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Abstract. We show that a smooth compact Riemannian manifold of dimension greater than
or equal to 2 admits a Bernoulli diffeomorphism with non-zero Lyapunov exponents.

0. Introduction
In this paper we prove the following theorem that provides an affirmative solution of the
problem posed in [BFK].

MAIN THEOREM. Given a compact smooth Riemannian manifold K �= S1 there exists a
C∞ diffeomorphism f of K such that:
(1) f preserves the Riemannian volume m on K;
(2) f has non-zero Lyapunov exponents at m-almost every point x ∈ K;
(3) f is a Bernoulli diffeomorphism.

For surface diffeomorphisms this theorem was proved by Katok in [K]. In [B2], for
any compact smooth Riemannian manifold K of dimension ≥ 5, Brin constructed a C∞
Bernoulli diffeomorphism which preserves the Riemannian volume and has all but one
Lyapunov exponents non-zero. Thus, combining the results of [B2, BFK, K] one obtains
that any manifold K admits a diffeomorphism with � zero exponents, where

� =




0, if dimK = 2,

2, if dimK = 4,

1, otherwise.

In this paper we show how to perturb the diffeomorphism to remove zero exponents.
Let us review some main ingredients in the construction of hyperbolic Bernoulli
diffeomorphisms.
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410 D. Dolgopyat and Y. Pesin

(1) Let f be a diffeomorphism of K preserving a smooth volume m and TK = E ⊕ F

the splitting of TK into two invariant subbundles. We say that F dominates E (and
write E < F ) if there exists θ < 1 such that

max
v∈E,‖v‖=1

‖df (v)‖ ≤ θ min
v∈F,‖v‖=1

‖df (v)‖.

If f admits a dominating splitting then so does any diffeomorphism which is
sufficiently close to f . Shub and Wilkinson [SW] have shown that if TK =
E1 ⊕ E2 ⊕ E3 where E1 < E2 < E3 then the function

f →
∫

log det(df |E2)(x) dm(x)

is not locally constant (see also [D]).
(2) If for any sufficiently small perturbation of f the subspaceE2 does not admit further

splitting, then using results of Manẽ [M1] (see also [M2]) and Bochi [Bo] one can
approximate f by a diffeomorphism g such that all Lyapunov exponents of g along
E2 are close to each other. We will use this observation in the case dimK = 4.

(3) The results in (1) and (2) can be used for constructing non-uniformly hyperbolic
systems on manifolds carrying diffeomorphisms with dominated decomposition.
However, not every manifold has this property. On the other hand, results in
[B2, BFK] allow one to construct on any manifold a diffeomorphism which is
partially hyperbolic away from a singularity set. In this paper we extend results
in (1) and (2) above to diffeomorphisms with singular splitting.

(4) The above results allow us to construct systems having non-zero exponents on a set
of positive measure. We then establish local ergodicity using the approach of [P]
(see also [BP] for detailed exposition and extensions of this approach).

(5) Finally, we use some ideas from [BrP] concerning transitivity of foliations to pass
from local to global ergodicity.

The structure of the paper is as follows. We begin with the case dimK ≥ 5, since in
the multi-dimensional case there is more room to perturb and so the proof is simpler. Then
we describe modifications needed if dimK = 3 or 4. In §§1–3 we review constructions
of Katok [K] and Brin [B2] and establish some additional properties of the corresponding
diffeomorphisms which are used in our analysis. In §4 we explain how to get rid of the zero
Lyapunov exponent while in §5 we establish some crucial properties of our perturbation
including transitivity and absolute continuity. In §6 we observe the Bernoulli property of
our diffeomorphism and thus complete the proof in the case dimK ≥ 5. We then proceed
in §7 with modifications needed in dimensions three and four. Section 8 reviews Manẽ’s
work on the discontinuity of Lyapunov exponents which is needed for the four-dimensional
case.

Finally, let us mention that open sets of hyperbolic Bernoulli diffeomorphisms on some
manifolds are constructed in [ABV, BV, D, SW].

Preliminaries and notation. In this paper we deal with various partially (uniformly and
non-uniformly) hyperbolic diffeomorphisms and we adopt the following notation (see [BP]
for details). A diffeomorphism F of a compact smooth Riemannian manifold K is called
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non-uniformly partially hyperbolic on a set X ⊂ K if for every x ∈ X the tangent space at
x admits an invariant splitting

TxK = EsF (x)⊕EcF (x)⊕ EuF (x) (0.1)

into stable, central, and unstable subspaces. This means that there exist numbers 0 < λs <
λc1 ≤ 1 ≤ λc2 < λ

u and Borel functions C(x) > 0 and K(x) > 0, x ∈ X, such that:
(1) for n > 0,

‖dxFnv‖ ≤ C(x)(λs)neεn‖v‖, v ∈ Es(x),
‖dxF−nv‖ ≤ C(x)(λu)−ne−εn‖v‖, v ∈ Eu(x),

C(x)−1(λc1)
ne−εn‖v‖ ≤ ‖dxFnv‖ ≤ C(x)(λc2)

neεn‖v‖, v ∈ Ec(x);
(2)

� (Es(x),Eu(x)) ≥ K(x), � (Es(x),Ec(x)) ≥ K(x), � (Eu(x),Ec(x)) ≥ K(x);
(3) for m ∈ Z,

C(Fm(x)) ≤ C(x)eε|m|, K(Fm(x)) ≥ K(x)e−ε|m|.

Throughout the paper we deal with the case

λc2 − λc1 ≤ ε

for sufficiently small ε > 0. We denote by

χ(x, v) = lim
n→∞

1

n
log ‖dFnv‖ (0.2)

the Lyapunov exponent of v at x and by χiF (x) the values of the Lyapunov exponents at x.
We also adopt the notation χcF (x) for the Lyapunov exponent along the central direction in
the one-dimensional case and χc1 (x, F ) ≥ χc2 (x, F ) for the two Lyapunov exponents along
the central direction in two-dimensional case (only these two cases will be considered).
Given ε > 0, set

�+(x, F, ε) =
∑

χiF (x)>ε

χiF (x), �−(x, F, ε) =
∑

χiF (x)<ε

χiF (x). (0.3)

Denote by V sF (x) and V uF (x) the local stable and unstable manifolds at x. They can be
characterized as follows: there is a neighborhood U(x) of the point x such that for any
n > 0,

V uF (x) = {y ∈ U(x) : d(F−n(x), F−n(y)) ≤ C(x)(λu)−ne−εn d(x, y)},
V sF (x) = {y ∈ U(x) : d(Fn(x), F n(y)) ≤ C(x)(λs)neεn d(x, y)}. (0.4)

Finally, we define the global stable and unstable manifolds at x by

Wu
F (x) =

⋃
n≥0

Fn(V uF (F
−n(x))),

Ws
F (x) =

⋃
n≥0

F−n(V sF (F
n(x))).

(0.5)
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Given a subset X ⊂ K we call two points p, q ∈ K accessible via X, if there are points
z0 = p, z1, . . . , z�−1, z� = q, zi ∈ X, such that zi ∈ V αF (zi−1) for i = 1, . . . , � and
α ∈ {s, u}. The collection of points z0, z1, . . . , z� is called the path connecting p and q
and is denoted by [p, q]F = [z0, z1, . . . , z�]F . The diffeomorphism F is said to have the
accessibility property on X if any two points p, q ∈ X are accessible.

Recall that a partition ξ of a Borel subset X ⊂ K is called a foliation of X with C1

leaves if there exist continuous functions δ : X → (0,∞) and q : X → (0,∞) and an
integer k > 0 such that for each x ∈ X:

(1) there exists a smooth immersed k-dimensional manifold W(x) containing x for
which ξ(x) = W(x) ∩ X where ξ(x) is the element of the partition ξ containing
x; the manifold W(x) is called the (global) leaf of the foliation at x; the connected
component of the intersection W(x) ∩ B(x, δ(x)) that contains x is called the local
leaf at x and is denoted by V (x); the number δ(x) is called the size of V (x);

(2) there exists a continuous map φx : X ∩ B(x, q(x)) → C1(D,M) (where D ⊂ R
k

is the unit ball) such that V (y), y ∈ X ∩ B(x, q(x)) is the image of the map
φx(y) : D → K.

In this paper we will only consider foliations with C1 leaves and for simplicity we will
call them foliations.

1. Katok’s example

Consider the two-dimensional unit disk D2 = {(u1, u2) ∈ R
2 : u2

1 + u2
2 ≤ 1}.

Any diffeomorphism g : D2 → D2 can be written in the form g(u1, u2) =
(g1(u1, u2), g2(u1, u2)). We describe classes of functions and diffeomorphisms which are
‘sufficiently flat’ near the boundary ∂D2. The sequence ρ = (ρ0, ρ1, . . . ) of real-valued
continuous functions on D2 is called admissible if every function ρn is non-negative and is
strictly positive inside the disk. We denote by C∞

ρ (D2) the class of functions φ ∈ C∞(D2)

which satisfy the following property: for every n ≥ 0 there exists εn > 0 such that for
every (u1, u2) ∈ D2 with u2

1 + u2
2 ≥ (1 − εn)

2 we have

∣∣∣∣∂nφ(u1, u2)

∂i1u1∂i2u2

∣∣∣∣ < ρn(u1, u2)

for all non-negative integers i1, i2, i1 + i2 = n. We also denote

Diff ∞
ρ (D2) = {g ∈ Diff ∞(D2) : gi(u1, u2)− ui ∈ C∞

ρ (D2), i = 1, 2}.

PROPOSITION 1.1. (See [K]) For every admissible sequence of functions ρ on D2 there
exists a diffeomorphism g ∈ Diff ∞

ρ (D2) which satisfies statements (1) and (2) of the Main
Theorem.

We outline the proof of Proposition 1.1. Let g0 be a hyperbolic automorphism of
the 2-torus T 2 which has four fixed points x1 = (0, 0), x2 = (1/2, 0), x3 = (0, 1/2),
x4 = (1/2, 1/2) (for example, the automorphism generated by the matrix

∣∣ 5 8
8 13

∣∣ is
appropriate). The desired diffeomorphism g is constructed via the following commutative
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diagram

T 2
ϕ0 ��

g0

��

T 2
ϕ1 ��

g1

��

T 2
ϕ2 ��

g2

��

S2
ϕ3 ��

g3

��

D2

g

��
T 2

ϕ0 �� T 2
ϕ1 �� T 2

ϕ2 �� S2
ϕ3 �� D2

where S2 is the unit sphere. The map g1 is obtained by slowing down g0 near the points
xi . Its construction depends upon a real-valued function ψ which is defined on the unit
interval [0, 1] and has the following properties:
(1.1) ψ is C∞ except for the point 0;
(1.2) ψ(0) = 0 and ψ(u) = 1 for u ≥ r where 0 < r < 1 is a number;
(1.3) ψ ′(u) ≥ 0;
(1.4) ∫ 1

0

du

ψ(u)
< ∞.

The next condition on the functionψ expresses a ‘very slow’ rate of convergence of the
integral

∫ 1
0 (du/ψ(u)) near zero. More precisely, for i = 1, 2, 3, 4 consider the disk Dir

centered at xi of radius r and endowed with the coordinate system (s1, s2), i.e.

Dir = {(s1, s2) : s2
1 + s2

2 ≤ r}.
Choose numbers r0 > r1 > r > 0 such that

Dir0 ∩ Djr0 = ∅, i �= j, (g0(Dir1) ∪ g−1
0 (Dir1)) ⊂ Dir0, Dir ⊂ Int(g0(Dir1)).

We also set D = ⋃4
i=1 Dir1 . Let β(u) be the inverse of the function

γ (u) =
√∫ u

0

dτ

ψ(τ)
.

Consider the following two functions defined near the origin,

H1(s1, s2) = (logα)β
(√
s2

1 + s2
2

) s1s2

s2
1 + s2

2

,

and

H2(s1, s2) = (logα)β
(√
s2

1 + s2
2

) s2√
s2

1 + s2
2

,

as well as the function H defined near ∂D2 by

H(x1, x2) = (logα)β
(√

1 − x2
1 − x2

2

) x2√
x2

1 + x2
2

,

where α is the largest eigenvalue of the matrix generating g0. We assume that the function
ψ is chosen such that the following condition holds:
(1.5) for any sequence κ of admissible germs near the origin in R

2 and any sequence ρ of
admissible functions on D2 there is a sequence θ of admissible germs near 0 ∈ R

+
such that if β ∈ C∞

θ (R
+, 0) then H1,H2 ∈ C∞

κ (R
+, 0) and H ∈ C∞

ρ (D2).
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Denote by g̃iψ the time-one map generated by the vector field vψ in Dir0 , i = 1, 2, 3, 4,
given as follows:

ṡ1 = (logα)s1ψ(s2
1 + s2

2 ), ṡ2 = −(logα)s2ψ(s2
1 + s2

2 ).

One can show that g̃iψ (Dir1) ⊂ Dir0 and g̃iψ coincides with g0 in some neighborhood of the

boundary ∂Dir0 . Therefore, the map

g1(x) =
{
g0(x), if x ∈ T 2 \D,

g̃iψ (x), if x ∈ D,

defines a homeomorphism of the torus T 2 which is a C∞ diffeomorphism everywhere
except for the points xi, i = 1, 2, 3, 4. The map g1 leaves invariant a smooth probability
measure dν = κ−1

0 κ dm where the density κ is a positiveC∞ function except for infinities
at xi . It is defined by the formula

κ(x) =
{
ψ−1(s2

1 (x)+ s2
2 (x)), if x ∈ D,

1, otherwise,

and

κ0 =
∫
T 2
κ dm.

We summarize the properties of the map g1 in the following lemma.

LEMMA 1.2. (See [K])
(1) The map g1 is topologically conjugate to g0 via a homeomorphism ϕ0 which transfers

the stable Ws
g0
(x) and unstable Wu

g0
(x) (global) curves of g0 into smooth curves

which are stable W−
g1
(x) and unstableW+

g1
(x) curves of g1.

(2) There exist continuous families of stable cones K−
g1
(x) and unstable cones K+

g1
(x),

x ∈ T 2 \ {x1, x2, x3, x4}, such that

g−1
1 (K−

g1
(x)) ⊂ K−

g1
(g−1

1 (x)), g1(K
+
g1
(x)) ⊂ K+

g1
(g1(x))

and the inclusions are strict on the closure of the set T 2 \ D.
(3) The Lyapunov exponents of g1 are non-zero almost everywhere with respect to the

measure ν (and, indeed, with respect to any Borel invariant measure µ for which
µ({xi}) = 0, i = 1, 2, 3, 4).

For every x ∈ T 2 \ {x1, x2, x3, x4} we define the stable and unstable one-dimensional
subspaces at x by

E−
g1
(x) =

⋂
j

g
−j
1 (K−

g1
(g
j

1 (x))), E+
g1
(x) =

⋂
j

g
j

1 (K
+
g1
(g

−j
1 (x))).

LEMMA 1.3. (See [K])
(1) The subspaces E−

g1
(x) and E+

g1
(x) depend continuously on x.

(2) The map g1 is uniformly hyperbolic on T 2 \ D; more precisely, there is a number
λ > 1 such that for every x ∈ T 2 \ D,

‖dg1|E−
g1
(x)‖ ≤ 1

λ
, ‖dg−1

1 |E+
g1
(x)‖ ≤ 1

λ
.
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Once the maps ϕ1, ϕ2, and ϕ3 are constructed the maps g2, g3, and g are defined to
make the above diagram commutative. We follow [K] and describe a particular choice of
maps ϕ1, ϕ2, and ϕ3.

In a neighborhood of each point xi , i = 1, 2, 3, 4, the map ϕ1 is given by

ϕ1(s1, s2) = 1√
κ0(s

2
1 + s2

2 )

(∫ s2
1+s2

2

0

du

ψ(u)

)1/2

(s1, s2)

and it is the identity in T 2\D. Thus, it is a homeomorphism which is aC∞ diffeomorphism
except for the points xi ; it carries the measure ν into the Lebesgue measure and it commutes
with the involution J (t1, t2) = (1 − t1, 1 − t2).

The map ϕ2 : T 2 → S2 is a double branched covering and is regular and C∞
everywhere except for the points xi , i = 1, 2, 3, 4, where it branches; it commutes with
the involution J and preserves the Lebesgue measure; there is a local coordinate system
(τ1, τ2) in a neighborhood of each point pi = ϕ2(xi) such that

ϕ2(s1, s2) =

 s2

1 − s2
2√

s2
1 + s2

2

,
2s1s2√
s2

1 + s2
2


 .

In a neighborhood of the point p4 the map ϕ3 is given by

ϕ3(τ1, τ2) =

τ1

√
1 − τ 2

1 − τ 2
2√

τ 2
1 + τ 2

2

,
τ2

√
1 − τ 2

1 − τ 2
2√

τ 2
1 + τ 2

2


 ,

and it is extended to a C∞ diffeomorphism ϕ3 between S2 \ {p4} and Int D2 which
preserves the Lebesgue measure.

This concludes the construction of the diffeomorphism g in Proposition 1.1.

2. Some additional properties of the diffeomorphism in Katok’s example
We first observe the following crucial properties of the map g1.

PROPOSITION 2.1. There are constants γ0 > 0 andC > 0 such that for every γ0 ≥ γ > 0
one can find a point x0 ∈ T 2 \ D for which

g
j

1 (B(x0, γ ))
⋂
B(x0, γ ) = ∅, −N < j < N, j �= 0,

g
j

1 (B(x0, γ ))
⋂

D = ∅, −N < j < N,

where N = N(γ ) = −(log γ /logλ)− C.

Proof. Note that the statement holds true for the linear hyperbolic automorphism g0 and
the desired result now follows from Lemma 1.2. ✷

We now describe some additional properties of the map g.
Let U be a sufficiently small neighborhood of the singularity set Q = {q1, q2, q3}∪∂D2

where qi = ϕ3(pi), i = 1, 2, 3.
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PROPOSITION 2.2.
(1) The Lyapunov exponents of g are non-zero almost everywhere with respect to the

Lebesgue measure m.
(2) There exist continuous families of stable cones K−

g (x) and unstable cones K+
g (x),

x ∈ D2 \ Q, such that

g−1(K−
g (x)) ⊂ K−

g (g
−1(x)), g(K+

g (x)) ⊂ K+
g (g(x))

and the inclusions are strict on the closure of the set D2 \ U .
(3) The distributions

E−
g (x) =

⋂
j

g−j (K−
g (g

j (x))), E+
g (x) =

⋂
j

gj (K+
g (g

−j (x)))

are one-dimensional dg-invariant and continuous on D2 \ Q; moreover, the map g
is uniformly hyperbolic on D2 \ U: for x ∈ D2 \ U ,

‖dg|E−
g (x)‖ ≤ 1

λ
, ‖dg−1|E+

g (x)‖ ≤ 1

λ
;

furthermore, there is an invariant set X of full measure such that for every x ∈ X,

Esg(x) = E−
g (x), Eug (x) = E+

g (x),

where Esg(x) and Eug(x) are given by (0.1) (with F = g; Ecg(x) = 0 in this case).

(4) The map g possesses two one-dimensional foliations,W−
g andW+

g , of the set D2 \Q
such that

TxW
−
s (x) = E−

g (x), TxW
−
u (x) = E+

g (x), x ∈ D2 \ Q;
the sizes of local leaves V−

g (x) and V+
g (x) are bounded away from zero on the set

D2 \ U; moreover, for every x ∈ X,

Ws
g (x) = W−

g (x), Wu
g (x) = W+

g (x),

where Ws
g(x) andWu

g (x) are given by (0.5) (with F = g).

(5) There exists γ0 > 0 such that for every γ0 > γ > 0 one can find a point x0 ∈ D2 \U
such that

gj (B(x0, γ ))
⋂
B(x0, γ ) = ∅, −N < j < N, j �= 0,

gj (B(x0, γ ))
⋂

U = ∅, −N < j < N,

where N = N(γ ) = −(logγ /logλ)− C and C > 0 is a constant.

Proof. The result follows immediately from Lemmas 1.2 and 1.3, and Proposition 2.1. ✷

Remarks. (1) Katok pointed out to us that the leavesW−
g (x) andW+

g (x) depend Lipschitz

continuously over x ∈ D2 \Q (private communication).
(2) One can show that the set T 2 \ (ϕ1 ◦ ϕ2 ◦ ϕ3)

−1(X) is the union of the stable and
unstable separatrices of the fixed points x1, x2, x3, and x4.
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3. The description of Brin’s example
We outline Brin’s construction from [B2].

Given a positive integer n ≥ 5 set k = [(n− 3)/2] and consider the (n − 3)× (n− 3)
block diagonal matrix A = (Ai), where Ai = ∣∣ 2 1

1 1

∣∣ for i < k and

Ak =




∣∣∣∣∣2 1

1 1

∣∣∣∣∣ , if n is odd,

∣∣∣∣∣∣∣∣
2 1 1

1 1 1

0 1 2

∣∣∣∣∣∣∣∣
, if n is even.

It is easy to see that detA = 1 and that A generates a volume-preserving hyperbolic
automorphism of the torus T n−3. Let T t be the suspension flow over A with the roof
function

H = H0 + εH(x),

where H0 is a constant and the function H(x) is such that |H(x)| ≤ 1. The flow T t is an
Anosov flow on the phase space Yn−2 which is diffeomorphic to the product T n−3 ×[0, 1],
where the tori T n−3 × 0 and T n−3 × 1 are identified by the action of A.

One can choose the functionH(x) such that the flow T t has the accessibility property.
Consider the following skew product map R of the manifold M = D2 × Yn−2:

R(z) = R(x, y) = (g(x), T α(x)(y)), z = (x, y), (3.1)

where the diffeomorphism g is constructed in Proposition 1.1 and α : D2 → R is a non-
negative C∞ function which is equal to zero in the neighborhood U of the singularity set
Q and is strictly positive otherwise.

We define the singularity set for the map R by S = Q × Yn−2, where Q is the
singularity set of the map g (see Proposition 2.2). We also set N = (D2 \ U) × Yn−2

and Z = X × Yn−2, where the sets U and X are defined in Proposition 2.2.

PROPOSITION 3.1. The following statements hold.
(1) The map R possesses four continuous cone families K−

R (z), K
−c
R (z), K+

R (z), and
K+c
R (z), z ∈ M \ S, such that

R−1(K−
R (z)) ⊂ K−

R (R
−1(z)), R(K+

R (z)) ⊂ K+
R (R(z)),

R−1(K−c
R (z)) ⊂ K−c

R (R−1(z)), R(K+c
R (z)) ⊂ K+c

R (R(z)),
(3.2)

and inclusions are strict on the closure of the set N ; moreover, there exists µ > 1
such that for all z ∈ N ,

‖dR(v)‖ > µ‖v‖ for all v ∈ K+(z),

‖dR(v)‖ < 1

µ
‖v‖ for all v ∈ K−(z).

(3.3)
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(2) For every z ∈ Z the formulae

EsR(z) =
⋂
j

R−j (K−
R (R

j (z))), EuR(z) =
⋂
j

Rj (K+
R (R

−j (z))),

determine dR-invariant stable and unstable continuous distributions such that

TzM = EsR(z)⊕ EcR(z)⊕ EuR(z),

where EcR(z) is the one-dimensional central (flow) direction.
(3) For every z ∈ N ∩ Z,

‖dR|EsR(z)‖ ≤ 1

µ
, ‖dR−1|EuR(z)‖ ≤ 1

µ
.

(4) For every z = (x, y) ∈ Z,

π1E
s
R(z) = Esg(x), π1E

u
R(z) = Eug(x),

π2E
s
R(z) = EsT t (y), π2E

u
R(z) = EuT t (y),

where π1 : TzM → TxD2 and π2 : TzM → TyYn−2 are the natural projections.
(5)

m{x ∈ M : Rn(x) ∈ U for all n ∈ Z} = 0.

Proof. For every z = (x, y) ∈ (U \ S)× Yn−2 we set

K−
R (z) = K−

g (x)×Ks
T t (y), K+

R (z) = K+
g (x)×Ku

T t (y).

Now for every z ∈ N one can find numbers n1 = n1(z) and n2 = n2(z) such that

Rn1(z), R−n2(z) ∈ (U \ S)× Yn−2.

Set
K+
R (z) = dRn2K+

R (R
−n2 (z)), K−

R (z) = dR−n1K−
R (R

n1).

It is not difficult to show that K+
R (z) and K−

R (z) do not depend on the choice of numbers
n1 and n2 and, by Proposition 2.2 (see statements (1)–(3)), have all the desired properties.
We show that the distribution EuR(z) is continuous over z ∈ Z. Indeed, let zn ∈ Z be
a sequence of points which converges to a point z ∈ Z. By statements (2) and (3) of
Proposition 2.2, given δ > 0, one can find a number m = m(z) such that the cone
Rm(K+

R (R
−m(z))) is contained in the cone around EuR(z) of angle δ. Therefore, for all

sufficiently large n the cones Rm(K+
R (R

−m(zn))) are contained in the cone around EuR(z)
of angle 2δ. Since EuR(zn) ⊂ Rm(K+

R (R
−m(zn))) the continuity of the distribution EuR(z),

z ∈ Z, follows. Similar arguments show the continuity of the distribution EsR(z) over
z ∈ Z. Statement (3) follows from statement (3) of Proposition 2.2 and statement (4)
is obvious. The last statement is a consequence of statement (1) of Lemma 1.2 and the
properties of the maps ϕ1, ϕ2, and ϕ3 (see §1). ✷

PROPOSITION 3.2. The distributions EsR(z) and EuR(z) generate two foliations, Ws
R and

Wu
R , of Z; the sizes of local leaves V sR(z) and V uR(z) are bounded away from zero on the

set N ∩ Z.
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Proof. We follow arguments in [B2]. Let z = (x, y) ∈ Z. Set

Ws
R(z) =

⋃
x̂∈Ws

g(x)

(x̂,Ws
T t (T

ts(x̂)(y)),

Wu
R(z) =

⋃
x̂∈Wu

g (x)

(x̂,Wu
T t (T

tu(x̂)(y)),

where

ts (x̂) =
∞∑
n=0

α(gn(x̂)− α(gn(x))),

tu(x̂) =
∞∑
n=0

α(g−n(x̂)− α(gn(x))).

(3.4)

Note that each series in (3.4) converges for every x ∈ Z. Indeed, since the point
(ϕ1 ◦ ϕ2 ◦ ϕ3)

−1(x) does not lie on a separatrix of any of the fixed points x1, x2, x3, and
x4 the series converges exponentially fast. The desired properties of the foliationsWs

R and
Wu
R follow from Propositions 2.2 and 3.1. ✷

Remark. We shall show below (see Proposition 5.1) that the distributionsEsR(z) andEuR(z)
as well as foliationsWs

R(z) and Wu
R(z) can be extended to continuous distributions on and

foliations of M \ S.

We proceed with Brin’s construction.

LEMMA 3.3. (See [B2]) There exists a smooth embedding of the manifold Yn−2 into R
n†.

We now state the main result in [B2].

PROPOSITION 3.4. Given a compact smooth Riemannian manifold K of dimension n ≥ 5
there exists a C∞ diffeomorphism h of K such that:
(1) h preserves the Riemannian volume on K;
(2) for almost every z ∈ K there exists a decomposition

TzK = Esh(z)⊕ Ech(z)⊕ Euh(z)

into dh invariant stable, central, and unstable subspaces such that dimEch(z) = 1
and the Lyapunov exponents at the point z of a vector v ∈ TzK

χ(z, v)



< 0, if v ∈ Esh(z),
= 0, if v ∈ Ech(z),
> 0, if v ∈ Euh(z);

(3) h satisfies the essential accessibility property and is a Bernoulli diffeomorphism.

† The proof of this statement in [B2] needs some minor corrections. The manifold Yn−2 is of codimension two.
Although not every codimension-two manifold has trivial normal bundle, Yn−2 does. This can easily be seen
from its construction. Similar observation should be made wherever triviality of the normal bundle is used.
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Proof. Using Lemma 3.3 one can construct a smooth embedding χ1 : K → Bn (where Bn
is the unit ball in R

n) which is a diffeomorphism except for the boundary ∂D2 × Yn−2.
Then using results in [K] one can find a smooth embedding χ2 : Bn → K which is a
diffeomorphism except for the boundary ∂Bn. Since the map R is identity on the boundary
∂D2 × Yn−2 the map h = (χ1 ◦ χ2) ◦ R ◦ (χ1 ◦ χ2)

−1 has all the properties stated in
Proposition 3.4. ✷

4. The perturbation of the diffeomorphism in Brin’s example
Fix a number γ > 0 and a point y0 ∈ Yn−2 and set D = B(x0, γ ) × B(y0, γ ) (where the
point x0 is chosen in Proposition 2.2, see statement (5)).

In this section we prove the following result.

PROPOSITION 4.1. Given ε > 0, there is a C∞ diffeomorphism P : M → M such that
(1) P preserves the Riemannian volumem;
(2) dC1(P,R) ≤ ε where the map R is defined by (3.1); moreover, P |(M \ D) =

R|(M \D);
(3) for almost every z ∈ M there exists a decomposition

TzM = EsP (z)⊕EcP (z)⊕ EuP (z)

into dP invariant subspaces such that dimEcP (z) = 1 and the Lyapunov exponent at
the point z of a vector v ∈ TzM is

χ(z, v)

{
<0, if v ∈ EsP (z),
>0, if v ∈ EuP (z);

(4) the Lyapunov exponent χcP (z) in the central direction satisfies∫
M
χcP (z) dm < 0.

Proof. Let ϕx : Yn−2 → Yn−2, x ∈ M, be a family of volume-preserving C∞
diffeomorphisms satisfying

dC1(ϕx, Id) ≤ ε, ϕx(y) = y for (x, y) ∈ M \D. (4.1)

A particular choice of such a family of diffeomorphisms will be specified below (see
Lemma 4.4). Set

ϕ(x, y) = (x, ϕx(y)), P = ϕ ◦ R. (4.2)

It is easy to see that the map P is C∞, volume preserving, and

P |(M \D) = R|(M \D), dC1(P,R) ≤ ε. (4.3)

It follows from Proposition 3.1 and the first relation in (4.3) that, for every z ∈ M \ S,

P−1(K−
R (z)) ⊂ K−

R (P
−1(z)), P (K+

R (z)) ⊂ K+
R (P (z))

P−1(K−c
R (z)) ⊂ K−c

R (P−1(z)), P (K+c
R (z)) ⊂ K+c

R (P (z))
(4.4)
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and inclusions are strict on the set M \ S. Therefore, the formulae

EsP (z) =
⋂
j

P−j (K−
R (P

j (z))), EuP (z) =
⋂
j

P j (K+
R (P

−j (z))) (4.5)

define subspaces at every point z ∈ Z. Clearly, these subspaces are dP -invariant.
Moreover, since the first coordinate of the point P(x, y) depends only on x (see (4.2))
we obtain that

π1E
s
P (z) = Esg(x), π1E

u
P (z) = Eug(x), (4.6)

where z = (x, y) (recall that π1 : TzM → TxD2 is the natural projection).

Remark. We shall show below (see Proposition 5.1) that for any sufficiently small gentle
perturbation P of the map R the distributions EsP and EuP can be extended to continuous
distributions E−

P and E+
P on the set M \ S (but not just the set Z). However, the property

(4.6) holds true only due to the special form of the perturbation (see (4.2)). This property
is crucial for our further study (see Proposition 5.2).

LEMMA 4.2.
(1) For every sufficiently small γ > 0 and z = (x, y) ∈ Z with x ∈ B(x0, γ ) we have

that
� (EuP (z),EuR(z)) ≤ Cγ logµ/logλ,

� (EsP (z), dP−1EsR(P (z))) ≤ Cγ logµ/logλ.
(4.7)

(2) There is a number ν > 1 such that for every z ∈ N ∩ Y ,

‖dP |EsP (z)‖ ≤ 1

ν
, ‖dP−1|EuP (z)‖ ≤ 1

ν
. (4.8)

Proof of the lemma. The second statement follows immediately from the first one and
statement (3) of Proposition 3.1. We will prove the first inequality in (4.7), the proof of the
second one is similar. Consider the point

z∗ = (x∗, y∗) = R−(N−1)(P−1(z)),

where N = N(γ ) is defined in Proposition 2.2 (see statement (5)). By (4.3),

d(EuP (z
∗), EuR(z

∗)) ≤ δ,

where d is the distance in the Grassmanian manifold and δ = δ(ε) > 0 is sufficiently
small. Since

Pj (z∗) = Rj (z∗) for 0 ≤ j ≤ N − 1 (4.9)

we obtain using statement (3) of Proposition 3.1 that

d(dRN−1EuP (z
∗), dRN−1EuR(z

∗)) ≤ δ

µN−1 .

Again using (4.9) we rewrite the last inequality as

d(EuP (P
−1(z)), EuR(P

−1(z))) ≤ δ

µN−1 ≤ δµγ logµ/logλ.

Applying dP we obtain the desired result. ✷
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Since the mapsR and P preserve the Riemannian volume we have, for every z ∈ M\S,

�+(z, R, ε)+�−(z, R, ε)+ χcR(z) = �+(z, R, ε)+�−(z, R, ε) = 0,

�+(z, P, ε)+�−(z, P, ε)+ χcP (z) = 0,

(see (0.3) for the definition of the terms). It follows that∫
M
χcP (z) dm =

∫
M
�+(z, R, ε) dm−

∫
M
�+(z, P, ε) dm

+
∫
M
�−(z, R, ε) dm−

∫
M
�−(z, P, ε) dm. (4.10)

LEMMA 4.3. We have∫
M
�+(z, P, ε) dm−

∫
M
�+(z, R, ε) dm =

∫
D

(log[det(Hu)(z)] + O(εlogµ/logλ)) dm,∫
M
�−(z, P, ε) dm−

∫
M
�−(z, R, ε) dm

= −
∫
D

(log[det(H−1)s(z)] + O(εlogµ/logλ)) dm,

where
Hu(z) = dϕ|EuR(z), (H−1)s(z) = dϕ|EsR(z). (4.11)

Proof of the lemma. We will establish the first relation. The proof of the second one is
similar. Consider the induced maps R̃ and P̃ generated by the maps R and P , respectively,
on the setD. These maps are well defined for almost every z ∈ D. Let D̃ be the set of such
points. By Kac’s formula∫

M
�+(z, R, ε) dm =

∫
D̃

�+(z, R̃, ε) dm,∫
M
�+(z, P, ε) dm =

∫
D̃

�+(z, P̃ , ε) dm.

It follows that∫
M

[�+(z, P, ε) −�+(z, R, ε)] dm =
∫
D̃

[�+(z, P̃ , ε)−�+(z, R̃, ε)] dm.

Fix z = (x, y) ∈ D̃. Every vector v ∈ EuP (z) can be written in the form v = vR+w where
vR ∈ EuR(z) and w ∈ EsR(z) ⊕ EcR(z). Denote by N = N(z) the first return time of the
point z to D̃ under the map R. By (4.2) we have that the first return time of Z to D̃ under
the map P is also N . Moreover, by Lemma 4.2,

dPNv = dϕdRN(vR +w)

= ‖dRNvR‖dϕ
(
dRNvR

‖dRNvR‖
)
(1 + O(µ−N))

= (1 + O(µ−N))‖dRNvR‖
[
Hu

dRNvR

‖dRNvR‖ + w∗
]
,
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where w∗ is a vector in EsR(z)⊕EcR(z). Notice that∫
D̃

�+(z, P̃ , ε) dm =
∫
D̃

log det(dP̃ |EuP (z)) dm,∫
D̃

�+(z, R̃, ε) dm =
∫
D̃

log det(dR̃|EuR(z)) dm.
It follows that∫

D̃

(�+(z, P̃ , ε)−�+(z, R̃, ε)) dm =
∫
D̃

log
detHu(PN |EuP (z))
detHu(RN |EuR(z))

dm

=
∫
D̃

(log detHu(RN(z))+ O(µ−N)) dm

=
∫
D̃

(log detHu(RN(z))+ O(γ logµ/logλ)) dm.

The desired result now follows. ✷

For z = (x, y) ∈ Z we set

H̃u(z) = ∂ϕx

∂y

∣∣∣∣(EuR(z) ∩ TzYn−2), (H̃−1)s(z) = ∂ϕx

∂y

∣∣∣∣(EsR(z) ∩ TzYn−2).

It follows from the definition of the map ϕ (see (4.2)) that

detHu(z) = det H̃u(z), detHs(z) = det H̃s(z).

Therefore, using (4.10) and Lemma 4.3 we obtain that∫
M
χc
P̃
(z) dm =

∫
D̃

([log det H̃u(z)− log det(H̃−1)s(z)] + O(γ logµ/logλ)) dm. (4.12)

LEMMA 4.4. There is a family of diffeomorphisms ϕx : Yn−2 → Yn−2 satisfying (4.1)
and such that∫
D̃

[−log det H̃u(z)+ log det(H̃−1)s(z)] dm ≤ −Cε2γ n−2 + O(ε3)γ n−2 + o(1)O(γ n),

where C > 0 is a constant.

Proof of the lemma. Choose a coordinate system {x, y} = {x1, x2, y1, y2, . . . , yn−2} in D
such that:
(1) dm = dx dy;
(2)

EcT t (y0) = ∂/∂y1, EsT t (y0) = 〈∂/∂y2, . . . , ∂/∂yk〉,
EuT t (y0) = 〈∂/∂yk+1, . . . , ∂/∂yin−2〉

for some k, 2 ≤ k < n− 2.
Let ψ(t) be a C∞ function with compact support. Set τ = γ−2(‖x‖2 + ‖y‖2) and

define

ϕ−1
x (y) = (x, y1 cos(εψ(τ))+ y2 sin(εψ(τ)),−y1 sin(εψ(τ))

+ y2 cos(εψ(τ)), y3, . . . , yn−2). (4.13)
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Since the distributions EuR(z) and EsR(z) are continuous (see statement (2) of
Proposition 2.2) by (4.11) we find that∫

D̃

log det H̃u(z) dm = o(1)m(D) = o(1)O(γ n) (4.14)

and∫
D̃

log det(H̃−1)s(z) dm =
∫
D̃

log det(dϕ−1
x |EsR)(z) dm

=
∫
D̃

log det

(
dϕ−1

x

∣∣∣∣
〈
∂

∂y2
, . . . ,

∂

∂yk

〉)
(x, y) dx dy + o(1)m(D)

=
∫
D̃

log det

(
dϕ−1

x

∣∣∣∣
〈
∂

∂y2
, . . . ,

∂

∂yk

〉)
(x, y) dx dy+o(1)O(γ n).

(4.15)

It is easy to see that

det

(
dϕ−1

x

∣∣∣∣
〈
∂

∂y2
, . . . ,

∂

∂yk

〉)
(x, y) = −2y1y2

γ 2
εψ ′(τ ) cos(εψ(τ))+ cos(εψ(τ))

− 2y2
2

γ 2
εψ ′(τ ) cos(εψ(τ)).

It follows that

log det

(
dϕ−1

x

∣∣∣∣
〈
∂

∂y2
, . . . ,

∂

∂yk

〉)
(x, y) = −2y1y2

γ 2
εψ ′(τ )− 2y2

1y
2
2

γ 4
ε2(ψ ′(τ ))2

− 1

2
ε2(ψ(τ))2 − 2y2

2

γ 2 ε
2ψ(τ)ψ ′(τ )+ O(ε3).

Making the coordinate change η = y/γ we compute that∫
D̃

log det

(
dϕ−1

x

∣∣∣∣
〈
∂

∂y2
, . . . ,

∂

∂yk

〉)
(x, y) dx dy

= γ n−2
∫
B(x0,γ )

dx

∫
Rn−2

[−2η1η2εψ(τ)
′] dη

+ γ n−2
∫
B(x0,γ )

dx

∫
Rn−2

[−2η2
1η

2
2ε

2(ψ(τ)′)2] dη

+ γ n−2
∫
B(x0,γ )

dx

∫
Rn−2

[
−1

2
ε2(ψ(τ))2 − 2ε2ψ(τ)ψ(τ)′η2

2

]
dη+O(ε3)γ n−2.

(4.16)

Since the function ψ has compact support, the first integral in (4.16) is zero. Integrating
by parts we obtain that∫

Rn−2
ε2ψ(τ)ψ(τ)′η2

2 dη = −1

4

∫
Rn−2

ε2(ψ(τ))2 dη.

Hence, the third integral in (4.16) is also zero. The second integral is a strictly negative
number of order O(ε2γ n−2). The desired result follows. ✷
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Using Lemma 4.4 and (4.12) we obtain that∫
M
χc
P̃
(z) dm = −Cε2γ n−2 + O(ε3)γ n−2 + o(1)O(γ n)+ O(γ logµ/logλ+n).

In order to complete the proof of the proposition we choose the number γ so small that
γ 2 ≤ ε3. ✷

5. Absolute continuity and orbit density of the perturbation
In this section we establish some additional crucial properties of the diffeomorphism P

given by (4.2).

Definition. A perturbation P of the map R is called gentle if P = R on U × Yn−2.

If P is a gentle perturbation of R which is sufficiently close to R then P satisfies (3.2)
and (3.3). In what follows we assume that P has these properties. Set

E+
P (z) =

⋂
j

dP j (K+
R (P

−j (z))), E−
P (z) =

⋂
j

dP−j (K−
R (P

j (z))),

E+c
P (z) =

⋂
j

dP j (K+c(P−j (z))), E−c
P (z) =

⋂
j

dP−j (K−c(P j (z))),

EcP (z) = E+c
P (z)

⋂
Ec−P (z).

(5.1)

PROPOSITION 5.1. The following statements hold:
(1) E+

P (z), E
−
P (z), E

+c
P (z), E−c

P (z), and EcP (z) are dP invariant distributions which
depend continuously over z ∈ M \ S;

(2) the distributions E−
P (z) and E+

P (z) are integrable and the corresponding global
leavesW−

P (z) andW+
P (z) form foliations of the set M \ S;

(3) for every z ∈ Z we have

EsP (z) = E−
P (z), EuP (z) = E+

P (z), Ws
P (z) = W−

P (z), Wu
P (z) = W+

P (z),

where the distributions EsP (z), E
u
P (z) and the foliations Ws

P (z), W
u
P (z) are defined

by (0.1) and (0.5), respectively; moreover, the sizes of the local leaves V −
P (z) and

V +
P (z) are uniformly bounded away from zero on the set N ;

(4) the distributions and the foliations depend continuously on P .

Proof. Consider the set

M+ = {z ∈ M \ S : Pn(z) → S as n → +∞}.
Note that:
(a) for every z ∈ M \ M+ there exists a sequence of numbers nk → +∞ such that

Pnk (z) ∈ N ;
(b) for every z ∈ M+ there exists a number n0 = n0(z) such that for every n ≥ n0 if we

write Pn(z) = (xn, yn) then xn = gn−n0xn0 .
It follows from (a) and (b) that E−

P (z) is a dP invariant distribution. We shall show
that it is continuous. Fix z ∈ M \ S and ε > 0. Let zm be a sequence of points which
converges to z. There exists n > 0 such that dP−n(K−

R (P
n(z))) is contained in a cone
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around E−
P (z) of angle ε. By (a), (b), and the continuity of the cone family K−

R one can
find M > 0 such that for every m ≥ M the angle of the cone dP−n(K−

R (P
n(zm))) does

not exceed 2ε. Since E−
P (zm) ⊂ dP−n(K−

R (P
n(zm))) we conclude that the Grassmanian

distance between E−
P (zm) and E−

P (z) does not exceed 3ε.
We shall show that the distribution E−

P (z) is integrable. Fix z ∈ M \ M+. Consider
a u-admissible manifold V − at z, i.e. a local smooth submanifold passing through z and
such that TwV − ⊂ K−

R (w) for every w ∈ V−. We have for z ∈ M+,

W−
P (z) =

⋃
ni≥0

P−nk (V −(P nk (z))) = Ws
P (z).

For z ∈ M+ the existence of the manifold W−
P (z) follows from property (a) and

Proposition 2.2. The desired properties of the foliation W−
P follow from continuity of

the distributionE−
P (z), Lemma 4.2 (see equation (4.8)), and Proposition 2.2. Using similar

arguments one can establish the desired properties of other distributions in (5.1) and the
corresponding foliations. ✷

It is easy to see that the perturbationP given by (4.2) is gentle and hence Proposition 5.1
applies. Furthermore, due the special form of the perturbation we will obtain additional
crucial information.

For every z = (x, y) ∈ M \ S we define ‘traces’ of stable and unstable global leaves
for the maps R and P on the fiber (Yn−2)x by

W̃ s
R(y) = Ws

R(z) ∩ (Yn−2)x, W̃−
P (y) = W−

P (z) ∩ (Yn−2)x,

W̃u
R(y) = Wu

R(z) ∩ (Yn−2)x, W̃+
P (y) = W+

P (z) ∩ (Yn−2)x .

PROPOSITION 5.2.
(1) For every z ∈ M \ S the collections of manifolds W̃ s

R(y), W̃
u
R(y), W̃

−
P (y), W̃

+
P (y)

form four foliations of (Yn−2)x ; for x ∈ N , the sizes of local leaves Ṽ sR(y), Ṽ
u
R(y),

Ṽ −
P (y), Ṽ

+
P (y) are uniformly bounded away from zero.

(2) Given δ > 0 there exists ε > 0 such that if dC1(P,R) ≤ ε then, for every
z = (x, y) ∈ N ,

ρ(Ṽ sR(y), Ṽ
−
P (y)) ≤ δ, ρ(Ṽ uR(y), Ṽ

+
P (y)) ≤ δ.

Proof. The result follows from Propositions 3.1, 3.2, 5.1, and Lemma 4.2. ✷

We now establish the absolute continuity property. Choose a point z0 ∈ N and consider
the local manifolds V +

P (z), z ∈ B(z0, r) ∩ Z, for a sufficiently small number r > 0. Since
the manifolds depend continuously on z ∈ N ∩ Z there is a local submanifoldW passing
through z0 and transversal to V +

P (z). Set

A =
⋃

z∈B(z0,r)∩Z
V+
P (z). (5.2)

Denote by ξ the partition of A by V +
P (z), z ∈ B(z0, r)∩Z. Note that the factor space A/ξ

can be identified withW ∩A. Finally, we denote bym+
z andmW respectively the Lebesgue

measure on V+
P (z) and on W induced by the Riemannian metric. Since the set Z has full

measure for almost every point z0 ∈ Z, we have that mW(W ∩ A) = 1.
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PROPOSITION 5.3. The foliationW+
P of the set N∩Z is absolutely continuous: for almost

every point z ∈ N ∩ Z,
(1) the conditional measure on the element V +

P (z) of this partition is absolutely
continuous with respect to the measure m+

z ;
(2) the factor measure on the factor space A/ξ is absolutely continuous with respect to

the measure mW .
A similar statement holds for the foliation W−

P of N ∩ Z.

Proof. If the map P were (fully) non-uniformly hyperbolic the desired result would follow
from [BP, Theorem 14.1] (see Lemma 14.4). It requires a simple and standard modification
to generalize the arguments there to the partially non-uniform hyperbolic case. ✷

Our next statement establishes the essential accessibility property of the map P .

PROPOSITION 5.4. If the perturbation P is sufficiently close to R then any two points
p, q ∈ Z ∩ N are accessible.

Proof. Let p = (p1, p2) and q = (q1, q2). One can connect points p1 and q1 by a path
[x0, . . . , x�]g such that x0 = p1, x� = q1, and each point xi ∈ X. Without loss of
generality we may assume that x1 ∈ V −

g (x0). The local stable manifold V −
P (p) intersects

the fiber (Yn−2)x0 at a single point y1 ∈ Z. Proceeding by induction we construct points
y2, . . . , y�, such that each point zi = (xi, yi) ∈ Z, i = 0, 1, . . . , y�, and the path
[z0, z1, . . . , z�]P connects the points p and z�. Note also that y� ∈ (Yn−2)q1 . Fix a number
r > 0 and consider the interval [y−, y+] on the trajectory T t (q2) centered at q2 of radius
r . Since the flow T t has the accessibility property (see §3) for every s ∈ [y−, y+] one can
find a path [y�, s]T t . Moreover, paths corresponding to different s are homotopic to each
other. By Propositions 3.2 and 5.2 and statement (4) of Proposition 3.1, one can find a
family of homotopic paths [z�, (q1, s)]P such that s runs over an interval on the trajectory
T t (q2). For sufficiently small ε, this interval contains a subinterval centered at q2 of length
r − δ > 0. The desired result follows. ✷

We now show that the map P is topologically transitive; indeed, we prove a stronger
statement.

PROPOSITION 5.5. For almost every point z ∈ N the trajectory {Pn(z)} is dense in N
(i.e. {Pn(z)} ⊃ N ).

Proof. Consider a maximal set E0 ⊂ N of points z for which:

z is topologically recurrent, i.e. for any r > 0 there exists n ∈ Z such that

Pn(z) ∈ B(z, r); (5.3)

for any w ∈ E0 the points z and w are accessible. (5.4)

LEMMA 5.6. m(E0) = 1.

Proof of the lemma. Since the set of topologically recurrent points has full measure the
desired result follows from Proposition 5.4. ✷
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LEMMA 5.7. There exists a set E such that m(E) = 1, E satisfies (5.3), (5.4), and the
following condition:

for every z ∈ E the sets V αP (z) ∩ E, α ∈ {−,+}, have full measure with respect

to the Riemannian volume on V αP (z). (5.5)

Proof of the lemma. Given a set F ⊂ M , set

F ∗ = {z ∈ F : the sets F ∩ V αP (z), α ∈ {+,−} have full measure}
(with respect to the Riemann volume on V αP (z)). Starting with the setE0, define inductively
En = E∗

n−1. It follows from the absolute continuity of stable and unstable foliations (see
Proposition 5.3) that m(En) = 1. Let E = ⋂∞

n=0 En. Then m(E) = 1 and (5.3) and (5.4)
are satisfied since E ⊂ E0. Also if z ∈ E then z ∈ En for each n. Therefore, the sets
V αP (z) ∩ En, α ∈ {+,−} have full measure and hence, so do the sets V αP (z) ∩ E. ✷

Choose any two points z,w ∈ E and let [z0, . . . , z�] be a path connecting them.

LEMMA 5.8. Given δ > 0, there are points z′j ∈ E, j = 0, . . . , � such that z′0 = z, and
d(zj , z

′
j ) ≤ δ for j = 1, . . . , �.

Proof of the lemma. Without loss of generality we may assume that z1 ∈ V+
P (z0). If z1 ∈ E

we set z′1 = z1. Otherwise, fix 0 < δ1 ≤ δ and let z′1 ∈ E be a point such that z′1 ∈ V+
P (z0)

and d(z1, z
′
1) ≤ δ1 (such a point exists for every δ1 in view of (5.4)). If δ1 is sufficiently

small, for any 0 < δ2 ≤ δ1 one can find a point z′2 ∈ E such that z′2 ∈ V −
P (z

′
1) and

d(z2, z
′
2) ≤ δ2. Since the length of the path � is uniformly bounded over z and w it

remains to use induction to complete the proof. ✷

We proceed with the proof of the proposition. Choose z,w ∈ E and let z′j ∈ E,
j = 0, . . . , �, be points constructed in Lemma 5.8. Fix δ > 0 and the numbers
0 < δ1 < · · · < δ� ≤ δ. There exists m1 > 0 such that d(Pn(z0), P

n(z′1) ≤ 1
2δ1 for

every n ≥ m1. By (5.2), there exists n1 ≥ m1 for which d(Pn1 (z1), z1) ≤ 1
2δ1. It follows

that d(Pn1(z0), z
′
1) ≤ δ1.

There exists m2 > 0 such that, for every n ≥ m2, d(P−n(z′1), P−n(z′2)) ≤ 1
3δ2.

By (5.2), there is n2 ≥ m2 for which d(P−n2(z′2), z′2) ≤ 1
3δ2. It follows that

d(P−n2(z′1), z′2) ≤ 2
3δ2. Note that if δ1 is chosen sufficiently small (depending only on

n2) and n1 is chosen accordingly then d(Pn1−n2(z0), z
′
2) ≤ δ2. Proceeding by induction

we find numbers ni , i = 1, . . . , �, such that

d(Pn1−n2+···±n�(z0), z
′
�) ≤ δ�.

This implies that for almost every point z ∈ N ∩ E the orbit {Pn(z)} is everywhere
dense. The desired result for almost every point z ∈ M follows from statement (2) of
Proposition 4.1 and statement (5) of Proposition 3.1. ✷

6. Proof of the Main Theorem: the case dimK ≥ 5
Consider the set L of points for which χc(z) < 0 and, hence, all values of the Lyapunov
exponent at z are non-zero. It is well known that ergodic components of P |L have positive
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measure. Let Q be such a component. In view of statement (5) of Proposition 3.1 the set
Q ∩ N has positive measure. Let z0 be a Lebesgue point of the set Q ∩ N . Fix r > 0
and consider the set A defined by (5.2). Using Proposition 5.3 and applying the standard
Hopf argument (see the proof of Theorem 13.1 in [BP]) one can show that Q ⊃ A for
sufficiently small r . This implies that Q is open (mod 0) and so is the set L. Applying
Proposition 5.5 we conclude that P |L is ergodic. Note that the same arguments can be
used to show that the map Pn is ergodic for all n. Hence, P is a Bernoulli diffeomorphism.
It also follows from Proposition 5.5 that m(L) = 1.

Set f = (χ1 ◦ χ2) ◦ P ◦ (χ1 ◦ χ2)
−1 where the maps χ1 and χ2 are constructed in

Proposition 3.4. It follows that the map f satisfies all the desired properties.

Remark. Let us mention another approach for establishing ergodicity of P . Using the
theory of invariant foliations one can show that if P is sufficiently close to R then W̃α

P (z)

are uniformly close to W̃α
R(z) for all z ∈ Z, α = u, s. Let L ⊂ N be such that there exist

sets Lα which consist of the whole leaves of W̃α
P such that mN (L%Lα) = 0 (where mN

is the restriction of the Riemannian volume to N ). It follows from [PS] that mN (L) = 0
ormN (L) = 1. Hence, if � is a P -invariant set then m(�

⋂
Nz) = 0 or m(�

⋂
Nz) = 1

for almost all z ∈ M. It follows that � factors down to a g-invariant set. This implies that
P is ergodic. In this paper we choose to present another proof since it extends to the case
dimK = 3 or 4 as we show below.

7. Proof of the Main Theorem: the case dimK = 3 and 4
Consider the manifold M = D2 × T �, where � = 1 if dimK = 3 and � = 2 if dimK = 4,
and the skew product map R

R(z) = R(x, y) = (g(x), Rα(x)(y)), z = (x, y), (7.1)

where the diffeomorphism g is constructed in Proposition 1.1, Rα(x) is the translation by
α(x), and α : D2 → R is a non-negativeC∞ function which is equal to zero on the set U
(defined in Proposition 2.2) and is strictly positive otherwise.

We define the singularity set for the map R by S = Q× T �, where Q is the singularity
set of the map g, and we also set N = (D2\U)×T � andZ = X×T � (see Proposition 2.2).

As before we have four cone familiesK+
R (z),K

+c
R (z),K−

R (z), andK−c
R (z)which satisfy

(3.2) and (3.3).
We say that the map R is robustly accessible if for all p, q ∈ N and any pair of

foliations F+ and F− which are close to W+
R and W−

R respectively, there exists a path
[p, q] = [z0z1 . . . z�] such that zj+1 ∈ Fα(zj ), α ∈ {+,−}.
PROPOSITION 7.1. The function α(x) (see (7.1)) can be chosen such that the map R is
robustly accessible.

Proof. By [B1] (see also [BW]), a generic skew product over multiplication by the map∣∣ 5 8
8 13

∣∣ of T 2 is robustly accessible. Now the statement follows from statement (1) of
Lemma 1.2. ✷

Choose the function α(x) such that R is robustly accessible. Then any gentle
perturbation of R has the accessibility property. Repeating the proof of Proposition 5.5
we obtain the following result.
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COROLLARY 7.2. Any gentle perturbation P of R which is sufficiently close to R has no
open invariant sets.

We consider a gentle perturbation P of R in the form P = ϕ ◦ R. We wish to choose ϕ
such that ∫

M
log det(dP |EcP )(z) dm(z) = −ρ < 0. (7.2)

Indeed, in the case M = D2 ×S1, consider a coordinate system ξ = {ξ1, ξ2, ξ3} in a small
neighborhood of a point z0 such that:
(1) dm = dξ ;
(2) EcR(z0) = ∂/∂ξ1, EsR(z0) = ∂/∂ξ2, EuR(z0) = ∂/∂ξ3.

Let ψ(t) be a C∞ function with compact support. Set τ = ‖ξ‖2/γ 2 and define

ϕ−1(ξ) = (ξ1 cos(εψ(τ))+ ξ2 sin(εψ(τ)),−ξ1 sin(εψ(τ))+ ξ2 cos(εψ(τ)), ξ3).

The proof of (7.2) is similar to the proof of Lemma 4.4 (with γ chosen such that γ ≤ ε3).
In the case M = D2 × T 2 write M = (D2 × S1)× S1 and let ϕ1 = ϕ× Id where ϕ is the
above map (note that the distributions EsR , EuR , and EcR are translation invariant).

In the case dimK = 3 the remaining part of the proof repeats the arguments in the
case dimK ≥ 5 (see Propositions 5.1, 5.3, 5.4 and 5.5 and §5). Note that the embeddings
χ1 : M → B3 and χ2 : B3 → K should be chosen according to [BFK].

We now proceed with the case dimK = 4. We further perturb the map P to P̄ to obtain
a set of positive measure on which P̄ has three negative Lyapunov exponents.

PROPOSITION 7.3. Suppose that the support of the map ϕ is sufficiently small. Then for
all positive ε1, ε2 there exists a gentle perturbation P̄ of P such that dC1(P, P̄ ) ≤ ε1 and∫

M
[χc1 (z, P̄ )− χc2 (z, P̄ )] dm(z) ≤ ε2,

where χc1 (z, P̄ ) ≥ χc2 (z, P̄ ) are the Lyapunov exponents of P̄ along the subspace Ec
P̄
(z).

Proof. See §8. ✷

If ε1 and ε2 are sufficiently small then χc1 (z, P̄ ) < 0 and χc2 (z, P̄ ) < 0 on a set of
positive measure. Indeed, by (7.2) there exist ε1 > 0 and C > 0 such that for any gentle
perturbation P̄ of P with dC1(P, P̄ ) ≤ ε1 we have∫

M
(χc1 (z, P̄ )+ χc2 (z, P̄ )) dm ≤ −ρ

2

and |χc1 (z, P̄ )±χc2 (z, P̄ )| ≤ C. Hence, χc1 (z, P̄ )+χc2 (z, P̄ ) < −ρ/4 on a set of measure
at least ρ/4C and χc1 (z, P̄ )− χc2 (z, P̄ ) > ρ/8 on a set of measure at most 8ε2/C.

To complete the proof one now proceeds as in the case dimK ≥ 5.

8. Almost conformality
We will prove Proposition 7.3. We follow the arguments in [M1, Bo] and split the proof
into several steps. In what follows we adopt the following agreement: if at some step we
use a statement of the type:

https://doi.org/10.1017/S0143385702000202 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385702000202


Every compact manifold carries a completely hyperbolic diffeomorphism 431

‘for any positive ε�1, . . . , ε�p there exist positive εk1, . . . , εkq such that . . . ’

then each time thereafter we assume that εkj (j = 1, . . . , q) are functions of ε�i (i =
1, . . . , p) satisfying the condition above.

Consider the set D = {z ∈ M \ S : χc1 (z, P ) �= χc2 (z, P )}. If m(D) = 0 the desired
result follows (it suffices to choose P̄ = P ). From now on we assume that m(D) > 0. Let
Ec1(z) and Ec2(z) be the one-dimensional Lyapunov directions corresponding to χc1 (z, P )
and χc2 (z, P ). They are defined for almost every z ∈ D.

LEMMA 8.1. For every ε3 > 0 there is a measurable function n0 : M \ S → N such that
for any z ∈ M\S and two one-dimensional subspacesE′, E′′ ∈ EcP (z) one can find maps

Lj(z,E
′, E′′) : EcP (P j−1(z)) → EcP (P

j (z)), 1 ≤ j ≤ n0(z)

satisfying:
(1) Lj(z,E

′, E′′) = Rβj (z,E′,E′′)(dP |EcP (z)) where Rβ denotes the rotation by angle β
and βj = βj (z,E

′, E′′) is such that

‖βj‖ ≤ ε3, βj = 0 on U; (8.1)

(2) if
L̂(z,E′, E′′) = Ln0(z)(z, E

′, E′′) ◦ · · · ◦ L1(z,E
′, E′′)

then L̂(z,E′, E′′)E′ = dPn0(z)E′′.

Proof. Let A be the set of points z ∈ M \ S for which the statements of Lemma 8.1 hold.
It is easy to see that A is invariant. Since the number n0(z) does not depend on the choice
of subspaces E′ and E′′ by continuity of dP we find that the set A is open. In view of
Corollary 7.2 if A is not empty it coincides with M \ S. We shall show that A �= ∅.

Let x ∈ D2 \ Q be a periodic point of the map g of period r whose trajectory does not
intersect supp(ϕ) (such a point always exists if supp(ϕ) is sufficiently small). We have that
P rT 2(x) = T 2(x) where T 2(x) is a fiber over x. Moreover, P r |T 2(x) is a translation.
Therefore, the desired result holds for any z ∈ T 2(x). ✷

Given positive ε3, ε4, and N define

D1(ε3, ε4, N) =
{
z ∈ M : n0(z, ε3) ≤ N,

∣∣∣∣ 1

n
log ‖dPn|Ec�(z, P )‖ − χc� (z, P )

∣∣∣∣ ≤ ε4,

� = 1, 2, � (Ec1(P
n(z), P ),Ec2(P

n(z), P )) ≥ e−ε4|n| for any |n| ≥ N

}
.

LEMMA 8.2. For any positive ε3, ε4, ε5 one can find N1 > 0 such that for any N ≥ N1,

m(D \D1(ε3, ε4, N)) ≤ ε5.

Proof. The result follows from the Birkhoff ergodic theorem and Oseledec’ theorem. ✷

Fix z ∈ D1(ε3, ε4, N). Since χc1 (z, P ) ≥ χc2 (z, P ) we obtain from the definition of the
set D1(ε3, ε4, N) that for every point z in this set, v ∈ Ec2(z, P ), ‖v‖ = 1, and |n| ≥ N ,∣∣∣∣1

n
log‖dPnv‖ − χc2 (z, P )

∣∣∣∣ ≤ ε4 (8.2)
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and for v ∈ Ec1(z, P ), ‖v‖ = 1 such that � (v,Ec2(z, P )) ≥ e−ε4 , and |n| ≥ N ,∣∣∣∣1

n
log ‖dPnv‖ − χc1 (z, P )

∣∣∣∣ ≤ 2ε4. (8.3)

LEMMA 8.3. For any positive ε3, ε4, ε6, ε7, and N2 there exist positive N3 and ε5 such
that:
(1) for any ε8 > 0 and N ≥ N3 one can find a set L = L(N) for which Pj (L)

⋂
L

= ∅, 0 < j ≤ N and if L̄ = ⋃N
j=0 P

j (L) then m(D \ L̄) ≤ ε8;
(2) if

D2(ε3, ε4, ε6, N,M) = {z ∈ L̄ : z = Pj0(y), for some y ∈ L, 0 < j0 ≤ N and

Card{j : |(N − j)/j − 1| ≤ ε6 and

f j (y) ∈ D1(ε3, ε4, N)} ≤ M}
then

m(D2(ε3, ε4, ε6, N,N2)) ≤ ε7.

Proof. The first statement is just the Rokhlin–Halmos lemma. Note that the measure of
each set Rj(L) is of order 1/N and that the number

Card

{
j :

∣∣∣∣N − j

j
− 1

∣∣∣∣ ≤ ε6

}

is of order ε6N . The second statement follows. ✷

The set L(N) is called a tower of height N .

LEMMA 8.4. For any positive ε3, ε7, ε9 there exist positive ε4, ε6 such that the following
statement holds. Fix z ∈ D1(ε3, ε4, N1), with positive n1, n2 satisfying∣∣∣∣n2

n1
− 1

∣∣∣∣ ≤ ε6, n = n1 + n2 ≥ N3,

and maps Lj (z) = Lj (z,E
c
1(z, P ),E

c
2(z, P )), j = 1, . . . , k ≤ ε6N3, satisfying (8.1) such

that L̂(z) = Lk(z) ◦ · · · ◦ L1(z) moves Ec1(z, P ) into Ec2(P
k(z), P ). Then

exp

[
n

(
χc1 (z, P )+ χc2 (z, P )

2
− ε9

)]
≤ ‖(dPn−k ◦ L̂(z) ◦ dPn1 |EcP (P−n1 (z)))‖

≤ exp

[
n

(
χc1 (z, P )+ χc2 (z, P )

2
+ ε9

)]
.

Proof. Set

P = dPn−k ◦ L̂(z) ◦ dPn1 |EcP (z).
Let e1 ∈ Ec1(z, P ) and e2 ∈ Ec2(z, P ) be a normalized basis in EcP (z). Then by (8.2) and
(8.3),

1

n
log ‖Pe�‖ = χc� (z, P )n1 + χc3−�(z, P )n2 + O(ε4n)
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for � = 1, 2. Let O(z) : Ec(z) → Ec(z) be a linear map satisfying detO(z) = 1 with the
vectorsO(z)e1 andO(z)e2 orthogonal. Then

log

∥∥∥∥exp

(
n
χc1 (z, P )+ χc2 (z, P )

2

)
P
∥∥∥∥

= log ‖O−1(P n(z))‖
+ log

∥∥∥∥O(Pn(z)) ◦ exp

(
n
χc1 (z, P ) + χc2 (z, P )

2

)
P ◦O−1(P n1 (z))

∥∥∥∥
+ log ‖O(P−n1 (z))‖

and each term is of order O((ε6 + ε4)n). The desired result follows. ✷

LEMMA 8.5. For any positive ε10, ε11, ε12, ε13 there exist positive ε3, ε7, ε9, and N2 such
that the following holds. Let L1 = L \ D2(ε3, ε4, ε6, N2, N3) where L = L(N3) is a
tower of height N3 and

L2 =
{
f j (z) : z ∈ L1 and j is the smallest number for which∣∣∣∣N3 − j

j
− 1

∣∣∣∣ ≤ ε6 and f j (z) ∈ D1(ε3, ε4, N2)

}
.

Also let k = ε6N3. Then:
(1) there exists an open set L3 satisfying m(L3%L2) ≤ ε10 and a map P̂ = P ◦ ϕ̂ such

that

supp(ϕ̂) =
( k−1⋃
j=0

P̃ j (L3)

)
\ (U × T 2);

(2) dC1(ϕ̂, Id) ≤ ε1;
(3) there exists L4 ⊂ L2 such that m(L2 \L4) ≤ ε11 and for all z ∈ L4,

‖(dP̂ n|EcP )(z)− L̂(z)‖ ≤ ε12 for some n ≤ k, (8.4)

where L̂(z) : EcP (z) → EcP (P
n(z)) moves Ec1(z, P ) to Ec2(P

n(z), z) (see
Lemma 8.4);

(4) for any z ∈ L,

d(EcP (z),E
c

P̂
(z)) ≤ ε13.

Proof. The proof is similar to [Bo]. Consider a finite atlas H = {H1 · · ·Hn} such that in
each chartHi one can introduce a coordinate system {ξ1, ξ2, ξ3, ξ4} satisfying

dm = dξ1dξ2dξ3dξ4.

Approximate L2 by the finite union of balls
⋃
j B(zj , rj ), with rj ≤ ρ where

ρ is sufficiently small. By coordinate rotation we may assume that EcP (zj ) =
〈∂/∂ξ1, ∂/∂ξ2〉|zj . We can apply Lemma 8.4 to each z ∈ L2 and construct the maps

L1(z), . . . , LN1(z) such that L̂(z) = LN1(z)◦· · ·◦L1(z)movesEc1(z, P ) toEc2(P
n(z), P ).
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By slightly shrinking the set L2 if necessary we may assume that the maps Li(z) are
continuous on L2. Recall that each map L�(w) is a twist of the form

L�(w) = Rβ�(w)(dP |EcP (w)).
We define ϕ̄ on each B(zj , rj ) to be

ϕ̂(ξ1, ξ2, ξ3, ξ4) = (Rψ(‖ξ‖/rj )β1(zj )(η1, η2), ξ3, ξ4),

where {η1, η2, η3, η4} = exp−1
zj
(ξ1, ξ2, ξ3, ξ4) and the function ψ(x) is supported on [0, 1]

and
ψ(x) = 1, x ∈ [0, 1

2 ]. (8.5)

Continuing by induction for each � ≤ N1 we approximate the sets P�(B(zj , rj )) by balls
and define ϕ̂ on each ball to be an appropriate twist generated by the maps L�(z). This
construction allows us to define ϕ̂ in such a way that (8.4) holds for n = N1 on a set D1

for which m(D1) > c(N1)m(L2). Here c(N1) is a constant which can be made arbitrarily
close to

( 1
16

)N1 if the approximation by balls is chosen appropriately; we exploit here the
fact that in view of (8.5)

m(B(z, r/2))

m(B(z, r))
= 1

16
.

Consider a point z ∈ L2 \ D1. Let N̄1(z) > N1 be the first moment when the trajectory
{Pj (z)} visits the set D1. Define ϕ̂ along the orbit {f j+N(z)} with N̄1(z) ≤ j ≤
N̄1(z)+N1 to be appropriate twists such that the map dP N̄1(z)−N1 ◦dP̄N1 movesEc1(z, P )

to dP N̄1(z)◦dP̄N1Ec2(z, P ). Thus, we obtain a setD2 for whichm(D2) > m(L2\D1) ≥ c

and n = N1+N̄1(z) onD2. Repeating this procedure (N2/N1) times we obtain the required
map ϕ̂. All properties of the map P̂ can now be verified by the arguments similar to those
in Lemma 4.4. ✷

It remains to show that ε10, ε11, ε12, ε13 can be chosen such that∣∣∣∣ 1

N3
log ‖P̂ N3 (z)|Ec

P̂
(z)‖ dm(z)− 1

2

∫
M

log det(dP̂ (z)|Ec
P̂
(z)) dm(z)

∣∣∣∣ ≤ ε2.

This again is similar to the proof of Lemma 4.4 and we leave the details to the reader.
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(1999), 859–889.
[D] D. Dolgopyat. On dynamics of mostly contracting diffeomorphisms. Commun. Math. Phys., 213

(2000), 181–201.
[K] A. Katok. Bernoulli diffeomorphism on surfaces. Ann. Math. 110 (1979), 529–547.
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