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DIMENSION ESTIMATES FOR NON-CONFORMAL
REPELLERS AND CONTINUITY OF SUB-ADDITIVE

TOPOLOGICAL PRESSURE

Yongluo Cao, Yakov Pesin And Yun Zhao

Abstract. Given a non-conformal repeller Λ of a C1+γ map, we study the Hausdorff
dimension of the repeller and continuity of the sub-additive topological pressure for
the sub-additive singular valued potentials. Such a potential always possesses an
equilibrium state. We then use a substantially modified version of Katok’s approxi-
mating argument, to construct a compact invariant set on which the corresponding
dynamical quantities (such as Lyapunov exponents and metric entropy) are close
to that of the equilibrium measure. This allows us to establish continuity of the
sub-additive topological pressure and obtain a sharp lower bound of the Hausdorff
dimension of the repeller. The latter is given by the zero of the super-additive topo-
logical pressure.

1 Introduction

Dimension is an important characteristic of invariant sets and measures of dynam-
ical systems, (see the books [Bar08, Bar11, Fal03, Pes97, PU10] where the role of
dimension in the theory of dynamical systems is well explained). In this regard, differ-
ent versions of dimension have been put forward to characterize various dynamical
phenomena. However, computing these fractal invariants is usually a challenging
problem, because they depend on the microscopic structure of the set.

For repellers of conformal expanding maps Bowen [Bow79] and Ruelle [Rue82]
found that their Hausdorff dimension is a solution of an equation involving topo-
logical pressure. More precisely, if Λ is an isolated compact invariant set of a C1+γ

conformal expanding map f and f |Λ is topologically mixing, then the Hausdorff
dimension of Λ is given by the unique root s of the following equation known as
Bowen’s equation:

P (f |Λ, −s log ‖Dxf‖) = 0, (1.1)
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where P (f |Λ, ·) denotes the topological pressure. Moreover, the equilibrium measure
corresponding to the potential function −s log ‖Dxf‖ has dimension s and hence, is
the measure of maximal dimension.

In this conformal setting, other dimension characteristics such as lower and upper
box dimensions are equal to s and the topological pressure P (f |Λ, − log ‖Dxf‖) is
continuous with respect to f in the C1 topology, hence, so is the Hausdorff dimension.
Furthermore, one can also establish analytic dependence of the Hausdorff dimension
on the maps with some specific classes of invariant sets called dynamically defined
sets, see Ruelle’s work on hyperbolic Julia sets [Rue82], which in turn was inspired
by Bowen’s work on the limits sets for quasi-Fuchsian groups [Bow79]. In the case
of a basic set Λ for an Axiom A diffeomorphism f on a compact surface M , the
dependence of the Hausdorff dimension under small perturbations of f was shown to
be continuous by McCluskey and Manning [MM83] and to be C∞ by Mañé [Man90]
(see also [JL00]). Further, Pollicott [Pol15] showed the analytic dependence of the
Hausdorff dimension of the basic set for real analytic Smale horseshoe maps. See
also [KNP89, VW96, Wol00] for related works.

The case of non-conformal repellers, which we consider in this paper, is drastically
different. In this case the Hausdorff dimension of the repeller may not be equal to its
(lower or upper) box dimension and there may not be any invariant measure of max-
imal dimension (see [DS]). The study of dimension in this case is a substantially more
complicated problem and to approach it different notions of topological pressure have
been introduced, which allow one to obtain some upper bounds on the dimension. In
[Bar96] Barreira proved that formula (1.1) holds in a variety of settings. In [Fal94],
Falconer defined the topological pressure for sub-additive potentials and obtained
the variational principle under the bounded distortion or 1-bunched condition. He
also proved that the zero of the topological pressure of sub-additive singular valued
potentials gives an upper bound of the Hausdorff dimension of repellers. In [Zha97],
Zhang introduced a new version of Bowen’s equation which involves the limit of
a sequence of topological pressures for singular valued potentials, and proved that
the unique solution of this equation is an upper bound of the Hausdorff dimension
of repellers. Finally, in [BCH10], using thermodynamic formalism for sub-additive
potentials developed in [CFH08], the authors showed that the zero of the topologi-
cal pressure of sub-additive singular valued potentials Φf (t) = {−ϕt(·, fn)}n≥1 (see
precise definition in Section 3.1) gives an upper bound of the Hausdorff dimension
of repellers, and furthermore, that the upper bounds obtained in the previous works
[BCH10, Fal94, Zha97] are all equal. We refer the reader to [CP10] and [BG11] for a
detailed description of the recent progress in dimension theory of dynamical systems.

We also note that in the case of iterated function system, the zero of topological
pressure of sub-additive singular valued potentials always gives an upper bound for
the dimension of the set, and sometimes gives the exact value of the dimension,
see [Fac88] and [Sol88] for details. Recently, Feng and Shmerkin [FS14] have proved
that the sub-additive topological pressure of singular valued potentials is continuous
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in the class of generic self-affine maps. Consequently, the dimension of “typical”
self-affine sets is also continuous. This resolves a folklore open problem in fractal
geometry.

The motivation for this paper is two-fold. First, in view of Zhang’s result [Zha97],
it is interesting to know whether there is a lower bound for the Hausdorff dimension
of a non-conformal repeller that can be obtained as the zero of topological pressure.
A natural way to proceed is to replace the sub-additive singular valued potentials
with super-additive ones (see Section 3.1 the definition). However, in doing so one
faces a difficult problem: it is not known whether the corresponding super-additive
topological pressure defined in a usual way via separated sets satisfies the variational
principle for a general topological dynamical system, although it is true for some
special systems, see [BCH10] for details. To overcome this difficulty, we define the
super-additive topological pressure via variational principle (see Section 2.4). This
allows us to obtain a lower bound on the Hausdorff dimension of repellers for a
general C1+γ expanding map, see Theorem 3.1, which to the best of our knowledge,
is the sharpest lower bound currently known.

Second, in view of Feng and Shmerkin’s result [FS14], it is natural to ask whether
the topological pressure of sub-additive singular valued potentials is continuous with
respect to the dynamics f in an appropriate topology. One of our main result shows
that the map f �→ P (f |Λ, Φf (t)) is continuous in the C1 topology within the class
of C1+γ expanding maps f , see Theorem 3.5. Further, we show that the unique root
t(f, Λ) of Bowen’s equation P (f |Λ, Φf (t)) = 0 is exactly the Carathéodory singular
dimension of the repeller (see Section 4 for details). Thus replacing the Hausdorff
dimension of a repeller in the non-conformal setting with its appropriately chosen
Carathéodory singular dimension, one obtains a precise value of the dimension.
Furthermore, our result on continuity of topological pressure thus implies that the
Carathéodory singular dimension also varies continuously with the dynamics, see
Theorem 4.1.

Our main innovation in obtaining a lower bound on the dimension and in es-
tablishing continuity of topological pressure, which distinguishes our approach from
previous ones, is based on some powerful new results in non-uniform hyperbolicity
theory for non-invertible maps. Therefore, we require that f is of class of smoothness
C1+γ . These new results are given by Theorems 5.1 and 5.2 and are of independent
interest in hyperbolicity theory. The first one is in the spirit of Katok’s approxima-
tion argument, see [Kat80] or [KH95, Supplement S.5] but we need a substantially
stronger version of it. Namely, we show that in the setting of expanding maps, given
an invariant ergodic measure μ, there is a compact invariant set K with dominated
splitting whose expansion rates are close to the Lyapunov exponents of μ; moreover,
the topological entropy of f |K is close to the metric entropy of μ (see Theorem 5.1).

Further, a similar result holds for any sufficiently small perturbation g of f : there
is a compact set K invariant under g with dominated splitting whose expansion rates
are close to the Lyapunov exponents of μ; moreover, the topological entropy of g|K



1328 Y. CAO ET AL. GAFA

is close to the metric entropy of μ (see Theorem 5.2). We shall apply these theorems
in the proofs of our two main results: 1) a lower bound for the Hausdorff dimension
of the repeller (see Theorem 3.1 and Section 6.2.2) where we choose μ such that the
corresponding free energy hμ(f) + F∗(Ψf (s), μ) (here F∗(Ψf (s), μ) is the potential
associated with the sequence Ψf (s) of super-additive singular valued potentials, see
Sections 2.4 and 3.1) is sufficiently close to the super-additive topological pressure;
and 2) continuity of sub-additive topological pressure (see Theorem 3.4 and Section
6.6) where we choose μ to be an equilibrium measure for the singular valued sub-
additive potential Φf (t).

Results similar to our Theorem 5.1 were obtained in some particular situations
by 1) Misiurewicz and Szlenk [Mis80] for continuous and piecewise monotone maps
of the interval; 2) Przytycki and Urbański [PU10] for holomorphic maps in the
case of a measure with only positive Lyapunov exponent; 3) Persson and Schmeling
[PS08] for dyadic Diophantine approximations. For C1+γ maps results related to
Katok’s approximation construction (and hence, in some way to our Theorem 5.1)
were obtained by Chung [Chu99], Yang [Yan15], Gelfert [Gel10, Gel16]. See also
[Men85, Men88, Men89, San02, San03, LS13, MS19] that represent works close to
this topic.

For general C1+γ diffeomorphisms (i.e., invertible maps) Theorem 5.1 was shown
by Avila, Crovisier, and Wilkinson in [ACW17]. While their construction of compact
invariant set is based on the shadowing lemma, our approach is more geometrical
and gives the desired compact set via a Cantor-like construction. The advantage of
our approach in the settings of expanding maps is that it allows us to treat the case
of non-invertible maps and also obtain a similar result for small C1 perturbations
thus proving Theorem 5.2.

The paper is organized as follows. In Section 2, we recall various notions of topo-
logical pressure and dimension. In particularly, we define the super-additive topolog-
ical pressure via variational relation and discuss some properties of super-additive
topological pressure. In Section 3 we state our main results on dimension estimates
and continuity of the topological pressure and dimension. In particular, we intro-
duce the super- and sub- additive singular valued potentials and the sub-additive
potential as well as the corresponding pressure functions. We then show that given a
(non-conformal) repeller, the zero of the topological pressure function of the super-
additive singular valued potential gives the lower bound on its Hausdorff dimension
and the zero of the topological pressure function of a sub-additive potential gives
the upper bound on its upper box dimension (under the dominated splitting con-
dition). In Section 4, we introduce the notion of Carathéodory singular dimension
of a repeller and prove that it depends continuously on the map. In Section 5, we
prove our two main technical results discussed above on construction of an invariant
compact subset with dominated splitting and large topological entropy for the map
f and its small perturbations. Section 6 contains the proofs of our main results. In
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the last section 7 we discuss continuity of topological pressure for the case of matrix
cocycles over subshifts of finite type.

2 Notations and Preliminaries

2.1 Dimensions of sets and measures. We recall some notions and basic
facts from dimension theory, see the books [Fal03] and [Pes97] for detailed introduc-
tion.

Let X be a compact metric space equipped with a metric d. Given a subset Z of
X, for s ≥ 0 and δ > 0, define

Hs
δ(Z) := inf

{∑
i

|Ui|s : Z ⊂
⋃
i

Ui, |Ui| ≤ δ

}

where | · | denotes the diameter of a set. The quantity Hs(Z) := lim
δ→0

Hs
δ(Z) is called

the s-dimensional Hausdorff measure of Z. Define the Hausdorff dimension of Z,
denoted by dimH Z, as follows:

dimH Z = inf{s : Hs(Z) = 0} = sup{s : Hs(Z) = ∞}.

Further define the lower and upper box dimensions of Z respectively by

dimBZ = lim inf
δ→0

log N(Z, δ)
− log δ

and dimBZ = lim sup
δ→0

log N(Z, δ)
− log δ

,

where N(Z, δ) denotes the smallest number of balls of radius δ needed to cover the
set Z. Clearly, dimH Z ≤ dimBZ ≤ dimBZ for each subset Z ⊂ X.

If μ is a probability measure on X, then the Hausdorff dimension and the lower
and upper box dimension of μ are defined respectively by

dimH μ = inf
{

dimH Y : Y ⊆ X, μ(Y ) = 1
}

,

dimBμ = lim
δ→0

inf
{

dimBY : Y ⊆ X, μ(Y ) ≥ 1 − δ
}

,

dimBμ = lim
δ→0

inf
{

dimBY : Y ⊆ X, μ(Y ) ≥ 1 − δ
}

.

The following inequalities are immediate dimHμ ≤ dimBμ ≤ dimBμ.
Finally, we define the lower and upper pointwise dimensions of the measure μ at

the point x ∈ X by

dμ(x) = lim inf
r→0

log μ(B(x, r))
log r

and dμ(x) = lim sup
r→0

log μ(B(x, r))
log r

, (2.1)

where B(x, r) = {y ∈ X : d(x, y) < r}.
In particular, if there exists a number s such that

lim
r→0

log μ(B(x, r))
log r

= s

for μ-almost every x ∈ X, then dimH μ = s, see [You82].
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2.2 Repellers for expanding maps. Let f : M → M be a smooth map of
a m0-dimensional compact smooth Riemannian manifold M and let Λ := Λf be a
compact f -invariant subset of M . We call Λ a repeller for f and f expanding if

(1) there exists an open neighborhood U of Λ such that Λ = {x ∈ U : fn(x) ∈
U, for all n ≥ 0};

(2) there is κ > 1 such that

‖Dxfv‖ ≥ κ‖v‖, for all x ∈ Λ, and v ∈ TxM,

where ‖ · ‖ is the norm induced by the Riemannian metric on M .

2.3 Markov partitions and Gibbs measures. Let Λ be a repeller of a C1

expanding map f . Assume that f |Λ is topologically transitive. Then there exists a
partition {P1, . . . , Pk} of Λ which satisfies

(1) Pi �= ∅ and int (Pi) = Pi;
(2) int (Pi) ∩ int (Pj) = ∅ if i �= j;
(3) for each i the set f(Pi) is the union of some of the sets Pj from the partition.

Here int(·) denotes the interior of a set relative to Λ. Such a partition is called
Markov (see [PU10, Theorem 3.5.2] for proofs). A repeller admits a Markov partition
into subsets of arbitrary small diameter, and in particular, we may assume that the
restriction of f on each Pi is injective.

Given a Markov partition {P1, . . . , Pk}, a sequence i = (i0i1 . . . in−1) where 1 ≤
ij ≤ k is called admissible, if f(Pij

) ⊃ Pij+1 for j = 0, 1, . . . , n − 2; and we write
|i| = n for the length of the sequence i. If i = (i0i1 . . . in−1) is an admissible sequence,
we define the cylinder

Pi0i1...in−1 =
n−1⋂
j=0

f−j(Pij
). (2.2)

Denote by Sn the collection of all admissible sequences of length n.
We call a (not necessarily invariant) Borel probability measure μ on Λ a Gibbs

measure for a continuous function ϕ on Λ if there exists C > 0 such that for every
n ∈ N, every admissible sequence (i0i1 . . . in−1), and x ∈ Pi0i1...in−1 we have

C−1 ≤ μ(Pi0i1...in−1)
exp[−nP + Snϕ(x)]

≤ C,

where P is a constant and Snϕ(x) =
∑n−1

j=0 ϕ(f j(x)).

2.4 Sub-additive and super-additive topological pressures. See [Bar06]
and [FH10, FH16] for more details. Consider a continuous transformation f : X → X
of a compact metric space X equipped with metric d. Denote by M(X, f) and
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Me(X, f) the set of all f -invariant and respectively, ergodic Borel probability mea-
sures on X. A sequence of continuous functions (potentials) Φ = {ϕn}n≥1 is called
sub-additive, if

ϕm+n ≤ ϕn + ϕm ◦ fn, for all m, n ≥ 1.

Similarly, we call a sequence of continuous functions (potentials) Ψ = {ψn}n≥1

super-additive if −Ψ = {−ψn}n≥1 is sub-additive.
For x, y ∈ X and n ≥ 0 define the dn-metric on X by

dn(x, y) = max{d(f i(x), f i(y)) : 0 ≤ i < n}.

Given ε > 0 and n ≥ 0, denote by Bn(x, ε) = {y ∈ X : dn(x, y) < ε} Bowen’s ball
centered at x of radius ε and length n and we call a subset E ⊂ X (n, ε)-separated
if dn(x, y) > ε for any two distinct points x, y ∈ E.

Given a sub-additive sequence of continuous potentials Φ = {ϕn}n≥1, let

Pn(Φ, ε) = sup

{∑
x∈E

eϕn(x) : E is an (n, ε) − separated subset of X

}
.

The quantity

P (f, Φ) = lim
ε→0

lim sup
n→∞

1
n

log Pn(Φ, ε) (2.3)

is called the sub-additive topological pressure of Φ. One can show (see [CFH08]) that
it satisfies the following variational principle:

P (f, Φ) = sup
{

hμ(f) + F∗(Φ, μ) : μ ∈ M(X, f), F∗(Φ, μ) �= −∞
}

, (2.4)

where hμ(f) is the metric entropy of f with respect to μ and

F∗(Φ, μ) = lim
n→∞

1
n

∫
ϕndμ. (2.5)

Existence of the above limit can be shown by the standard sub-additive argument.
Given a super-additive sequence of continuous potentials Ψ = {ψn}n≥1, we define

the super-additive topological pressure of Ψ by

Pvar(f, Ψ) := sup
{

hμ(f) + F∗(Ψ, μ) : μ ∈ M(X, f)
}

. (2.6)

Note that for any super-additive sequence of continuous potentials and any f -
invariant measure μ we have

F∗(Ψ, μ) = lim
n→∞

1
n

∫
ψn dμ = sup

1
n

∫
ψn dμ.

Similarly to the definition of the sub-additive topological pressure one can define the
notion of super-additive topological pressure P (f, Ψ) using (n, ε)-separated sets.
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Remark 2.1. It is natural to ask whether the variational principle for P (f, Ψ) holds,
i.e.,

P (f, Ψ) = sup
{

hμ(f) + F∗(Ψ, μ) : μ ∈ M(X, f)
}

.

Given a continuous function ϕ, set ϕn =
∑n−1

i=0 ϕ ◦ f i. The above definitions of
sub/super-additive topological pressures recover the standard notion of topological
pressure of a single continuous potential (see [Wal82] for details), which we denote
by P (f, ϕ). The following result establishes some useful relations between the three
notions of the pressure.

Proposition 2.1. Let Ψ = {ψn}n≥1 be a super-additive sequence of continuous
potentials on X. Then

Pvar(f, Ψ) = lim
n→∞ P

(
f,

ψn

n

)
= lim

n→∞
1
n

P (fn, ψn).

Remark 2.2. The same results hold for sub-additive topological pressure if the
entropy map is upper semi-continuous, see [BCH10]. However, we do not need this
condition in the case of super-additive topological pressure defined by variational
relation.

3 Main Results: Bounds on Dimensions and Continuity
of Pressure

Unless otherwise stated, throughout this section we assume that f : M → M is a
C1+γ expanding map of a m0-dimensional compact smooth Riemannian manifold
M , and Λ is a repeller of f such that f |Λ is topologically transitive. In this section we
establish a lower bound for the Hausdorff dimension as well as an upper bound for
the upper box dimension of Λ by using super-additive and sub-additive topological
pressures respectively. We also prove the continuity of the sub-additive topological
pressure of sub-additive singular valued potentials.

3.1 Singular valued potentials. Let S and S′ be two real linear spaces of the
same dimension, each endowed with an inner product, and let L : S → S′ be a linear
map. The singular values of L are the square roots of the eigenvalues of L∗L.

Given x ∈ Λ and n ≥ 1, consider the differentiable operator Dxfn : TxM →
Tfn(x)M and denote the singular values of Dxfn in the decreasing order by

α1(x, fn) ≥ α2(x, fn) ≥ · · · ≥ αm0(x, fn). (3.1)

For s ∈ [0, m0], set

ψs(x, fn) :=
[s]∑
i=1

log αi(x, fn) + (s − [s]) log α[s]+1(x, fn) (3.2)
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and

ϕt(x, fn) :=
m0∑

i=m0−[t]+1

log αi(x, fn) + (t − [t]) log αm0−[t](x, fn) (3.3)

for t ∈ [0, m0]. Since f is smooth, the functions x �→ αi(x, fn), x �→ ψs(x, fn) and
x �→ ϕt(x, fn) are continuous. It is easy to see that for all n, � ∈ N

ψs(x, fn+�) ≤ ψs(x, fn) + ψs(fn(x), f �),

ϕt(x, fn+�) ≥ ϕt(x, fn) + ϕt(fn(x), f �).

It follows that the sequences of functions

Ψf (s) := {−ψs(·, fn)}n≥1 and Φf (t) := {−ϕt(·, fn)}n≥1 (3.4)

are respectively, super-additive and sub-additive. We call them respectively super-
additive and sub-additive singular valued potentials.

We consider the super-additive and respectively sub-additive pressure functions
given by

Psup(s) := Pvar(f |Λ, Ψf (s)) and Psub(t) := P (f |Λ, Φf (t)), (3.5)

where Pvar(f, Ψf (s)) is the super-additive topological pressure of the potential Ψf (s)
and P (f, Φf (t)) is the sub-additive topological pressure of the potential Φf (t). It
is obvious from the definition of super-and sub-additive topological pressures that
Psup(s) and Psub(t) are continuous and strictly decreasing in s, respectively, in t.

3.2 Lower bound for the Hausdorff dimension of repellers. For repellers
of C1 expanding maps the following result from [BCH10] provides an upper bound
for the Hausdorff dimension of the repeller.

Proposition 3.1. Let Λ be a repeller for a C1 expanding map f . Then the zero of
the sub-additive pressure function Psub(t) gives an upper bound for the Hausdorff
dimension of Λ.

In view of this result it is natural to ask whether
Given a C1 expanding map f of an m0-dimensional compact smooth Riemannian

manifold M with a repeller Λ, is it true that dimH Λ ≥ s∗, where s∗ is the unique
root of the equation Psup(s) = 0?

We give here an affirmative answer to this question assuming that f is C1+γ for
some γ > 0. The reason we need higher regularity of the map is that we will utilize
some results from non-uniform hyperbolicity theory.

Theorem 3.1. Let Λ be a repeller for a C1+γ expanding map f : M → M . Then

dimH Λ ≥ s∗,

where s∗ is the unique root of the equation Psup(s) = 0.
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As an immediate corollary of this theorem we obtain the following result that
gives lower bound for the Hausdorff dimension of the repeller as the zero of the
topological pressure of the potential −ψs(·, f), given by (3.2).

Corollary 3.1. Let Λ be a repeller for a C1+γ expanding map f : M → M . Then
dimH Λ ≥ s1 where s1 is the unique root of the equation P (f,−ψs(·, f)) = 0.

3.3 Upper bound for the box dimension of repellers. Let Λ be a repeller
for a C1+γ expanding map. We assume that f admits a a dominated splitting TxM =
E1 ⊕ E2 ⊕ · · · ⊕ Ek with E1 � E2 � · · · � Ek (see Section 5 for the definition). We
introduce a sub-additive potential Φ̃f (t) := {−ϕ̃t(·, fn)}n≥1 associated with the
splitting as follows.

For each i ∈ {1, 2, . . . , k} let dim Ei = mi and let also �d = mk + · · · + mk−d+1

for d = 1, 2, . . . , k and �0 = 0. For t ∈ [0, m0] and n ≥ 1, define

ϕ̃t(x, fn) :=
k∑

j=k−d+1

mj log m(Dxfn|Ej
) + (t − �d) log m(Dxfn|Ek−d

)

if �d ≤ t ≤ �d+1 for some d ∈ {0, 1, . . . , k − 1}, where m(·) denotes the minimum
norm of an operator. It is easy to see that the potential Φ̃f (t) := {−ϕ̃t(·, fn)}n≥1 is
sub-additive and that the corresponding pressure function P̃sub(t) := P (f |Λ, Φ̃f (t))
is continuous and strictly decreasing in t.

Theorem 3.2. Let Λ be a repeller for a C1+γ expanding map admitting a dominated
splitting TΛM = E1 ⊕ E2 ⊕ · · · ⊕ Ek with E1 � E2 � · · · � Ek. Then

dimBΛ ≤ t∗,

where t∗ is the unique root of the equation P̃sub(t) = 0.

3.4 Continuity of sub-additive topological pressure. Let f : M → M be
a C1+γ map of an m0-dimensional compact smooth Riemannian manifold M with
metric d, which admits a repeller Λf . Let ‖ · ‖ be the norm on the tangent space
TM that is induced by the Riemannian metric on M .

Let h be a C1 map that is sufficiently C1 close to f . It is well known that h
admits a repeller Λh such that (Λf , f) and (Λh, h) are topologically conjugate that
is there is a homeomorphism π : Λf → Λh which is close to the identity map and
which commutes f and h, i.e., π ◦ f = h ◦ π. Recall that Φh(t) is the sub-additive
singular valued potential for h for each 0 ≤ t ≤ m0 (see (3.4)).

Our first result establishes upper semi-continuity of sub-additive topological pres-
sure of singular valued potential with respect to small C1 perturbations. We stress
that our result only requires f to be of class C1.

Theorem 3.3. Let f : M → M be a C1 expanding map of an m0-dimensional
compact smooth Riemannian manifold M , and Λf a repeller for f . Then for each
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0 ≤ t ≤ m0 the map f �→ P (f |Λf
, Φf (t)) is upper semi-continuous, i.e., for every

ε > 0 there is a δ > 0 such that

P (h|Λh
, Φh(t)) ≤ P (f |Λf

, Φf (t)) + ε

for every C1 map h : M → M with ‖f − h‖C1 < δ.

We now establish lower semi-continuity of sub-additive topological pressure of singu-
lar valued potential. Note that for this result we require f and its small perturbations
to be of class C1+γ for some γ > 0.

Theorem 3.4. Let f : M → M be a C1+γ expanding map of an m0-dimensional
compact smooth Riemannian manifold M , and Λf a repeller for f . Then for each
0 ≤ t ≤ m0 the map f �→ P (f |Λf

, Φf (t)) is lower semi-continuous, i.e., for every
ε > 0 there is a δ > 0 such that

P (h|Λh
, Φh(t)) ≥ P (f |Λf

, Φf (t)) − ε

for every C1+γ map h : M → M with ‖f − h‖C1 < δ.

Combining Theorems 3.3 and 3.4, we have the following result.

Theorem 3.5. Let f : M → M be a C1+γ expanding map of a m0-dimensional
compact smooth Riemannian manifold M , and Λf a repeller for f . Then for each
0 ≤ t ≤ m0 the map f �→ P (f |Λf

, Φf (t)) is continuous, i.e., for every ε > 0 there is
a δ > 0 such that

P (f |Λf
, Φf (t)) − ε ≤ P (h|Λh

, Φh(t)) ≤ P (f |Λf
, Φf (t)) + ε

for every C1+γ map h : M → M with ‖f − h‖C1 < δ.

4 Carathéodory Singular Dimension.

In this section we discuss an approach to the notion of sub-additive topological
pressure which is more general than the one presented in Section 2.4 and which
is based on the Carathéodory construction described in [Pes97]. This more general
approach allows one to introduce sub-additive topological pressure for arbitrary
subsets of the repeller (not necessarily compact or invariant).

Let Λ be a repeller for an expanding map f and let Φ = {ϕn}n≥1 be a sub-
additive sequence of continuous functions on Λ. Given a subset Z ⊂ Λ and s ∈ R,
let

m(Z, Φ, s, r) := lim
N→∞

inf

{∑
i

exp

(
−sni + sup

y∈Bni
(xi,r)

ϕni
(y)

)}
, (4.1)

where the infimum is taken over all collections {Bni
(xi, r)} of Bowen’s balls with

xi ∈ Λ, ni ≥ N that cover Z. It is easy to show that there is a jump-up value

PZ(f, Φ, r) = inf{s : m(Z, ϕ, s, r) = 0} = sup{s : m(Z, Φ, s, r) = +∞}.
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The quantity

PZ(f, Φ) = lim
r→0

PZ(f, Φ, r) (4.2)

is called the topological pressure of Φ on the subset Z, see [FH16] for the weighted
version of this quantity.

Since the map f is expanding, the entropy map μ �→ hμ(f) is upper semi-
continuous and the topological entropy is finite. This implies that PΛ(f, Φ) =
P (f |Λ, Φ) i.e., the topological pressure on the whole repeller given by (4.2) is the
same as the topological pressure defined by (2.3) (see [CFH08, Proposition 4.4] or
[FH16, Theorem 6.4]).

We consider the case when Φ is the sub-additive singular valued potential, i.e.,
Φ = {−ϕα(·, fn)}n≥1. Let P (α) = P (f |Λ, Φ) and let α0 be the zero of Bowen’s
equation P (α) = 0. For each sufficiently small r > 0, it follows from (4.1) that

m(Z, Φ, P (α0), r) = lim
N→∞

inf

{∑
i

exp

(
sup

y∈Bni
(xi,r)

−ϕα0(y, fni)

)}
,

where the infimum is taken over all collections {Bni
(xi, r)} of Bowen’s balls with

xi ∈ Λ, ni ≥ N that cover Z. This motivates us to introduce the following notion:
for every Z ⊂ Λ let

m(Z, α, r) := lim
N→∞

inf

{∑
i

exp

(
sup

y∈Bni
(xi,r)

−ϕα(y, fni)

)}
,

where the infimum is taken over all collections {Bni
(xi, r)} of Bowen’s balls with

xi ∈ Λ, ni ≥ N that cover Z. It is easy to see that there is a jump-up value

dimC,r(Z) := inf{α : m(Z, α) = 0} = sup{α : m(Z, α) = +∞}, (4.3)

which we call the Carathéodory singular dimension of Z.
We shall show that for Z = Λ the Carathéodory singular dimension of Z is

exactly the zero of Bowen’s equation P (α) = 0 and that it varies continuously with
f .

Theorem 4.1. Let f : M → M be a C1+γ expanding map with repeller Λf .
Assume that f |Λf is topologically transitive. Then

(1) dimC,r Λf = α0 for all sufficiently small r > 0, where α0 is the unique root of
Bowen’s equation P (α) = 0;

(2) if h is a C1+γ map that is C1 close to f , then dimC(Λh) varies continuously
with h.

Remark 4.1. The first statement of Theorem 4.1 shows that the Carathéodory
singular dimension of the repeller Λf is independent of the parameter r for small
values of r > 0. This allows us to use the notation dimC(Λh) for the Carathéodory
singular dimension of the repeller Λh in the second statement.
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5 Approximating Lyapunov Exponents of Expanding Maps

In this section we show that given an ergodic measure μ on a repeller Λ for a C1+γ

expanding map f , its Lyapunov exponents can be well approximated by Lyapunov
exponents on a compact invariant subset which carries sufficiently large topological
entropy. This statement will serve as a main technical tool in proving our main
theorems. We stress that the requirement that the map is of class of smoothness C1+γ

is crucial as it allows us to utilize some powerful results of non-uniform hyperbolicity
theory.

In what follows M is a m0-dimensional compact smooth Riemannian manifold.
We recall the definition of a dominated splitting. Consider a C1+γ diffeomorphism
of a compact smooth manifold M of dimension m0 and let Λ ⊂ M be a compact
invariant set. We say that Λ admits a dominated splitting if there is continuous
invariant splitting TΛM = E ⊕ F and constants C > 0, λ ∈ (0, 1) such that for each
x ∈ Λ, n ∈ N, 0 �= u ∈ E(x), and 0 �= v ∈ F (x)

‖Dxfn(u)‖
‖u‖ ≤ Cλn ‖Dxfn(v)‖

‖v‖ .

We write E � F if F dominates E. Further, given 0 < � ≤ m0, we call a continuous
invariant splitting TΛM = E1 ⊕ · · · ⊕ E� dominated if there are numbers λ1 < λ2 <
· · · < λ�, constants C > 0 and 0 < ε < mini(λi+1 − λi)/100 such that for every
x ∈ Λ, n ∈ N and 1 ≤ j ≤ � and each unit vector u ∈ Ej(x)

C−1 exp(n(λj − ε)) ≤ ‖Dxfn(u)‖ ≤ C exp(n(λj + ε)). (5.1)

In particular, E1 � · · · � E�. We shall also use the term {λj}-dominated when we
want to stress dependence of the numbers {λj}.

Theorem 5.1. Let f be a C1+γ expanding map of M which admits a repeller Λ,
and let μ be an ergodic measure on Λ with hμ(f) > 0. Then for any ε > 0 there
exists an f -invariant compact subset Qε ⊂ Λ such that the following statements
hold:

(1) htop(f |Qε
) ≥ hμ(f) − ε;

(2) there is a {λj(μ)}-dominated splitting TxM = E1⊕E2⊕· · ·⊕E� over Qε where
λ1(μ) < · · · < λ�(μ) are distinct Lyapunov exponents of f with respect to the
measure μ.

Consider a C1+γ map h : M → M that is sufficiently C1 close to f . Then h is ex-
panding, has a repeller Λh, and the maps f |Λf and h|Λh are topologically conjugate.

We shall show that there is a compact invariant subset Qε(h) of Λh of large
topological entropy such that the Lyapunov exponents of μ and of any h-invariant
ergodic measure ν with support in Qε(h) are close.

Theorem 5.2. Let (f, μ) be the same as in Theorem 5.1. Given a sufficiently
small ε > 0, there is δ > 0 such that for any C1+γ map h : M → M that is δ-C1
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close to f there exists a compact invariant subset Qε(h) ⊂ Λh with the following
properties:

(1) htop(h|Qε(h)) ≥ hμ(f) − ε;
(2) there is a {λj(μ)}-dominated splitting TxM = E1 ⊕ E2 ⊕ · · · ⊕ E� over Qε(h)

where λ1(μ) < · · · < λ�(μ) are distinct Lyapunov exponents of f with respect
to the measure μ;

(3) for any h-invariant ergodic measure ν with support in Qε(h) and for each
1 ≤ j ≤ m0, there is k = k(j) such that |λk(μ) − λj(ν)| ≤ ε.

We begin with the proof of Theorem 5.1 and we split it into few steps.

5.1 Preliminaries on Lyapunov exponents. Let
f̂ : (M̂, μ̂) → (M̂, μ̂) denote the inverse limit of f : (M, μ) → (M, μ) where

M̂ := {x̂ := {xn}n∈Z : xn ∈ M and xn = f(xn+1) for all n ∈ Z}.

We also let π0 : M̂ → M be the projection defined by π0({xn}n∈Z) = x0 for any
{xn}n∈Z ∈ M̂ . For each x̂ = {xn} ∈ M̂ we have that f̂(x̂) = {f(xn)}n∈Z, and the
inverse of f̂ is given by f̂−1({xn}) = {yn}, where yn = xn−1. We refer the reader to
[PU10] for more details on inverse limits of non-invertible maps.

Let Λ̂ = {x̂ = {xn} ∈ M̂ : xn ∈ Λ for all n ∈ Z}. It is easy to see that f̂(Λ̂) =
Λ̂, and there exists an f̂ -invariant ergodic measure μ̂ supported on Λ̂ such that
(π0)∗μ̂ = μ. It is standard to check that with respect to the cocycle {Dx0f

n}n≥1, for
μ̂-almost every x̂ = {xn} ∈ Λ̂, the Lyapunov exponents are the same as those for the
system f : (M, μ) → (M, μ). The following result expresses Oseledets’ Multiplicative
Ergodic Theorem for the system f̂ : (M̂, μ̂) → (M̂, μ̂).

Proposition 5.1. There exists a full μ̂-measure Borel set Δ̃ ⊂ Λ̂ such that for every
x̂ = {xn} ∈ Δ̃ there is an invariant splitting of the tangent space Tx0M

Tx0M = E1(x̂) ⊕ E2(x̂) ⊕ · · · ⊕ Ep(x̂)(x̂) (5.2)

and numbers 0 < λ1(x̂)<λ2(x̂)< · · · < λp(x̂)(x̂)<+∞ and mi(x̂) (i = 1, 2, . . . , p(x̂))

such that dim Ei(x̂) = mi(x̂) with
∑p(x̂)

i=1 mi(x̂) = m0 and

lim
n→±∞

1
n

log ‖Tn
0 (x̂)v‖ = λi(x̂)

for each i and for all 0 �= v ∈ Ei(x̂), where

Tn
0 (x̂) =

⎧⎪⎨
⎪⎩

Dx0f
n, if n > 0,

Id, if n = 0,

(Dxn
f−n)−1, if n < 0.

Moreover, for any i �= j ∈ {1, 2, . . . , p(x̂)} the angle between Ei(f̂(x̂)) and Ej(f̂(x̂))
satisfies that

lim
n→±∞

1
n

log ∠(Ei(f̂n(x̂)), Ej(f̂n(x̂))) = 0.
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The splitting (5.2) is called the Oseledets’ splitting. Since μ̂ is ergodic, the numbers
p(x̂), λi(x̂) and mi(x̂) for all i are in fact constants for μ̂-almost every point x̂. Hence,
in the rest of Section 5 we will denote them simply by p, λi and mi respectively.

For each x̂ ∈ Δ̃ there exists a sequence of norms {‖ · ‖x̂,n}+∞
n=−∞ such that the

following statements hold (see [BP13, BP07] for details): for any sufficiently small
ε > 0,

(1) for each 1 ≤ i ≤ p, all n, l ∈ Z and all v ∈ Ei(f̂n(x̂))

elλi−|l|ε‖v‖x̂,n ≤ ‖T l
n(x̂)v‖x̂,n+� ≤ elλi+|�|ε‖v‖x̂,n,

where T l
n(x̂) := T l

0(f̂
n(x̂)) is as in Proposition 5.1;

(2) for all v ∈ Txn
M

1√
m0

‖v‖ ≤ ‖v‖x̂,n ≤ A(x̂, ε)eε |n|
2 ‖v‖,

where A(x̂, ε) satisfies

A(f̂n(x̂), ε) ≤ eε |n|
2 A(x̂, ε)

for all n ∈ Z and x̂ ∈ Δ̃.

In particular, for all v ∈ Ei(x̂) we have

eλi−ε‖v‖x̂,0 ≤ ‖Dx0f(v)‖x̂,1 ≤ eλi+ε‖v‖x̂,0;

e−λi−ε‖v‖x̂,0 ≤ ‖Dx0f
−1(v)‖x̂,−1 ≤ e−λi+ε‖v‖x̂,0.

Given k ≥ 1, consider the regular set

Λk = {x̂ ∈ Δ̃ : A(x̂, ε) ≤ eεk}.

The standard results of non-uniform hyperbolicity theory (see [BP13]) show that
regular sets are nested

Λ1 ⊂ Λ2 ⊂ · · · ⊂ Λk ⊂ Λk+1 ⊂ · · ·
and for every k ≥ 1 one has f̂±1(Λk) ⊂ Λk+1 and μ̂(Λk) → 1 as k → ∞. Hence, for
every δ > 0, there exists K ∈ N such that μ̂(Λk) > 1 − δ for every k ≥ K. We would
like to point out that f is uniformly hyperbolic on each regular set Λk, and hence,
the angle between different Ei(x̂) is uniformly bounded away from zero.

For ε > 0, let R(ε) denote the ball in R
m0 centered at the origin of radius ε. We

now recall some properties of Lyapunov charts {ϕx̂ : x̂ ∈ Λ̂} for f̂ , see [BP13] for
the proofs.

Proposition 5.2. There exists an f̂ -invariant Borel set Λ̂0 ⊂ Λ̂ of full μ̂-measure
such that for any ε > 0 there exist: 1) a Borel function � : Λ̂0 → [1, +∞) satisfying

�(f̂±(x̂)) ≤ eε�(x̂) for all x̂ ∈ Λ̂0; and 2) a collection of embeddings ϕx̂ : R(�(x̂)−1) →
M such that
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(1) ϕx̂(0) = x0 and R
mi(x̂) := (D0ϕx̂)−1(Ei(x̂)) (i = 1, . . . , r) are mutually orthog-

onal in R
m0 ;

(2) For each n ∈ Z, let Hn
x̂ = ϕ−1

f̂n(x̂)
◦ f̂n ◦ ϕx̂ be the connecting map between

the chart at x̂ and the chart at f̂n(x̂). Then for each n ∈ Z, 1 ≤ i ≤ p, and
v ∈ R

mi(x̂) we have

enλi−|n|ε|v| ≤ |D0H
n
x̂ (v)| ≤ enλi+|n|ε|v|,

where | · | is the usual Euclidean norm on R
m0 ;

(3) let Lip(g) denote the Lipschitz constant of the function g, then

Lip(Hx̂ − D0Hx̂) ≤ ε, Lip(H−1
x̂ − D0H

−1
x̂ ) ≤ ε

and

Lip(D0Hx̂) ≤ �(x̂), Lip(D0H
−1
x̂ ) ≤ �(x̂);

(4) For every v, v′ ∈ R(l(x̂)−1), one has

K−1
0 d(ϕx̂(v), ϕx̂(v′)) ≤ |v − v′| ≤ �(x̂)d(ϕx̂(v), ϕx̂(v′))

for some universal constant K0 > 0.

5.2 Extending Oseledets’ splitting. Given x̂ ∈ Λk, we can extend the invari-
ant splitting (5.2) and the Lyapunov metric in the tangent space to a neighborhood

B
(
π0f̂

−i(x̂), (re−2εe−ε(k+i))
1
γ

)
of π0f̂

−i(x̂) for i ≥ 0, where the number r is chosen to satisfy

0 < r ≤ min
{

1
Km0

,
eλ1(eε − 1)

K
√

m0

}
(5.3)

and K is the Hölder constant of the differentiable operator Df . To see this for
every z ∈ B(π0f̂

−i(x̂), (re−2εe−ε(k+i))
1
γ ) and v ∈ TzM we translate the vector v to a

corresponding vector v̄ ∈ T
π0f̂−i(x̂)

M along the geodesic connecting z with π0f̂
−i(x̂)

and we set ‖v‖z = ‖v̄‖x̂,−i. We thus obtain a splitting of the tangent space at z

TzM = E1(z) ⊕ · · · ⊕ Ep(z),

by translating the splitting

T
π0f̂−i(x̂)

M = E1(π0f̂
−i(x̂)) ⊕ · · · ⊕ Ep(π0f̂

−i(x̂))

at the point π0f̂
−i(x̂) along the geodesic connecting z with this point.

Let f−1
x denote the corresponding inverse branch of the map f |B(x,δ) where δ is

chosen such that the map f |B(x,δ) is invertible for each x ∈ Λ. Then we have the
following results.
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Lemma 5.1. Let x̂ ∈ Λk. Assume that for some i ≥ 1 and some r > 0 satisfying
(5.3), the following conditions hold:

(1) y ∈ B(π0f̂
−i(x̂), (re−2εe−ε(k+i))

1
γ );

(2) f(y) ∈ B(π0f̂
−i+1(x̂), (re−2εe−ε(k+i−1))

1
γ ).

Then for every v ∈ Ej(y) (j = 1, . . . , p) we have

eλj−2ε‖v‖y ≤ ‖Dyf(v)‖f(y) ≤ eλj+2ε‖v‖y,

e−λj−2ε‖v‖y ≤ ‖Dyf
−1

π0f̂−i−1(x̂)
(v)‖y∗ ≤ e−λj+2ε‖v‖y,

where y∗ = f−1

π0f̂−i−1(x̂)
(y).

Proof of the lemma. Choose small ε > 0 such that (κ − ε)−1 < e−ε/γ and

d(f(x), f(y)) > (κ − ε)d(x, y)

for every x, y ∈ Λ with d(x, y) < r1/γ . Thus, if y ∈ B(π0f̂
−i(x̂), (re−2εe−ε(k+i))

1
γ )

then

d(f−1

π0f̂−i−1(x̂)
(y), π0f̂

−i−1(x̂)) = d(f−1

π0f̂−i−1(x̂)
(y), f−1

π0f̂−i−1(x̂)
(π0f̂

−i(x̂)))

≤ e−ε/γd(y, π0f̂
−i(x̂))

≤ (re−2εe−ε(k+i+1))
1
γ ,

i.e., f−1

π0f̂−i−1(x̂)
(y) ∈ B(π0f̂

−i−1(x̂), (re−2εe−ε(k+i+1))
1
γ ). For every v ∈ Ej(y),

‖Dyf(v)‖f(y) = ‖Dyf(v)‖x̂,−i+1

≤ ‖D
π0f̂−i(x̂)

f(v)‖x̂,−i+1 + ‖Dyf(v) − D
π0f̂−i(x̂)

f(v)‖x̂,−i+1

≤ ‖D
π0f̂−i(x̂)

f(v)‖x̂,−i+1 + eεkeεi‖Dyf(v) − D
π0f̂−i(x̂)

f(v)‖
≤ eλj+ε‖v‖x̂,−i + eεkeεiK[d(π0f̂

−i(x̂), y)]γ‖v‖
≤ eλj+ε‖v‖y + eεkeεiKre−2εe−ε(k+i)√m0‖v‖y

= (eλj+ε + Kre−2ε√m0)‖v‖y

≤ eλj+2ε‖v‖y

(5.4)

where we use (5.3) in the last inequality. Similarly, one can show that ‖Dyf(v)‖f(y) ≥
eλj−2ε‖v‖y. The second estimate can be proven in a similar fashion. ��

Let x̂ ∈ Λk. Assume that Conditions (1), (2) in Lemma 5.1 hold for some i ≥ 1.
We define two cones as follows:

Vj(∗, ξ) =
{

(v1, v2) : v1 ∈ E1 ⊕ · · · ⊕ Ej , v2 ∈ Ej+1 ⊕ · · · ⊕ Ep, ‖v2‖∗ < ξ‖v1‖∗
}
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and

Uj(∗, ξ) =
{

(w1, w2) : w1 ∈ E1 ⊕ · · · ⊕ Ej , w2 ∈ Ej+1 ⊕ · · · ⊕ Ep, ‖w1‖∗ < ξ‖w2‖∗
}

,

where the point ∗ = {f−1

π0f̂−i−1(x̂)
(y), y, f(y)} and ξ > 0 is a small number. These

cones have the following properties.

Lemma 5.2. Let x̂ ∈ Λk and assume that Conditions (1) and (2) in Lemma 5.1 hold
for some i ≥ 1 and a number r > 0 satisfying (5.3) and the following condition

r <
eλj+1−ε − eλj+ε

4K
. (5.5)

Then the cones defined above are invariant in the following sense: there exist ξ > 0
and 0 < λ < 1 (both depending on r) such that with y∗ = f−1

π0f̂−i−1(x̂)
(y),

Dyf
−1

π0f̂−i−1(x̂)
Vj(y, ξ) ⊂ Vj(y∗, λξ) and DyfUj(y, ξ) ⊂ Uj(f(y), λξ).

Moreover, for every v ∈ Uj(y, ξ),

‖Dyf(v)‖f(y) ≥ e(λj+1−3ε)‖v‖y

and for every v ∈ Vj(y, ξ),

‖Dyf
−1

π0f̂−i−1(x̂)
(v)‖y∗ ≥ e−(λj+3ε)‖v‖y.

Proof of the lemma. Fix a small number ξ > 0 and let

D
π0f̂−i(x̂)

f =

(
C11 0

0 C22

)
and Dyf =

(
D11 D12

D21 D22

)
.

Using the same arguments as in the proof of Lemma 5.1, we obtain that f−1

π0f̂−i−1(x̂)
(y)

∈ B(π0f̂
−i−1(x̂), (re−2εe−ε(k+i+1))

1
γ ). Then using an argument similar to the one in

(5.4), we have that

‖Dyf − D
π0f̂−i(x̂)

f‖f(y) = ‖Dyf − D
π0f̂−i(x̂)

f‖x̂,−i+1

≤ eεkeεi‖Dyf − D
π0f̂−i(x̂)

f‖
≤ eεkeεiK[d(π0f̂

−i(x̂), y)]γ

≤ eεkeεiKre−2εe−ε(k+i)

≤ Kre−2ε.

This yields that

‖C11 − D11‖f(y) ≤ Kr and ‖C22 − D22‖f(y) ≤ Kr,

‖D12‖f(y) ≤ Kr and ‖D21‖f(y) ≤ Kr.



GAFA DIMENSION ESTIMATES FOR NON-CONFORMAL REPELLERS AND CONTINUITY 1343

Therefore, for every v = (v1, v2) ∈ Uj(y, ξ), setting Dyf(v) = (v′
1, v

′
2), we obtain

that

‖v′
1‖f(y) = ‖D11(v1) + D12(v2)‖f(y) ≤ (eλj+ε + Kr)‖v1‖y + Kr‖v2‖y

≤ (ξeλj+ε + (1 + ξ)Kr)‖v2‖y

and

‖v′
2‖f(y) = ‖D21(v1) + D22(v2)‖f(y) ≥ (eλj+1−ε − Kr)‖v2‖y − Kr‖v1‖y

≥ (eλj+1−ε − (1 + ξ)Kr)‖v2‖y.

Thus,

‖v′
1‖f(y) ≤

eλj+ε +
(
1 + 1

ξ

)
Kr

eλj+1−ε − (1 + ξ)Kr
ξ‖v′

2‖f(y) <
eλj+ε +

(
1 + 1

ξ

)
Kr

eλj+1−ε − Kr
ξ‖v′

2‖f(y).

Denote C := eλj+1−ε − eλj+ε and choose N > 0 such that K
N < C

2 . Let ξ = Nr and

λ :=
eλj+ε +

(
1 + 1

ξ

)
Kr

eλj+1−ε − Kr
=

eλj+ε + Kr + K
N

eλj+1−ε − Kr
.

Since by (5.5), 2Kr + K
N < C, we have that 0 < λ < 1. It follows that

‖v′
1‖f(y) < λξ‖v′

2‖f(y)

and hence, DyfUj(y, ξ) ⊂ Uj(f(y), λξ). Moreover,

‖Dyf(v)‖f(y) = ‖(v′
1, v

′
2)‖f(y) := max{‖v′

1‖f(y), ‖v′
2‖f(y)} = ‖v′

2‖f(y)

≥ (eλj+1−ε − (1 + ξ)Kr)‖v2‖y ≥ eλj+1−3ε‖v‖y.

This proves the first inequality and the second one can be proven in a similar
fashion. ��

Given x ∈ Λ and m ∈ N
+, let f−m

x denote the corresponding inverse branch of
the map f |B(fm−1(x),δ) ◦ · · · ◦ f |B(x,δ), where δ is chosen such that the map f |B(x,δ) is
invertible for each x ∈ Λ. The following results can be proved using similar arguments
as in the proof of Lemmas 5.1 and 5.2.

Corollary 5.1. Assume that f̂m(x̂) ∈ Λk for some m ∈ N
+ and π0(x̂) = x. Then

for a sufficiently small number r, y ∈ B(fm(x), (re−2εe−εk)
1
γ ) and v ∈ Ej(y), v′ ∈

Ej(f−m
x (y)) we have that

e−m(λj+2ε)‖v‖y ≤ ‖Dyf
−m
x (v)‖y∗ ≤ e−m(λj−2ε)‖v‖y,

em(λj−2ε)‖v′‖y∗ ≤ ‖Dy∗fm(v′)‖y ≤ em(λj+2ε)‖v′‖y∗ ,

where y∗ = f−m
x (y) ∈ B(x, (re−2εe−ε(k+m))

1
γ ).
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Corollary 5.2. Assume that f̂m(x̂) ∈ Λk for some m ∈ N
+ and π0(x̂) = x. Then

for a sufficiently small number r and any y ∈ B(fm(x), (re−2εe−εk)
1
γ ) there are some

ξ > 0 and 0 < λ < 1 (both depending on r) such that

Dyf
−m
x Vj(y, ξ) ⊂ Vj(y∗, λmξ) ⊂ IntVj(y∗, ξ),

Dy∗fmUj(y∗, ξ) ⊂ Uj(y, λmξ) ⊂ IntUj(y, ξ),

and for each v ∈ Vj(y, ξ), w ∈ Uj(f−m
x (y), ξ) we have

‖Dyf
−m
x (v)‖y∗ ≥ e−m(λj+3ε)‖v‖y, ‖Dy∗fm(w)‖y ≥ em(λj+1−3ε)‖w‖y∗ ,

where y∗ = f−m
x (y) ∈ B(x, (re−2εe−ε(k+m))

1
γ ) and Int(·) denotes the interior of a

set.

Remark 5.1. In Corollary 5.2, since f̂m(x̂) ∈ Λk, we have that for every w ∈
Uj(f−m

x (y), ξ),

eεk‖Dy∗fm(w)‖ ≥ ‖Dy∗fm(w)‖
f̂m(x̂),0

= ‖Dy∗fm(w)‖y

≥ em(λj+1−3ε)‖w‖y∗ ≥ em(λj+1−3ε)‖w‖ 1√
m0

.

This yields that ‖Dy∗fm(w)‖ ≥ em(λj+1−4ε)‖w‖ for all sufficiently large m. Hence,
in Corollary 5.2, for each v ∈ Vj(y, ξ), w ∈ Uj(f−m

x (y), ξ) one has for all sufficiently
large m that

‖Dyf
−m
x (v)‖ ≥ e−m(λj+4ε)‖v‖, ‖Dy∗fm(w)‖ ≥ em(λj+1−4ε)‖w‖.

Similarly, in Corollary 5.1, for every v ∈ Ej(y), v′ ∈ Ej(f−m
x (y)) one can further

have that for all sufficiently large m

e−m(λj+3ε)‖v‖ ≤ ‖Dyf
−m
x (v)‖ ≤ e−m(λj−3ε)‖v‖,

em(λj−3ε)‖v′‖ ≤ ‖Dy∗fm(v′)‖ ≤ em(λj+3ε)‖v′‖.

5.3 Constructing a compact invariant set with dominated splitting.
The aim of this section is to construct a compact invariant subset of Λ on which
the topological entropy of f is close to hμ(f) and the tangent space over this sub-
set admits a dominated splitting with rates given by Lyapunov exponents of μ. To
achieve this we will produce a sufficiently large number of points that have distinct
orbits of certain length.

By the Brin-Katok entropy formula (see [Kat80]), if μ is an f -invariant ergodic
measure, for each δ ∈ (0, 1) we have

hμ(f) = lim
ε̃→0

lim inf
n→∞

1
n

log N(μ, n, ε̃, δ) = lim
ε̃→0

lim sup
n→∞

1
n

log N(μ, n, ε̃, δ),

where N(μ, n, ε̃, δ) denotes the minimal number of Bowen’s balls {Bn(x, ε̃)} that
are needed to cover a set of measure at least 1 − δ. Fix a number δ ∈ (0, 1) and



GAFA DIMENSION ESTIMATES FOR NON-CONFORMAL REPELLERS AND CONTINUITY 1345

a small ε > 0. Then there exists ε̄ > 0 such that for every ε̃ ≤ ε̄ one can find a
number N1 satisfying: given a set A of measure > 1− 2δ and a number n ≥ N1, any
(n, ε̃)-separated set E ⊂ A of maximal cardinality satisfies

Card E ≥ exp(n(hμ(f) − ε)). (5.6)

Let us start by choosing some ε ∈ (0, λ1/3). There is a regular set ΛK1 ⊂ Λ̂f such
that μ̂(ΛK1) > 1 − δ and for every x̂ = {xn} ∈ ΛK1 , y ∈ B(π0(x̂), (re−2εe−εK1)

1
γ ),

and i ≥ 1 we have

‖Dyf
−i
π0(x̂)‖y∗ ≤ e−i(λ1−3ε), (5.7)

where y∗ = f−i
π0(x̂)(y). Set

ρ = (re−2εe−εK1)
1
γ . (5.8)

Consider a cover of π0(ΛK1) by balls B(x1, ρ/4), . . . , B(xj , ρ/4) with centers xi ∈
π0(ΛK1), i = 1, . . . , j.

Let P = {P1, . . . , P�}, � ≥ j, be a finite measurable partition of M such that
P(xi) ⊂ B(xi, ρ/4) for i = 1, 2, . . . , j. Here P(x) denote the element of the partition
P that contains x. Such a partition does exist, for example, we can take the first j
elements of P as follows:

P1 = B(x1, ρ/4), . . . , Pk = B(xk, ρ/4)\
k−1⋃
i=1

Pi for 2 ≤ k ≤ j.

We have the following result.

Lemma 5.3. Given numbers ε > 0 and δ > 0 and a positive measure set ΛK1 as
above, there exist a positive integer N2 = N2(ε, δ) and a compact subset Λ′

2 ⊂ ΛK1

(possibly depending on ε and δ) such that μ̂(Λ′
2) > 1 − 2δ and for every x̂ ∈ Λ′

2 and
n ≥ N2 we have

π0f̂
k(x̂) ∈ P(π0(x̂)) and f̂k(x̂) ∈ ΛK1 for some number k ∈ [n, n + εn).

Proof of the lemma. The partition P = {P1, . . . , P�} of M induces a partition P̂ =
{P̂1, . . . , P̂�} of M̂ given by P̂i = {x̂ : π0(x̂) ∈ Pi}. Let

τ = min
1≤i≤�

{ε, μ̂(ΛK1 ∩ P̂i)/4}. (5.9)

Since μ is ergodic, Birkhoff’s ergodic theorem implies that for each i = 1, . . . , � and
μ̂-almost every x̂ we have

lim
n→∞

1
n

Card
{

k ∈ {0, . . . , n − 1} : f̂k(x̂) ∈ ΛK1 ∩ P̂i

}
= μ̂(ΛK1 ∩ P̂i).
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Using Egorov’s theorem and the regularity of the measure μ, we conclude that there
exists a compact set Λ′

2 of μ̂-measure at least 1−2δ such that the above convergence
is uniform on Λ′

2 for each i = 1, . . . , �.
Hence, for the number τ > 0 given by (5.9), there is a number N2 > 0 such that

for every x̂ ∈ Λ′
2, every n ≥ N2, and all i = 1, . . . , � we have∣∣∣Card

{
k ∈ {0, . . . , n − 1} : f̂k(x̂) ∈ ΛK1 ∩ P̂i

}
− μ̂(ΛK1 ∩ P̂i)n

∣∣∣ ≤ τ2n.

Assume that N2 is chosen large enough that min
1≤i≤�

(μ̂(ΛK1 ∩ P̂i) − 3τ)N2ε > 1. Thus

for every x̂ ∈ Λ′
2, every i = 1, . . . , �, and every n ≥ N2 we have

Card
{

k ∈ {n, . . . , n(1 + ε) − 1} : f̂k(x̂) ∈ ΛK1 ∩ P̂i

}
= Card

{
k ∈ {0, . . . , n(1 + ε) − 1} : f̂k(x̂) ∈ ΛK1 ∩ P̂i

}
− Card

{
k ∈ {0, . . . , n − 1} : f̂k(x̂) ∈ ΛK1 ∩ P̂i

}
≥ μ̂(ΛK1 ∩ P̂i)n(1 + ε) − n(1 + ε)τ2 − μ̂(ΛK1 ∩ P̂i)n − nτ2

= nε(μ̂(ΛK1 ∩ P̂i) − τ2) − 2nτ2

≥ nε(μ̂(ΛK1 ∩ P̂i) − 3τ) > 1.

Clearly, fk(π0(x̂)) ∈ Pi if f̂k(x̂) ∈ P̂i. In particular, this is true for the index i with
Pi = P(π0(x̂)). This concludes the proof of the lemma. ��
Choose n ≥ max{N1, N2} such that

e−n(λ1−3ε)m0 <
1
8

(5.10)

(recall that m0 = dimM) and a maximal (n, ρ)-separated subset E ⊂ π0(Λ′
2). It is

easy to see that
⋃

x∈E Bn(x, ρ) has μ-measure at least 1 − 2δ. We partition the set
E into sets Fk, n ≤ k < n(1 + ε)), defined by

Fk =
{

x ∈ E : min{� ∈ [n, (1 + ε)n) ∩ N : f �(x) ∈ P(x)} = k
}

,

that is, having the same return time k to their partition element. Let m be the index
satisfying

CardFm = max
n≤k<n+εn

CardFk.

Since

Card E =
∑

n≤k<n+εn

CardFk,
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we obtain that (εn)Card Fm ≥ Card E. Observing that εn < eεn, we find using (5.6)
that

CardFm ≥ Card E

εn
≥ en(hμ(f)−2ε).

Choose a point xi such that the corresponding element P(xi) has the property that
Card(Fm ∩ P(xi)) is maximal. We then have

Card(Fm ∩ P(xi)) ≥ 1
j
CardFm ≥ 1

j
en(hμ(f)−2ε).

Recall that exactly after m iterations each point x ∈ Fm ∩ P(xi) returns to P(xi),
and hence to B(xi, ρ/4). Recall also that for each such x there is x̂ ∈ ΛK1 with
π0(x̂) = x so that f̂m(x̂) ∈ ΛK1 . Given x ∈ Fm ∩ P(xi), let

Ux = f−m
x (B(xi, ρ/2)).

Notice that fm(x) ∈ B(xi, ρ/4) ⊂ B(fm(x), ρ/2) and by (5.8),

B(fm(x), ρ/2) ⊂ B(fm(x), (re−2εe−εK1)
1
γ ).

Consequently, by (5.7), for every z ∈ B(xi, ρ/4) we have

‖Dzf
−m
x ‖f−m

x (z) ≤ e−m(λ1−3ε).

Note that ‖ · ‖f−m
x (z) = ‖ · ‖x̂,−m, and by the definition of regular set ΛK1 we have

‖Dzf
−m
x ‖ ≤ e−m(λ1−3ε)m0.

Hence, by (5.10),

diam Ux = diam f−m
x (B(xi, ρ/2)) < e−m(λ1−3ε)m0ρ <

1
8
ρ.

Thus Ux ⊂ B(x, 1
8ρ) and Ux ⊂ B(xi, ρ/2). For every two distinct points x, y ∈

Fm ∩ P(xi), there exists Ux = f−m
x (B(xi, ρ/2)) and Uy = f−m

y (B(xi, ρ/2)) so that

Ux ⊂ B(xi, ρ/2), Uy ⊂ B(xi, ρ/2) and Ux ∩ Uy = ∅.

Otherwise, suppose that there exists z ∈ Ux ∩ Uy. Then

dm(x, z) ≤ ρ/2 and dm(y, z) ≤ ρ/2,

which contradicts to dm(x, y) ≥ dn(x, y) > ρ, since x, y ∈ Fm are (n, ρ)-separated.
For every x, y ∈ Fm∩P(xi), note that f−m

y (Ux) ⊂ Uy. Therefore, we can consider
the following maps

f−m
y (Ux)

fm

−→ Ux
fm

−→ B(fm(x), ρ).
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For every z ∈ Ux, i = 1, . . . , p we have

Dzf
mUi(z, ξ) ⊂ Ui(fm(z), λmξ), Dzf

−m
y Vi(z, ξ) ⊂ Vi(f−m

y (z), λmξ).

Given a point ∗ ∈ Fm ∩ P(xi), consider the map

f−m
∗ : f−m

y (Ux) → f−m
∗ f−m

y (Ux).

By Corollary 5.2, we have for every z ∈ f−m
y (Ux) and every i = 1, . . . , p,

Dzf
mUi(z, ξ) ⊂ Ui(fm(z), λmξ), Dzf

−m
∗ Vi(z, ξ) ⊂ Vi(f−m

∗ (z), λmξ).

Let Rε,0 = B(xi, ρ/2) and for all l ≥ 0,

Rε,l+1 =
⋃

x∈Fm∩P(xi)

f−m
x (Rε,l).

They form a family of nested non-empty compact sets and hence, setting

Rε =
⋂
l≥0

Rε,l,

we obtain a non-empty compact set which is fm-invariant and also f−m
x -invariant

for all x ∈ Fm ∩ P(xi) in the sense that Rε =
⋃

x∈Fm∩P(xi)

f−m
x (Rε). We also have for

every l ≥ 0, every z ∈ Rε,l, i = 1, . . . , p, and every point ∗ ∈ Fm ∩ P(xi),

Dzf
mUi(z, ξ) ⊂ IntUi(fm(z), ξ), Dzf

−m
∗ Vi(z, ξ) ⊂ IntVi(f−m

∗ (z), ξ)

and

‖Dzf
m(v)‖ ≥ em(λi+1−4ε)‖v‖, ‖Dzf

−m
∗ (w)‖ ≥ e−m(λi+4ε)‖w‖

for every v ∈ Ui(z, ξ), w ∈ Vi(z, ξ). Therefore, fm|Rε
is uniformly expanding and it

is topologically conjugate to the one-sided full shift over an alphabet with CardFm∩
P(xi) symbols. This implies htop(fm|Rε

) = log(CardFm ∩ P(xi)). Let Qε = Rε ∪
f(Rε)∪· · ·∪fm−1(Rε). We wish to show that Qε is the desired compact set. Clearly,
Qε is f -invariant, and we have that

htop(f |Qε
) =

1
m

log(CardFm ∩ P(xi)).

Using the fact that (1 + ε)n > m ≥ n, we obtain

htop(f |Qε
) ≥ 1

m
log

1
j

+
n

m
(hμ(f) − 2ε) ≥ hμ(f) − 3ε.

We now show existence of a {λj}-dominated splitting over Qε satisfying (5.1). Let
� = CardFm ∩ P(xi). For every z ∈ Rε there is a unique sequence (y1y2 . . . yn . . . ) ∈
Σ+

� (here Σ+
� is the one sided full shift over � symbols) such that

z =
⋂
n>0

(f−m
y1

◦ f−m
y2

◦ · · · ◦ f−m
yn

(B(xi, ρ/2))).
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Hence, for every v ∈ TzM ,

‖Dzf
−m
y1

(v)‖f−m
y1

(z) ≤ e−m(λ1−3ε)‖v‖z.

Also, by Corollary 5.2 and Remark 5.1 we have that

Dzf
mUi(z, ξ) ⊂ IntUi(fm(z), ξ), Dzf

−m
y1

Vi(z, ξ) ⊂ IntVi(f−m
y1

(z), ξ). (5.11)

and for every v ∈ Ui(z, ξ), w ∈ Vi(z, ξ),

‖Dzf
m(v)‖ ≥ em(λi+1−4ε)‖v‖, ‖Dzf

−m
y1

(z)(w)‖ ≥ e−m(λi+4ε)‖w‖. (5.12)

We shall show that (5.11) and (5.12) imply existence of a continuous splitting on
Rε,

TzM = E1(z) ⊕ E2(z) · · · ⊕ Ep(z),

and for every v ∈ Ei(z),

em(λi−3ε)‖v‖ ≤ ‖Dzf
mv‖ ≤ em(λi+3ε)‖v‖.

To see this note that for every z ∈ Rε, there is a unique sequence (σ1σ2 . . . σn . . . ) ∈
Σ+

� such that

z =
⋂
n>0

(f−m
σ1

◦ f−m
σ2

◦ · · · ◦ f−m
σn

(B(xi, ρ/2))).

Note that f−m
σ1

◦f−m
σ2

◦· · ·◦f−m
σn

(z) ∈ Rε for every n ≥ 1. Since the set Rε is compact
and by construction, the cones Ui(z, ξ) and Vi(z, ξ) depend continuously on the point
z ∈ Rε, existence of invariant subspaces Ei(z) follows from (5.11) and (5.12). Indeed,
using the standard techniques in hyperbolicity theory (see for example, [KH95]), one
can show that

Ei(z) =

⎛
⎝ ∞⋂

�≥0

Df �mUi−1(f−m
σ′

�
◦ · · · ◦ f−m

σ′
1

(z), ξ)

⎞
⎠∩

⎛
⎝ ∞⋂

�≥0

D(f−m
σ1

◦ · · · ◦ f−m
σ�

)Vi(f �m(z), ξ)

⎞
⎠ ,

where σ′
i is defined so that π0f̂

−im(ẑ) ∈ Uσ′
i
= f−m

σ′
i

(B(xi, ρ/2)) and ẑ is chosen such

that ẑ ∈ R̂ε ⊂ Λ̂ with π0(ẑ) = z.

5.4 Constructing compact invariant sets with dominated splitting for
small perturbations. We present a proof of Theorem 5.2. Recall that h is a C1+γ

map which is sufficiently close to f in the C1 topology. Following the construction
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of Rε, we may find a subset Rε(h) of Λh that we will briefly recall. Start with
the same Fm ∩ P(xi) as in the previous section. For every x ∈ Fm ∩ P(xi), let
diamUh

x = diamh−m
x (B(xi, ρ/2)). One has that

diam Uh
x <

1
8
ρ.

Moreover, one has that Uh
x ⊂ B(x, 1

8ρ) and Uh
x ⊂ B(xi, ρ/2). For every two distinct

points x, y ∈ Fm ∩ P(xi) we have that Uh
x ∩ Uh

y = ∅ and h−m
y (Ux) ⊂ Uy. Consider

the following maps

h−m
y (Uh

x ) hm−→ Uh
x

hm−→ B(hm(x), ρ).

For z ∈ Uh
x , i = 1, . . . , p the cones have the following properties:

Dzh
mUi(z, ξ) ⊂ Ui(hm(z), λmξ), Dzh

−m
y Vi(z, ξ) ⊂ Vi(h−m

y (z), λmξ).

Let Rh
ε,0 = B(xi, ρ/2) and for all l ≥ 0,

Rh
ε,l+1 =

⋃
x∈Fm∩P(xi)

h−m
x (Rh

ε,l).

These sets form a family of nested non-empty compact sets, yielding a non-empty
compact set

Rε(h) =
⋂
l≥0

Rh
ε,l

which is hm-invariant and also h−m
x -invariant for all x ∈ Fm ∩ P(xi). Note that

hm|Rε(h) and fm|Rε
are topologically conjugate, since both of them are topologically

conjugate to the full shift over � symbols with � = CardFm ∩ P(xi). We also have
for every z ∈ Rε(h), there is a unique sequence (σ1σ2 . . . σn . . . ) ∈ Σ+

� such that

z =
⋂
n>0

h−m
σ1

◦ h−m
σ2

◦ · · · ◦ h−m
σn

(B(xi, ρ/2))

and for every i = 1, 2, . . . , p one has

Dzh
mUi(z, ξ) ⊂ IntUi(hm(z), ξ), Dzh

−m
σ1

Vi(z, ξ) ⊂ IntVi(h−m
σ1

(z), ξ) (5.13)

and

‖Dzh
m(v)‖ ≥ em(λi+1−5ε)‖v‖, ‖Dzh

−m
σ1

(w)‖ ≥ e−m(λi+5ε)‖w‖ (5.14)

for every v ∈ Ui(z, ξ), w ∈ Vi(z, ξ). Hence, hm|Rε(h) is uniformly expanding, and the
set

Qε(h) = Rε(h) ∪ h(Rε(h)) ∪ · · · ∪ hm−1(Rε(h))
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is h-invariant. In addition, we have that

htop(h|Qε(h)) = htop(f |Qε(f)) ≥ hμ(f) − 3ε

and the first statement of the theorem follows. To prove the second statement,
observe that by (5.13) and (5.14), using the standard cone technique in [KH95], one
can show that there exists a continuous splitting on Rε(h)

TzM = E1(z) ⊕ E2(z) · · · ⊕ Ep(z)

so that for every v ∈ Ei(z),

em(λi−4ε)‖v‖z ≤ ‖Dzh
mv‖hm(z) ≤ em(λi+4ε)‖v‖z. (5.15)

This implies the second statement. The last statement of the theorem follows im-
mediately from (5.15).

6 Proofs of Main Results

6.1 Proof of Proposition 2.1. Fix a positive integer m. Since F∗(Ψ, μ) =
sup 1

m

∫
ψm dμ, for every μ ∈ M(X, f) we have

hμ(f) +
1
m

∫
ψm dμ ≤ hμ(f) + F∗(Ψ, μ) ≤ Pvar(f, Ψ),

The variational principle for the topological pressure of a single continuous potential
(see (2.4)) yields that

P

(
f,

ψm

m

)
≤ Pvar(f, Ψ).

It follows that

lim sup
n→∞

P

(
f,

ψn

n

)
≤ Pvar(f, Ψ).

On the other hand, for each μ ∈ M(X, f) we have that

hμ(f) + F∗(Ψ, μ) = lim
n→∞

(
hμ(f) +

1
n

∫
ψn dμ

)
≤ lim inf

n→∞ P
(
f,

ψn

n

)
.

This yields that

Pvar(f, Ψ) = sup
{

hμ(f) + F∗(Ψ, μ) : μ ∈ M(X, f)
}

≤ lim inf
n→∞ P

(
f,

ψn

n

)

and completes the proof of the first equality.
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To prove the second equality choose μ ∈ M(X, f) and note that μ ∈ M(X, fk)
for every k ∈ N. By the variational principle for the topological pressure (see (2.4)),
for every μ ∈ M(X, f),

1
k
P (fk, ψk) ≥ 1

k

(
hμ(fk) +

∫
ψk dμ

)
= hμ(f) +

1
k

∫
ψk dμ.

It follows that

lim inf
k→∞

1
k
P (fk, ψk) ≥ hμ(f) + lim

k→∞
1
k

∫
ψk dμ = hμ(f) + F∗(Ψ, μ).

Since μ is any measure in M(X, f), we have that

lim inf
k→∞

1
k
P (fk, ψk) ≥ sup

{
hμ(f) + F∗(Ψ, μ) : μ ∈ M(X, f)

}
= Pvar(f, Ψ).

For any k ∈ N and μ ∈ M(X, fk) the measure ν := 1
k

∑k−1
i=0 f i∗μ is f -invariant and

hν(f) = 1
khμ(fk). Since {ψnk(x)}n≥1 is super-additive with respect to fk, we have

lim
n→∞

1
n

∫
ψnk dμ = sup

n≥1

1
n

∫
ψnk dμ ≥

∫
ψk dμ.

For each 0 ≤ i ≤ k − 1, the super-additivity of {ψn(x)}n≥1 with respect to f implies
that∫

ψnk(x) df i
∗μ ≥

∫
ψk−i(x) df i

∗μ +
∫

ψ(n−1)k(f
k−ix) df i

∗μ +
∫

ψi(fnk−ix) df i
∗μ

≥ 2m +
∫

ψ(n−1)k(f
kx) dμ = 2m +

∫
ψ(n−1)k(x) dμ,

where m = − max0≤i≤k−1 ‖ψi‖∞. Summing over i from 0 to k − 1, we obtain that

k

∫
ψnk(x) dν ≥ 2mk + k

∫
ψ(n−1)k(x) dμ.

Dividing both sides by nk and letting n → ∞, we find that

kF∗(Ψ, ν) ≥
∫

ψk dμ.

This implies that

Pvar(f, Ψ) ≥ hν(f) + F∗(Ψ, ν) ≥ 1
k
(hμ(fk) +

∫
ψk dμ).

Since μ ∈ M(X, fk) can be chosen arbitrary, this yields that

Pvar(f, Ψ) ≥ 1
k
P (fk, ψk)

and since k can be chosen arbitrarily, we obtain that

Pvar(f, Ψ) ≥ lim sup
k→∞

1
k
P (fk, ψk)

and the second equality follows.
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6.2 Proof of Theorem 3.1. We split the proof of the theorem into two steps.

6.2.1 Dimension estimates under the dominated splitting assumption. Let Λ be
a repeller for a C1+γ expanding map f : M → M . In this subsection we obtain a
lower bound of the Hausdorff dimension of the repeller assuming that f |Λ possesses
a dominated splitting.

Assume that the map f |Λ possesses a {λj}-dominated splitting TΛM = E1 ⊕
E2 ⊕ · · · ⊕ Ek with E1 � E2 � · · · � Ek and λ1 > λ2 > · · · > λk. Let mj = dim Ej ,
rj = m1 + · · · + mj for j ∈ {1, 2, . . . , k} and r0 = 0. For each s ∈ [0, m0], n ≥ 1 and
x ∈ Λ, define

ψ̃s(x, fn) :=
d∑

j=1

mj log ‖Dxfn|Ej
‖ + (s − rd) log ‖Dxfn|Ed+1‖

if rd ≤ s ≤ rd+1 for some d ∈ {0, 1, . . . , k − 1}. It is clear Ψ̃f (s) := {−ψ̃s(x, fn)}n≥1

is super-additive. Let P̃sup(s) := Pvar(f |Λ, Ψ̃f (s)). One can easily see that P̃sup(s) is
continuous and strictly decreasing in s.

Lemma 6.1. Assume that the map f |Λ possesses a {λj}-dominated splitting TΛM =
E1 ⊕ E2 ⊕ · · · ⊕ Ek with E1 � E2 � · · · � Ek and λ1 > λ2 > · · · > λk. Then
dimH Λ ≥ s1, where s1 is the unique root of Bowen’s equation

P (f |Λ, −ψ̃s(·, f)) = 0.

Proof of the lemma. Let {P1, P2 . . . , Pk} be a Markov partition of Λ. It follows that
there is δ > 0 such that for each i = 1, 2, . . . , k the closed δ-neighborhood P̃i of Pi

is such that P̃i ⊆ U (here U is an open neighborhood of Λ in the definition of the
repeller) and P̃i ∩ P̃j = ∅ whenever Pi ∩ Pj = ∅. Given an admissible sequence i =
(i0i1 . . . in−1) and the cylinder Pi0i1...in−1 , we denote by P̃i0i1...in−1 the corresponding
cylinder. Note that the {λj}-dominated splitting can be extended to U , since the
splitting is continuous on Λ. Furthermore, note that x �→ Ei(x) is Hölder continuous
on Λ since the splitting TΛM = E1 ⊕ E2 ⊕ · · · ⊕ Ek is dominated, and the Hölder
continuity of the map x �→ Ei(x) can be extended to U , so is the map x �→ ‖Dxf |Ei

‖
for every i = 1, 2, . . . , k.

Since P (f |Λ, −ψ̃s1(·, f)) = 0 and ψ̃s1(·, f) is a Hölder continuous function on Λ,
there exists a Gibbs measure μ such that

K−1 exp

(
−

n−1∑
i=0

ψ̃s1(f i(x), f)

)
≤ μ

(
Pi0i1···in−1

) ≤ K exp

(
−

n−1∑
i=0

ψ̃s1(f i(x), f)

)

for some constant K > 0 and every x ∈ Pi0i1...in−1 . Since TΛM = E1 ⊕ E2 ⊕ · · · ⊕ Ek

is a dominated splitting, the angles between different subspaces Ei are uniformly
bounded away from zero. Therefore, P̃i0i1...in−1 contains a rectangle of sides

m1︷ ︸︸ ︷
a‖Dξ1f

n|E1‖−1, . . . a‖Dξ1f
n|E1‖−1, . . . ,

mk︷ ︸︸ ︷
a‖Dξk

fn|Ek
‖−1, . . . , a‖Dξk

fn|Ek
‖−1
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where a > 0 is a constant and ξi ∈ P̃i0i1...in−1 for each i = 1, 2, . . . , k. Since f is
expanding and the map x → ‖Dxf |Ei

‖−1 is Hölder continuous, there exists C0 > 0
so that

1
C 0

≤
∏n−1

j=0 ‖Df j(x)f |Ei
‖−1∏n−1

j=0 ‖Df j(y)f |Ei
‖−1

≤ C0

for every x, y ∈ P̃i0i1...in−1 . This together with the fact that ‖Dξi
fn|Ei

‖−1 ≥ ∏n−1
j=0 ‖

Df j(ξi)f |Ei
‖−1 (i = 1, 2, . . . , k) imply that P̃i0i1...in−1 contains a rectangle of sides

m1︷ ︸︸ ︷
a1A1(x, n), . . . , a1A1(x, n),

m2︷ ︸︸ ︷
a1A2(x, n), . . . , a1A2(x, n), . . . ,

mk︷ ︸︸ ︷
a1Ak(x, n), . . . , a1Ak(x,n)

for some constant a1 > 0 and x ∈ Pi0i1...in−1 , where Ai(x, n) :=
∏n−1

j=0 ‖Df j(x)f |Ei
‖−1

for each i = 1, 2, . . . , k.
Without loss of generality, assume that ri ≤ s1 < ri+1 for some i ∈ {1, 2, . . . , k}

and let

Q =
{
i = (i0i1 · · · in−1) : a1Ai+1(x, n) ≤ r for all x ∈ Pi0i1···in−1 ;

but a1Ai+1(y, n − 1) > r for some y ∈ Pi0i1···in−1

}
.

Therefore, for every i = (i0i1 · · · in−1) ∈ Q we have

br < a1Ai+1(x, n) ≤ r for all x ∈ Pi0i1...in−1 ,

where b = C−1
0 minx∈Λ ‖Dxf‖−1. Recall that A1(x, n) ≤ A2(x, n) ≤ · · · ≤ Ak(x, n).

Let B be a ball of radius r and B̃ a ball of radius 2r. Put

Q1 = {i ∈ Q|Pi ∩ B �= ∅}.

Hence, for i ∈ Q1 we have P̃i ∩ B̃ contains a rectangle of sides
m1︷ ︸︸ ︷

a1A1(x, n), . . . , a1A1(x, n), . . . ,

mi︷ ︸︸ ︷
a1Ai(x, n), . . . , a1Ai(x, n),

m0−ri︷ ︸︸ ︷
a1Ai+1(x, n), . . . , a1Ai+1(x, n)

It follows that

am0
1 Ai+1(x, n)m0−riAi(x, n)mi · · ·A1(x, n)m1 ≤ volm0(P̃i ∩ B̃).

Since

Ai+1(x, n)m0−ri = Ai+1(x, n)s1−riAi+1(x, n)m0−s1

≥ Ai+1(x, n)s1−ri

(
b

a1

)m0−s1

rm0−s1
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we have

a2r
m0−s1Ai+1(x, n)s1−riAi(x, n)mi · · ·A1(x, n)m1 ≤ volm0(P̃i ∩ B̃)

for some constant a2 > 0. Therefore,∑
i∈Q1

a2r
m0−s1Ai+1(x, n)s1−riAi(x, n)mi · · ·A1(x, n)m1 ≤ volm0(B̃) ≤ 2m0a3r

m0

for some constants a3 > 0. Hence,∑
i∈Q1

Ai+1(x, n)s1−riAi(x, n)mi · · ·A1(x, n)m1 ≤ a4r
s1

for some constant a4 > 0. On the other hand, one has

μ(B) ≤
∑

(i0i1...in−1)∈Q1

μ(Pi0i1...in−1)

≤ K
∑

(i0i1...in−1)∈Q1

exp

(
−

n−1∑
i=0

ψ̃s1(f i(x), f)

)

= K
∑

(i0i1...in−1)∈Q1

Ai+1(x, n)s1−riAi(x, n)mi · · ·A1(x, n)m1

≤ a5r
s1

for some constant a5 > 0. This implies that dimH μ ≥ s1 and hence, dimH Λ ≥
dimH μ ≥ s1. ��

Observe that an f2k

-invariant measure μ must be f2k+1
-invariant. This together

with the super-additivity of {−ψ̃s(·, fn)}n≥1 yields that for any f2k

-invariant mea-
sure μ,

1
2k+1

P (f2k+1
, −ψ̃s(·, f2k+1

)) ≥ 1
2k+1

(hμ(f2k+1
) + 2

∫
−ψ̃s(x, f2k

) dμ)

=
1
2k

(hμ(f2k

) +
∫

−ψ̃s(x, f2k

)dμ).

Hence,

1
2k+1

P (f2k+1
, −ψ̃s(·, f2k+1

)) ≥ 1
2k

P (f2k

, −ψ̃s(·, f2k

)). (6.1)

By Proposition 2.1, we have

P̃sup(s) = lim
k→∞

1
2k

P (f2k

, −ψ̃s(·, f2k

)) = Pvar(f |Λ, {−ψ̃s(·, fn)}). (6.2)

We shall show that under the same requirements as in the above lemma, one can
obtain sharper dimension estimates.
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Lemma 6.2. Assume that the map f |Λ possesses a {λj}-dominated splitting TΛM =
E1 ⊕ E2 ⊕ · · · ⊕ Ek with E1 � E2 � · · · � Ek and λ1 > λ2 > · · · > λk. Then
dimH Λ ≥ s∗, where s∗ is the unique root of Bowen’s equation P̃sup(s) = 0.

Proof of the lemma. Note that for each n ∈ N, the set Λ is also a repeller for f2n

.
Using Lemma 6.1, for every n ∈ N, one has dimH Λ ≥ sn where sn is the unique
root of the equation

P (f2n |Λ, −ψ̃s(·, f2n

)) = 0.

By (6.1), we have that sn ≤ sn+1 and hence, there is a limit s∗ := limn→∞ sn. We
have that dimH Λ ≥ s∗. It now follows from (6.2) that P̃sup(s∗) = 0. ��
Remark 6.1. In the proof of Lemmas 6.1 and 6.2, we only use the fact that the
splitting TΛ = E1⊕E2⊕· · ·⊕Ek is dominated. We still put {λj}−dominated splitting
condition in the statement of the above two lemmas, since it is required that there is
a {λj}−dominated splitting over the constructed compact invariant set in the proof
of Theorem 3.1.

6.2.2 Proof of the theorem. Let m ≤ s∗ < m+1 be the unique root of Psup(s) = 0.
We first observe that

Pvar(f |Λ, {−ψs∗
(·, fn)})

= sup
μ∈M(f |Λ)

{
hμ(f) − lim

n→∞
1
n

∫
ψs∗

(x, fn) dμ
}

= sup
μ∈E(f |Λ)

{
hμ(f)−(

λ1(μ) + · · · + λm(μ) + (s∗ − m)λm+1(μ)
)}

,

where λ1(μ) ≥ · · · ≥ λm0(μ) are the Lyapunov exponents of μ. It follows that for
every ε > 0 there exists an ergodic measure μ ∈ E(f |Λ) such that

Pvar(f |Λ, {−ψs∗
(·, fn)}) − ε < hμ(f)−(

λ1(μ) + · · · + λm(μ) + (s∗ − m)λm+1(μ)
)
.

Applying now Theorem 5.1 to measure μ we find a compact f -invariant set Λε ⊂ Λ
such that

(1) Λε admits a {λj}-dominated splitting TΛε
M = E1 ⊕ E2 ⊕ · · · ⊕ Ek;

(2) htop(f |Λε
) ≥ hμ(f) − ε/2;

(3) eλj(μ)−ε‖v‖x ≤ ‖Dxf(v)‖f(x) ≤ eλj(μ)+ε‖v‖x for every v ∈ Ej , j = 1, . . . , k.

The third property implies that for each j = 1, . . . , k and each ergodic measure ν
supported on Λε,

λj(μ) − ε ≤ λj(ν) < λj(μ) + ε, j = 1, 2, . . . , m0.

By Lemma 6.2, we have

dimH Λε ≥ sε, (6.3)
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where sε is the unique root of the equation Pvar(f |Λε
, {−ψ̃s(·, fn)}) = 0. If sε ≥ s∗,

we have

dimH Λ ≥ dimH Λε ≥ sε ≥ s∗

and the desired result follows. Otherwise, assume that rd ≤ s∗ ≤ rd+1 for some
d ∈ {0, 1, . . . , k − 1}. By the variational principle for the entropy, there exists an
ergodic measure ν on Λε such that htop(f |Λε

) ≤ hν(f |Λε
) + ε/2 and hence,

lim
n→∞

1
n

∫
−ψ̃s∗

(x, fn) dν

=
d∑

j=1

mj lim
n→∞ − 1

n

∫
log ‖Dxfn|Ej

‖ dν + (s∗ − rd) lim
n→∞ − 1

n

∫
log ‖Dxfn|Ed+1‖ dν

≤
rd∑

j=1

−λj(ν) + rdε +
m∑

j=rd+1

−λj(ν) + (m − rd)ε − (s∗ − m)λm+1(ν) + (s∗ − m)ε

≤
m∑

j=1

−λj(ν) − (s∗ − m)λm+1(ν) + m0ε,

where the second inequality follows from (3). Similarly, one has that

lim
n→∞

1
n

∫
−ψ̃s∗

(x, fn) dν ≥
m∑

j=1

−λj(ν) − (s∗ − m)λm+1(ν) − m0ε.

It follows that

Pvar(f |Λ, {−ψs∗
(·, fn)}) − ε

< hμ(f)−(
λ1(μ) + · · · + λm(μ) + (s∗ − m)λm+1(μ)

)
≤ hν(f |Λε

)−(
λ1(ν) + · · · + λm(ν) + (s∗ − m)λm+1(ν)

)
+ (s∗ + 1)ε

≤ hν(f |Λε
) + lim

n→∞
1
n

∫
−ψ̃s∗

(x, fn) dν + 2(m0 + 1)ε

≤ Pvar(f |Λε
, {−ψ̃s∗

(·, fn)}) + 2(m0 + 1)ε.

Since

|s∗ − sε| log κ ≤
∣∣∣Pvar(f |Λε

, {−ψ̃sε(·, fn)}) − Pvar(f |Λε
, {−ψ̃s∗

(·, fn)})
∣∣∣

≤ |s∗ − sε| log L,

where L = maxx∈Λ ‖Dxf‖, we obtain that

|s∗ − sε| log κ ≤ Pvar(f |Λε
, {−ψ̃sε(·, fn)}) − Pvar(f |Λε

, {−ψ̃s∗
(·, fn)}) < 2(m0 + 2)ε.

Hence,

sε ≥ s∗ − [2(m0 + 2)/ log κ]ε.



1358 Y. CAO ET AL. GAFA

This together with (6.3) yields that

dimH Λ ≥ dimH Λε ≥ s∗ − [(m0 + 2)/ log κ]ε.

Since ε can be chosen arbitrary small, this implies that dimH Λ ≥ s∗.

6.3 Proof of Corollary 3.1. By Theorem 3.1, one has dimH Λ ≥ s∗ where s∗is
the unique root of the equation Pvar(f |Λ, −{ψs(·, fn)}) = 0. For every s ∈ [0, m0] it
follows from (6.1) and (6.2) that

Pvar(f |Λ, −{ψs(·, fn)}) ≥ P (f |Λ, −ψs(·, f)).

Hence, s∗ ≥ s1 where s1 is the unique root of the equation P (f |Λ, −ψs(·, f)) = 0.
The desired result immediately follows.

6.4 Proof of Theorem 3.2. As in the proof of Lemma 6.1, we may assume
that the map x �→ m(Dxf |Ei

) is Hölder continuous on U for each i = 1, 2, . . . , k.
Choose a number s such that t∗ < s ≤ m0 and assume that �d ≤ s ≤ �d+1 for

some d ∈ {0, 1, . . . , k−1} (see Section 3.3 for the definition of �d). Since P̃sub(s) < 0,
we may find a positive integer q for which∑

i∈Sq

e−ϕ̃s(yi,fq) < 1

for all yi ∈ Pi, where i = (i0i1 . . . iq−1) is an admissible sequence and Pi is a
cylinder (see (2.2)). For any n ≥ 1, let Bi(x, nq) :=

∏n−1
j=0 m(Df jq(x)f

q|Ei
)−1 for

i = 1, 2, . . . , k, it follows that for all yi ∈ Pi,∑
i∈Sq

Bk−d(yi, q)s−�dBk−d+1(yi, q)mk−d+1 · · ·Bk−1(yi, q)mk−1Bk(yi, q)mk < 1.

Given 0 < r ≤ 1, set

Q =
{
i = (i0i1 . . . inq−1) : Bk−d(x, nq) ≤ r for all x ∈ Pi0i1...inq−1

but r < Bk−d(y, (n − 1)q) for some y ∈ Pi0i1...i(n−1)q−1

}
.

Since x �→ Bi(x, q) is Hölder continuous and f q is expanding, there exists a C0 > 1
such that for each n ≥ 1, all i ∈ {1, 2, . . . , k}, and any x, y ∈ Pi0i1...inq−1 ,

C−1
0 ≤ Bi(x, nq)

Bi(y, nq)
≤ C0.

This implies that for all x ∈ Pi0i1...inq−1 ,

Cr < Bk−d(x, nq) ≤ r,
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where C = C−1
0 minx∈Λ Bk−d(x, q). For every admissible sequence (i0i1 . . . ), there is

a unique integer n such that (i0, . . . , inq−1) ∈ Q. In particular, Λ ⊂ ⋃
i∈Q Pi. Note

that

m(Dxfnq|E1)
−1 ≤ m(Dxfnq|E2)

−1 ≤ · · · ≤ m(Dxfnq|Ek
)−1

and for all i ∈ {1, 2, . . . , k} and any x ∈ Λ,

m(Dxfnq|Ei
)−1 ≤ Bi(x, nq).

Since the splitting TΛM = E1 ⊕ E2 ⊕ · · · ⊕ Ek is dominated, we conclude that the
number of balls of radius r required to cover Λ is at most the following number times
a constant

∑
i∈Q

m(Dyi
fnq|Ek

)−mk

rmk
· · · m(Dyi

fnq|Ek−d+1)
−1

rmk−d+1

≤
∑
i∈Q

Bk(yi, nq)mk

Bk−d(yi, nq)mk
· · · Bk−d+1(yi, nq)mk−d+1

Bk−d(yi, nq)mk−d+1

=
∑
i∈Q

Bk(yi, nq)mk · · ·Bk−d+1(yi, nq)mk−d+1Bk−d(yi, nq)−�d

=
∑
i∈Q

Bk(yi, nq)mk · · ·Bk−d+1(yi, nq)mk−d+1Bk−d(yi, nq)s−�dBk−d(yi, nq)−s

≤ C−sr−s.

This implies that dimBΛ ≤ s. Since the number s can be chosen arbitrary, this
implies that dimBΛ ≤ t∗.

6.5 Proof of Theorem 3.3. Denote by π : Λf → Λh the homeomorphism that
conjugates f and h, i.e., π ◦ f = h ◦ π. Note that π is close to the identity.

Fix n ≥ 1 and 0 ≤ t ≤ m0 and let g(x) = − 1
nϕt(x, hn). We have that

P (h|Λh
, g) = P (f |Λf

, g ◦ π)

and that P (f |Λf
, g ◦π) is sufficiently close to P (f |Λf

, − 1
nϕt(x, fn)). This means that

the map f �→ P (f |Λf
, − 1

nϕt(x, fn)) is continuous. On the other hand, we have that

P (f |Λf
, Φf (t)) = lim

n→∞ P

(
f |Λf

, − 1
n

ϕt(x, fn)
)

= inf
n≥1

P

(
f |Λf

, − 1
n

ϕt(x, fn)
)

where the first equality is proved in [BCH10, Proposition 2.1] and the second one
in [Zha97, Lemma 2]. This implies the desired upper semi-continuity of the map
f �→ P (f |Λf

, Φf (t)).
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6.6 Proof of Theorem 3.4. Fix 0 ≤ t ≤ m0. Since the map ν �→ hν(f) +
F∗(Φf (t), ν) is upper semi-continuous, by the variational principle there is an ergodic
equilibrium measure μ = μt for Φf (t), i.e., we have that

hμ(f) + F∗(Φf (t), μ) = P (f |Λf
, Φf (t)).

Let h be a C1+γ map that is sufficiently close to f in the C1 topology. Given ε > 0,
consider the compact invariant sets Qε(h) and Qε(f) constructed in Theorem 5.2.
Note that Qε(h) = π(Qε(f)) where π is the conjugacy map between f and h. We
have that

htop(h|Qε(h)) = htop(f |Qε
) ≥ hμ(f) − ε.

Moreover, there is a continuous splitting on Qε(h)

TzM = E1(z) ⊕ E2(z) · · · ⊕ Er(z), for all z ∈ Qε(h)

such that for every v ∈ Ei(z),

em(λi−ε)‖v‖z ≤ ‖Dzh
mv‖hm(z) ≤ em(λi+ε)‖v‖z,

where λi = λi(μ) are the Lyapunov exponents of μ. Thus, for every h-invariant
measure ν with supp ν ⊂ Qε(h), its Lyapunov exponents on Ei(z) are between
λi − ε and λi + ε. It follows that

F∗(Φh(t), ν) = −(λ1(ν) + λ2(ν) + · · · + λ[t](ν)) − (t − [t])λ[t]+1(ν)
≥ −(λ1 + λ2 + · · · + λ[t]) − (t − [t])λ[t]+1 − tε

= F∗(Φf (t), μ) − tε.

Now we choose a h-invariant ergodic measure ν on Qε(h) such that htop(h|Qε(h)) ≤
hν(h|Qε(h)) + ε. This yields that

P (h|Λh
, Φh(t)) ≥ P (h|Qε(h), Φh(t))

≥ hν(h|Qε(h)) + F∗(Φh(t), ν)
≥ htop(h|Qε(h)) + F∗(Φf (t), μ) − (t + 1)ε
≥ hμ(f) + F∗(Φf (t), μ) − (t + 2)ε
≥ P (f |Λf

, Φf (t)) − (m0 + 2)ε.

This yields the desired result.

6.7 Proof of Theorem 4.1. By Theorem 3.5, the sub-additive topological pres-
sure Psub(t) = P (f |Λf

, Φf (t)) is continuous at f and so is the zero α0 = α0(f) of
Bowen’s equation Psub(t) = 0. Hence, the second statement follows from the first
one.
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Since the function Psub(t) is strictly decreasing in t, for each t < α0 we have that
Psub(t) > 0. Fix such a number t, and take δ > 0 so that Psub(t) − δ > 0. Since
Psub(t) = lim

r→0
P (f |Λf

, Φf (t), r), there exists r0 > 0 such that for each 0 < r < r0 one

has

Psub(t) − δ < P (f |Λf
, Φf (t), r) < Psub(t) + δ.

Fix such a small r > 0. It follows from the definition of the topological pressure as
the Carathéodory singular dimension (see (4.3)) that

m(Λf , Φf (t), Psub(t) − δ, r) = +∞.

Hence, for each K > 0, there exists L ∈ N so that for any N ≥ L we have that

e−N(Psub(t)−δ) inf

{∑
i

exp

(
sup

y∈Bni
(xi,r)

−ϕt(y, fni)

)}

≥ inf

{∑
i

exp
( − (Psub(t) − δ)ni + sup

y∈Bni
(xi,r)

−ϕt(y, fni)
)} ≥ K.

This yields that

inf

{∑
i

exp

(
sup

y∈Bni
(xi,r)

−ϕt(y, fni)

)}
≥ eN(Psub(t)−δ)K

where the infimum is taken over all collections {Bni
(xi, r)} of Bowen’s balls with

xi ∈ Λf , ni ≥ N , which cover Λf . Letting N → ∞, we have that

m(Λf , t, r) = +∞ (6.4)

for any t < α0.
On the other hand, for each t > α0 we have that Psub(t) < 0. Fix such a number

t, and take δ̃ > 0 so that Psub(t) + δ̃ < 0. Similarly, there exists r1 > 0 such that for
each 0 < r < r1 one has

Psub(t) − δ̃ < P (f |Λf
, Φf (t), r) < Psub(t) + δ̃.

Fix such a small r > 0. We have that

m(Λf , Φf (t), Psub(t) + δ̃, r) = 0.

Hence, for each ξ > 0, there exists L̃ ∈ N so that for any N ≥ L̃ we have that

e−N(Psub(t)+δ̃) inf

{∑
i

exp

(
sup

y∈Bni
(xi,r)

−ϕt(y, fni)

)}

≤ inf

{∑
i

exp

(
−(Psub(t) + δ̃)ni + sup

y∈Bni
(xi,r)

−ϕt(y, fni)

)}
≤ ξ.
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This implies that

inf

{∑
i

exp

(
sup

y∈Bni
(xi,r)

−ϕt(y, fni)

)}
≤ ξeN(Psub(t)+δ̃)

where the infimum is taken over all collections {Bni
(xi, r)} of Bowen’s balls with

xi ∈ Λf , ni ≥ N , which cover Λf . Letting N → ∞, we have that

m(Λf , t, r) = 0 (6.5)

for any t > α0. Combing (6.4) and (6.5), we obtain that

dimC,r(Λf ) = α0

for any 0 < r < min{r0, r1}. This completes the proof of the theorem.

7 Application: A Comment on Feng and Shmerkin’s Result

Let (X, T ) be a sub-shift of finite type. Here we assume that subshifts of finite type
are defined on a finite alphabet. Recall that a map A : X → R

m0×m0 induces a
matrix cocycle if for x ∈ X and n ∈ N we have that

A(x, n) = A(Tn−1x) · · ·A(x).

We denote by X∗ the collection of finite allowable words in X, and let X∗
n be the sub-

set of X∗ of words of length n. A matrix cocycle A on X is said to be locally constant
if A(x) only depends on the first coordinate of x, that is if x = (x0, x1, . . . , xn, . . .),
then A(x) = A(x0).

For x ∈ X, s ∈ [0, m0], and n ∈ N, define a singular valued function ϕs(x, n) as
follows

ϕs(x, n) = α1(A(x, n)) · · ·αm(A(x, n))αm+1(A(x, n))s−m,

where m = [s] and α1(A(x, n)) ≥ α2(A(x, n)) ≥ · · · ≥ αm0(A(x, n)) are the square
roots of the eigenvalues of A(x, n)∗A(x, n). It is well known that the singular valued
function is sub-multiplicative, i.e.,

ϕs(x, n + m) ≤ ϕs(x, n) × ϕs(Tnx, m).

For A : X → R
m0×m0 , define

P (A, s) = lim
n→∞

1
n

log(
∑
i∈X∗

n

sup
y∈[i]

ϕs(A(y, n)) ∈ [−∞, ∞).

The limit can be easily seen to exist, due to sub-multiplicativity of the expression
in the parenthesis.
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Theorem 7.1. Let A : X → GL(R, m0) be a Hölder continuous cocycle. Then
the map P (A, s) → R is continuous map on A.

Denote by ET the family of T -invariant ergodic measures on X. To prove the above
theorem, we need the following version of Oseledets’ Multiplicative Ergodic Theorem,
due to Froyland, Lloyd and Quas [FLQ10] which need the map T to be invertible.
If T : X → X is a one-side subshift of finite type, we obtain the same result by
considering its inverse limit space and the induced map.

Theorem 7.2. Given a measurable map A : X → R
m0×m0 and a measure μ ∈ ET

such that ∫
log+ ‖A(x)‖dμ(x) < +∞,

there exist λ1(μ) > · · · > λp(μ) ≥ −∞, integers m1, . . . , mp with
∑p

i=1 mi = m0,
and a measurable family of splittings

R
m0 = E1(x) ⊕ E2(x) ⊕ · · · ⊕ Ep(x),

such that for μ-almost all x the following holds

(1) A(x)Ei(x) ⊂ Ei(Tx) with equality if λi(μ) > −∞;
(2) for all v ∈ Ei(x)\{0},

lim
n→±∞

1
n

log |A(x, n)v| = λi(μ)

with uniform convergence on any compact subset of Ei(x)\{0}.

By the variational principle for sub-additive topological pressure (see [CFH08]), we
have that

P (A, s) = sup
{

hμ(T ) + lim
n→∞

1
n

∫
log ϕs(A(y, n)) dμ

}
.

Since that map μ �→ hμ(T ) + lim
n→∞

1
n

∫
log ϕs(A(y, n)) dμ is upper semi-continuous,

there exists μ ∈ ET such that

P (A, s) = hμ(T ) + lim
n→∞

1
n

∫
log ϕs(A(y, n)) dμ

= hμ(T )+
(
λ1(μ) + · · · + λ[s](μ) + (s − [s])λ[s+1](μ)

)
.

On the other hand, by the results in [BCH10], one has

P (A, s) = lim
k→∞

P

(
T,

1
k

log ϕs(A(·, k))
)

(7.1)

= inf
k≥1

P

(
T,

1
k

log ϕs(A(·, k))
)

. (7.2)
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Proof of Theorem 7.1. We can follow the proof of Theorem 3.4. Since

P (A, s) = inf
k≥1

P

(
T,

1
k

log ϕs(A(·, k))
)

,

and for every k ∈ N, the map

P

(
T,

1
k

log ϕs(A(·, k))
)

→ R

is continuous at A, the map P (A, s) → R is upper semi-continuous at A.
Next we prove that the map is lower semi-continuous. First, there exists μ ∈ ET

such that

P (A, s) = hμ(T )+
(
λ1(μ) + · · · + λ[s](μ) + (s − [s])λ[s]+1(μ)

)
.

Then for every ε > 0, following the proof of Theorem 5.1, we find a compact invariant
set Kε such that

(1) htop(T |Kε
) > hμ(T ) − ε;

(2) there is m ∈ N and for each x ∈ Kε, 1 ≤ i ≤ p a continuous family of invariant
cones Ui(x) such that

E1(x) ⊕ · · · ⊕ Ei(x) ⊂ IntUi, A(x)Ui(x) ⊂ IntUi(Tx),

and for all v ∈ Ui(x)\{0},

|A(x, m)v| ≥ e(mλi(μ)−mε)|v|.
Therefore if B : X → R

d×d is close to A, we will have the following properties:

(1) for each x ∈ Kε, 1 ≤ i ≤ p,

B(x)Ui(x) ⊂ IntUi(Tx);

(2) for all v ∈ Ui(x)\{0},

|B(x, m)v| ≥ e(mλi−2mε)|v|.
Hence, there exists ν ∈ E(Kε, T ) such that

(1) hν(T ) = htop(T |Kε
),

(2) for i ∈ [1, d1], λi(B, ν) ≥ λ1 − 2ε,
(3) for i ∈ [

∑k
j=1 dj + 1,

∑k+1
j=1 dj ], λi(B, ν) ≥ λk − 2ε.

Thus for every s ∈ [0, m0]. We have

P (B, s) ≥ PKε
(B, s)

> hμ(T ) − ε − [λ1(B, ν) + · · · + λ[s](B, ν) + (s − [s])λm+1(B, ν)]
≥ P (A, s) − (m0 + 1)ε.

This gives the lower semi-continuity of sub-additive topological pressure. ��
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Remark 7.1. If A(x) ∈ GL(R, m0), then we can construct a compact invariant set
Kε such that

(1) htop(T |Kε
) > hμ(T ) − ε,

(2) there is m ∈ N and for each x ∈ Kε a continuous invariant dominated splitting
such that

R
m0 = E1(x) ⊕ · · · ⊕ Ei(x) ⊕ · · · ⊕ Ep(x),

and for all v ∈ Ei(x)\{0},

e(mλi−mε)|v| ≤ |A(x, m)v| ≤ e(mλi+mε)|v|.
Therefore if B(x) ∈ GL(R, m0) is near to A, we will have the following properties:

(1) for each x ∈ Kε, 1 ≤ i ≤ p, there exists a continuous invariant dominated
splitting such that

R
m0 = E1(B, x) ⊕ · · · ⊕ Ei(B, x) ⊕ · · · ⊕ Ep(B, x),

(2) for all v ∈ Ei(B, x)\{0},

e(mλi−2mε)|v| ≤ |B(x, m)v| ≤ e(mλi+2mε)|v|.
Remark 7.2. If a matrix cocycle A on X is locally constant, then the above theorem
gives the result in [FS14].
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