunov exponents and stable ergodicity.
J. Stat. Phys. 108(5–6) (2002), 927–942.

[2] L. Barreira and Ya. Pesin. Nonuniform Hyperbolicity: Dynamics of Systems with Nonzero Lyapunov
Exponents (Encyclopedia of Mathematics and its Applications, 115). Cambridge University Press,
Cambridge, 2007.

[3] A. Bolsinov and I. Taimanov. Integrable geodesic flows with positive topological entropy. Invent. Math.
140(3) (2000), 639–650.

[4] K. Burns and A. Wilkinson. On the ergodicity of partially hyperbolic systems. Ann. of Math. (2) 171
(2010), 451–489.

[5] J. Chen, H. Hu and Ya. Pesin. The essential coexistence phenomenon in dynamics. Dyn. Syst. (2013) to
appear.

[6] D. Dolgopyat, H. Hu and Ya. Pesin. An example of a smooth hyperbolic measure with countably
many ergodic components. Smooth Ergodic Theory and Its Applications (Seattle, 1999) (Proceedings
of Symposia in Pure Mathematics, 69). American Mathematical Society, Providence, RI, 2001.

[7] D. Dolgopyat and Ya. Pesin. Every compact manifold carries a completely hyperbolic diffeomorphism.
Ergod. Th. & Dynam. Sys. 22 (2002), 409–435.

[8] V. Donnay. Geodesic flow on the two-sphere. I. Positive measure entropy. Ergod. Th. & Dynam. Sys. 8(4)
(1988), 531–553.

[9] M. Hirsch, C. Pugh and M. Shub. Invariant Manifolds (Lecture Notes in Mathematics, 583). Springer,
Berlin, 1977.

[10] H. Hu, Ya. Pesin and A. Talitskaya. A volume preserving diffeomorphism with essential coexistence of
zero and nonzero Lyapunov exponents. Comm. Math. Phys. (2012) to appear.

[11] I. Kornfeld, Ya. Sinai and S. Fomin. Ergodic Theory. Springer, New York, 1982.
[12] J. Palis and W. de Melo. Geometric Theory of Dynamical Systems. Springer, New York, 1982.
[13] Ya. Pesin. Lectures on Partial Hyperbolicity and Stable Ergodicity (Zürich Lectures in Advanced
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