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FAMILIES OF INVARIANT MANIFOLDS CORRESPONDING TO NONZERO
CHARACTERISTIC EXPONENTS

UDC 517.9
Ja. B. PESIN

Abstract. A theorem on conditional stability is proved for a family of mappings of class
C e’ satisfying a condition more general than Ljapunov regularity. Using this theorem, fami-
lies of invariant manifolds are constructed for a diffeomorphism of a smooth manifold onto a
set where at least one Ljapunov characteristic exponent is nonzero. The property of absolute
continuity is proved for these families.

Bibliography: 10 titles.

Introduction

0.1. In this paper we consider a cascade (that is, a dynamical system with discrete
time) generated by a diffeomorphism f of a smooth closed »n-dimensional manifold M and
preserving a finite measure v compatible with smoothness (that is, equivalent to the measure
induced by some Riemannian metric). We fix in M an auxiliary Riemannian metric: the
corresponding scalar product and norm on the tangent space 7..M will be denoted ¢, ), and
Ifll, (sometimes the index x will be omitted). The required class of smoothness of f will be
specified in the statements of theorems, but the smoothness of M and the Riemannian metric
can, without loss of generality, be taken to be class C*. There is defined on the tangent
bundle TM a measurable function (see {7])

X* (v, 0) =Tim —~ In|df*0], ove TM, (0.1)
n—co N

called the Ljapunov characteristic exponent (the number x*(x, v) is called the characteristic
exponent of the vector v at the point x).
Our basic assumption is that the measurable invariant (relative to f) set

A={xeM: X (x,v)+0 for some ve T M} (0.2)

has positive measure.

If we interpret the existence of a vector v € T, M with a nonzero exponent as a certain
“partial hyperbolicity” property at x, then we may say that on A our cascade is “nonuni-
formly partially hyperbolic”. “Partially” here means that the existence of vectors with zero
exponent is not excluded, and “nonuniformly” means that the inequality, expressing for vec-
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1262 _ Ja. B. PESIN

tors v € T_M with negative exponents the change of ||df ll o (x) with increasing #, is not
uniform in x. For comparison we note that the case when hyperbolicity is not partial but
is, as we say, “complete” (no vectors with zero exponents) and is “uniform”, is the well
known case of U-systems [1], [2].

First we consider an individual trajectory {f"(x,)}, where x, € A, and the mapping
along it

df*: TeuM T o, ) M (0.3)

(in the case of continuous time there are corresponding variational equations along the
trajectory x(z)). Since in a linear approximation the behavior (relative to {f™(x,)1}) of
neighboring trajectories is described by these mappings, there then arises the question: does
some “stability condition™ of the trajectory {f"(x,)} follow from our weak variant of
“hyperbolicity”, namely, the existence of a smooth submanifold ¥(x,) C M such that the
trajectories {f"(x)} with initial value x € V(x,) become arbitrarily near to {f"(x,)}. It
is known that the answer, in general, is negative.

The similar circumstances for the problem of stability of the trivial solution x(z) =0
of a system of differential equations

‘fT’: =A@ x+f(t, %), (0.4)

where x and f are vectors, A is a matrix, uniformly bounded and continuous, and {|fll =
o(lix]) (or even O(lIx||?)) uniformly in ¢, are more widely known. Namely, it is known that
negativity of all Ljapunov characteristic exponents of the “linear approximation” % = 4(¢)x
is not sufficient for Ljapunov stability of the solution x(z) = 0 of the system (0.4) (see,

for example, [4]). There exist different sufficient conditions providing an affirmative an-
swer to the question raised.

The problem of interest to us is concemned with the case of a stability condition. In
the analytic case, Ljapunov proved such a theorem for a system of differential equations
satisfying a regularity condition. In this paper we prove a similar theorem for cascades of
class C1*€ and those points x, € A at which the linear approximation (0.3) satisfies a
regularity condition or a certain general condition (see Theorems 2.1.1 and 2.1.2). In addi-
tion we are interested in the invariant manifolds V(x,) not for a single point, but for a
whole set of such points having positive measure. Accordingly we obtain some information
on the dependence of ¥(x,) on x,.

This result is intended for use in the metric theory, playing for the smooth cascades
considered here the same role as the well-known Hadamard-Perron theorem {6], [8] (more
precisely, the version uniform relative to initial data [1]) plays for U-systems.

In metric theory it is appropriate to deal not with one individual trajectory but with
a set of trajectories of positive measure; therefore it is necessary to consider not the
separate invariant manifolds but families of such manifolds. For U-systems, Anosov showed
that these families have a very important special property which one calls absolute continuity
(see [1]). (In essence, it is just this property that allows the use of invariant manifolds in
the metric theory.) In our case we will prove an analogous result (see §3).
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The uniform hyperbolicity of U-cascades gives them rich metric properties: they are
ergodic, have positive entropy and even have the K-property. In our case the hyperbolicity
is weaker, but some analogue of these results is retained [9] (at least in the case when in
A all the exponents are different from zero ; however, we will give proofs in the general
case because, firstly, they do not follow from [9], and, secondly, the assertions proved are
used to get a new result—a formula for the entropy of a dynamical system; see [9]). These
proofs are based on the above-mentioned properties of invariant manifolds.

The author expresses his deep thanks to D. V. Anosov and A. B. Katok, under whose
guidance this paper was written.

0.2. In this paper we will constantly use the following notation in addition to that
introduced above:

{, > and ||*|| are the standard scalar product and corresponding norm in Euclidean
space R".

[ is the identity mapping of the corresponding space (which one will be clear from
the context).

Z* and R are the sets of nonnegative integers or reals.

p and d are the distances in M and TM respectively, induced by the Riemannian
metric.

B(x, r) is the open ball in the manifold M with center at x and radius r.

T*M is the cotangent bundle; d'f = (df)*)™}: T*M > T*M.

0.3. In conclusion we recall some information about the Ljapunov characteristic ex-
ponents (see [4] and [7]).

The upper index ‘“plus” in the notation of exponents means that they are obtained as
“time” n — + oo (see (0.1)). Similarly we define the exponent x~ as n = — 0. Correspond-
ingly we should speak of “forward” and “backward” exponents, although, as a rule, work-
ing with the first we will omit the “forward”.

For each x € M the restriction of x™ to the subspace T, Mtakes not more than n val-
ues (distinct and different from — ). We denote these values in order by

L)< U@ < ... <o (), s(x)<n. (0.5)

Put L;(x) = {v € T.M: x(x, v) < x;(x)}. The subspaces L;(x) form a filtration of T _M;
that is,

O0=L,(x)CL,(x) = ... CLsn(x)=TzM. (0.6)
Put dim L;(x) = k;(x). The integer-valued functions s(x), k,(x), . . . , Kg(xy(x) and the
family of subspaces L;(x),i =1, ..., s(x), depend measurably on x. The characteristic

exponent x¥ is invariant; that is, for each x € M
N(@)=%(fx), k@)=k{x), Li(x)=L{ ().

If we replace df by d'f on the right-hand side of (0.1), we obtain a characteristic exponent
x'* on the cotangent bundle, called an adjoint exponent.

Letx €M, vET Mand ¢ ETE M Then
af(e(dfv))=¢()=1. 0.7
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From this follows the so-called adjoint condition: x*(x, v)* + x’+(x, ¢) = 0. A normalized
basis e(x) = {¢;(x)} € T, M is called normal if the first k,(x) vectors of the basis lie in

L (x), the following k,(x) — k,(x) lie in L,(x) \L,(x), etc. If e(x) = {e;(x)} is a normal
basis at the point x, then

df nei (65] }

x)= {n df’e, (9}

is a2 normal basis at f™(x).
Let '(x) = {e;(x)} € T*M be the dual basis. The defect of the pair of bases is the
function

V(% €(x), ¢ (x)=max {X* (x, & (x) +X* (x, & (x))}.

By virtue of the adjoint condition, y(x, e(x), €'(x)) = 0. The irregularity coefficient of the
exponent x* is the function

Y (x) =miny (x, e (x), &’ (x)),
where the minimum is taken over all possible pairs of dual bases (e(x), €'(x)). The exponent
x* (or the pair of exponents x* and x' ) is called regular at x if y(x) = 0, and points at
which this condition is satisfied are called forward regular.

THEOREM 0.1 (see [4]). Let x be a forward regular point. Then the following asser-
tions are true:

1) x(x) = — xix).

2) The filtration connected with X' consists of the subspaces Lil(x) (the annihilator
of the subspace L;(x)).

3) Each basis dual to a normal basis is normal.

4) For each n € Z the point f(x) is forward regular.

A point x is called backward regular if it is forward regular for the exponent x~. A
point x is called regular if it is both forward and backward regular. We have detailed the
notion of regularity, in contrast to [4] and [7] (their notion of regularity corresponds to
our “forward regularity™).

If ¢ is a measurable invariant function on the manifold M, then its Ljapunov characteris-
tic exponent at x is

= 1
X (¢ (x)= him —In|o(f*(x))]. 08)
n—-o0 11
We similarly define the exponent x " (¢(x)) for n - — oo,

THEOREM 0.2 (see [7], Theorem 4). If x is regular, then there exist subspaces E,(x),
i=1,...,s(x),satisfying the following conditions:

1) L) =BPE®),i=1,...,sx).

2) Uniformly inv € El-(x)

Jim 0 Lydpol— = % ().
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3) x‘(r‘j(x)) = x+(l‘j(x)) = (k]-(x) - k._l(x))x].(x), where I"j(x) is the volume of the
parallelepiped in the space E i(x).

4) For each n € Z the point f"(x) is regular, and df"E;(x) = E;(f"(x)).

5) There is a decomposition TXM = @;(:"1) E]' (x) with similar properties relative to the
exponent X't ; moreover, if e(x) = {e;(x)} is @ normal basis for which e;(x) € E }.(x), ki_y(x)
<i<ki(x),and if €'(x) = {e;(x)} is the dual basis, then e]'-(x) € EI'.(x), ki (o) <i<Kix).

THEOREM 0.3 (see [7], Theorem 1). Let f be a dynamical system on the smooth
manifold M, preserving a finite Borel measure. Then relative to this measure almost any
point x € M is regular. The function s(x) and the subspaces E (x), . . ., Es(x)(x) depend
measurably on x.

§1. Invariant distribution and the Ljapunov metric

1.1. let f be a diffeomorphism of M of class C", r > 2, preserving a measure », and let
the measurable invariant set A defined by (0.2) have positive measure. We denote by A the
set of regular points in A. From Theorem 0.3 it follows that ®(A) = #(A).

Let x € A. We consider the filtration (0.6) and the subspaces El.(x), i=1,...,s(x),
at the point x (see Theorem 0.2). We denote by k(x) the largest natural number such that
for each v € L (,.(x)

x** (x, v)<<O.

According to the definition (0.2), 1 < &(x) <s(x) and k(f(x)) = k(x).
Let /(x) be an arbitrary measurable invariant function satisfying the condition 1 < I(x)
< k(x). Put

Ux) s(x)
Eyx= @ Eij(x), Eun= @ Ej(x),
=1 J=l(x)+1

(1.1.1)
Mx)=e"00, () =,

From Theorems 0.3 and 0.2 it follows that the functions A(x) and u(x) and the sub-
spaces E | and E,, depend measurably on x and satisfy the following conditions:

0<AE)<n(®), AMH<L AMFE)=A(x) u(f(x)=nx) (1.1.2)
TeM=Eix ® Esx, GfEx=_Ei i=12. (1.1.3)

THEOREM 1.1.1. There exist measurable functions C(x, €) and K(x, €), e > 0, x € X,
satisfying the following conditions:
1) Foreveryme€Z
C(f"(x), ) < C(x, &) &*™,
(7" (x), )< Cx, ©) 14
K (f™ (%), €) > K (x, &) ™.

2) Foranyne€zt
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[4f"0] < C (x, &)A" (x) o],

de—nv“ > C—1 (x’ 8) x—n (x) e_enuvu (U = Elx)s

(1.1.5)
ldf*ol > C (x, e)p” (x)e™* o],

[0l <C (v, e)u™ (x) €™ o]
3. Let ¥(x) be the angle between the subspaces E | and E,,. Then K(x, €) < y(x).

(ve Ey).

Proor. We begin by proving

LeEMMA 1.1.1. Let X C M be a measurable set invariant relative to f, and let A(x, €)
be u measurable function on X which for some € > 0 and alll m € Z satisfies the condition

My(x, &)™ K A(F™ (), 8) < M, (x, &) 9™, (1.1.6)
where M, (x, €) and M,(x, €) are measurable functions. Then there are measurable functions
B, (x, €) and B,(x, €) such that for any m € Z

B, (%, &) < A%, 8) < By (x, €), (1.1.7)
B, (x, &) ™ < B, (" (%), &),

(1.1.8)
B, (x, &)™ > B, (f™ (x), €).

ProoF. (1.1.6) implies the existence of a natural number m(x, €) such that for m € Z,
Iml = m(x, €),

—4e K Y (f™ (x), &) < 4e.
| m\

2ut
By(x,e)=  min {1, A(f(x), &)V}
~m(x,e)Ci<m(x,e)
By(x,e)= max {1, A(F(x), e)e .
—-m(x,e)<igm(x,e)

The functions B].(x, €),/ = 1, 2, are measurable. In addition, for each n € Z

B, (x, &) € < A(f* (x), &) < By (x, €) V. (1.1.9)

If the numbers b; < 1 < b, have the property that foreachn €Z
be ' L A" (%), €), (1.1.10)
b > A (f* (x), &), (1.1.11)

then b, < B,(x, €) and b, > B,(x, €). Thus

B, (x, e)=sup{b< 1: for each n (1.1.10) is satisfied }, (1.1.12)
B, (x,e)=inf {6 > 1: for each n (1.1.11) is satisfied }.

The inequality (1.1.9) implies (1.1.7), and also the inequalities



FAMILIES OF INVARIANT MANIFOLDS 1267
A(fn+m ()G),. g) < B, (x, €) ealn+jmj<Bz (x, €) edsln[-uelm]’
A (f*™ (%), &) > B, (x, £) eV = B, (x, g) e~ telnl=Iml
Comparing these two inequalities with (1.1.9), written at the point f™(x), and taking
account of (1.1.12), we obtain (1.1.8). The lemma is proved.
REMARK. If a measurable function ¥(x) has exact exponents (positive and negative),
equal to zero, then the function A(x, €) = Y(x) satisfies the condition of Lemma 1.1.1 for
any € > 0.

Fix € > 0 and consider the angle ¥(x) between the subspaces £, and E, . By
Theorem 0.2, for each x € A

Xy () =% (v(x))=0; (1.1.13)

moreover, the exponents are exact. Applying Lemma 1.1.1, we construct a function K(x, €)
satisfying the second inequality in (1.1.4) and assertion 3 of the theorem.
Let x € A. We denote dfix = df, lE]_(x), i=1,...,sx).

LeEMMA 1.1.2. For any € > 0 there is a function D(x, €),x € A, satisfying for any
mE€Zand 1 <j< Kx) the condition

D™ (x), ) < D* (x, )€™, (1.1.14)
such that foreach n €72+

d . ( +s)n
4711 < D &) (1.1.15)

141> D™ (x, &) e +o,

where X; = x;(x) (see (0.5)).
ProOOF. By Theorem 0.2 there is a number n(x, e) > 0 such that for each n = n(x, ¢€)
Xi—e << —lﬂ“df,x" X;+e, —X—eL “ " —% 4=,

—In|d < % +e,

/A=|

——X'—S —lﬂ“df,x“ —-X,'—}-S, X,——a

where we have put d fix =df 1E'-(x) (E ]f(x) are the subspaces of T*M occurring in Theorem
j
0.2).

Define
D,(x, &)=  max 1, | dfte)e IRy ety (-(slgning s
1( ) -R(x.E)<i<n(x.€) t ” f]x " ? “d fjx " € }s
1SS Ux)
: ; ~((signi)x; —e)il ~(~(sign )% ; —&)|i
D,(x, &)= min 1, 1dféle ] T {(~(signi)x; —e)lif
2 ( ) —n(x.s)gign(x.s){ ’ " f]xﬁ ’ " d f’x“e }’
1<)

D (x, e)=max {D, (x, &), D;* (x, €)}.

The function D(x, €) is measurable, and for any n € Z* and 1 < < I(x)
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(X; ~-&n
D (x, 0)e™ ™" < |dfLl < D (x, e)e 9"

(~%; —€)n ~y: Fem

D1 (x, &)™~ <VdFPl< D, e)e ™M
(1.1.16)

D (x, &) " L A< D(x, 8) e ",

D (x, e)e™ ™" < |d'Fi < D (x, 8)e™ ",
If a number d > 1 has the property that for any n € Z* (1.1.16) are satisfied on replacing
D(x, €) by d, then d = D(x, €), Thus
D(x, €) = inf{d > 1: for each n > 0 (1.1.16) is satisfied (1.1.17)
on replacing D(x, €) by d}.

We will compare the values of D(x, €) at the points x and f™x, m € Z*. We make
some preliminary remarks. We define a mapping 7,.: T¥M ~ T, M, putting 7,(¢) = v, for
¢ € T}M, where the vector v, satisfies

<U(p, U) = (P (U)

for each v € T, M. Let {e]} be an orthonormal basis in E; (f"(x)) {e'"} the dual basis in
E'(f"(x)) Thenv ,, = el. Let the mappings dffm(x) and T ,,+m(x)dffm(x) me " rel-
ative to the basis {e } be given by matrices An and B/ respectlvely Condition (0.7)

m n,m
written in our notation gives

Al (Bha) =1,

where T denotes the transposed matrix. Therefore for each n > 0 the matrix of df” m ()
has the form

Al o (Al ) = AL Bh ) -

We will use the inequalities (1.1.16) in order to estimate the norm of the operator
af ;’ m(x) for different n. We consider the following cases:
1. n>0.

.. (% ; +EXn+m)+(-%; +e)m 4
Wdfjm | < DF (x, e)e™ T =D (x, g)exme ™ T,
(% —e)n+m)+(~Xj ~€) o
lafympl> D2 (x, e)e™ XL OM s () e-temg ™ T,
2. n>0v m—n >0,

< DP(x, &)e (x, +eEXm=nM(~%j +eim (~x; +e)

laf Jime b < <L D? (x, &) exeme ,

“ ]fm(x) u > D-2 (x 8)

3. n>0, n—m>0.
L D*(x, e)e

Xj ~E)m=nH(-%; ~&)m ~2em, ~xj -E)rl

>D72%(x, g)e

(=% +E)n-m)+(~Y 7 +€) (-X; +&)n
| Ayl < d I =D (x, )ereme T,

u fm(x)“>D_2(x 5)

Xj ~ENn-m)+(-% ~€lm (=X; -&n

= D™ (x, g)e-2eme
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Similar inequalities hold for d’fi - Ly B m € Z*. Comparing the relations obtained
and (1.1.16), written out for f(x), and also taking account of (1.1.17), we get that (1.1.14)
holds for any m € Z. Arguing similatly, it is not difficult to show that this inequality also
holds for each integer m < 0. The lemma is proved.

If we replace m by — m and x by f™(x) in (1.1.14), we obtain

D(f™(x), &) >V D(x, e)e =™, (1.1.18)

Let x € A. We consider two disjoint subsets o, and o, of the set of natural numbers
from 1 to i(x). Put
Lix)= @ E:(x), M((x)= @ E:(x)
ie=0, i=="11
and consider the angle Yo, oz(x) between the subspaces L(x) and M(x). By Theorem 0.1,
(1.1.13) is satisfied for each x € A Therefore by Lemma 1.1.1 the function 7, 02( x)
satisfies the estimate

Yo, (X) 2> Ko,e, (x, £)

with some function Kol az(x, €) satisfying the second inequality in (1.1.4). Put

T (x, &) =min Ko g, (%, £),
where the minimum is taken over all possible pairs of disjoint subsets ¢, and o, of the set
of natural numbers from 1 to X(x). The function T(x, €) also satisfies the second inequality
in (1.1.4).
Letv€EE ,v= Ef(")vj, where v; € Ej(x). From the above follows the existence of
a constant L > 1 such that

‘(2",) Joi | < LT (%, g)|ol. (1.1.19)

=1

Ci(x, 8)=LD(x, &) T (x, 2).

From (1.1.4) and (1.1.18) it follows that C; (x, €) satisfies (1.1.6) of Lemma 1.1.1,
where

M, (%, &)= “3 LYD e My(x, &) =LD*(x, &) T1(x, ¢).

Therefore there exists a function C,(x, €) = C,(x, €) satisfying the first inequality in (1.1.4)
for all m € Z. In addition, by virtue of (1.1.15) and (1.1.19), the first two inequalities in
(1.1.5) are satisfied with the function C,(x, €) for each v € E, and n € Z%.

Our construction is symmetric relative to the passage to the inverse mapping. Here the
subspaces £, and E,, exchange roles. Thus, repeating the preceding argument with the
mapping /! and the subspace E,,, we construct a measurable function C,(x, €), satisfying
the first inequality in (1.1.4). In addition, for any v € E,, and n € Z™ the first two in-
equalities in (1.1.5) are satisfied with the function C,(x, e).

Put
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C (x, e)=max {C, (x, €), C, (x, €)}.

It is not difficult to verify that the measurable function C(x, €) satisfies the first inequality
in (1.1.4), and that the inequalities (1.1.5) are satisfied with C(x, €). The theorem is proved.
1.2. It follows from Theorem 1.1.1 that it is possible to introduce a nonuniform par-
tially hyperbolic structure in A. We will briefly describe the corresponding construction.
As above, let k(x) denote the largest natural number such that x¥(x, v) < 0 for each
U € Ly(,y(x). Put

o 2 Ex
= i ’ E x = j xXh
Ex _jg Ej(x) FT ke ! (1.2.1)

Xk(x)(*) Xkl
Eox=Erwir (x), Mx)=e , px)=e .

It is not difficult to see that
Tx‘M =E:DEn:® Eosx, deix= Eif(x), i=1,2,0,
(1.2.2)
0<AX) <1< p(x), AFEN=A(x), w(fx)=p(x)
In addition, Xy, () = 0 and xt(x, v) >0 foreachv €E,, .
The following is proved in the same way as Theorem 1.1.1.

THEOREM 1.2.1. There exist measurable functions C(x, €) and K(x, €), ¢ > 0,x € A
satisfying (1.1.4) and the following conditions:

1. Foreachv € E,, (orv € E, ) the inequalities (1.1.5) hold.

2. Foranyn€Zandv €E,,

C(x, g)eo Jo| < | df"0 < C (x, £)e®"| v].

3. Let 7,.].(x) be the angle between the subspaces E ;. and E’.x, j=0,1,2,i#j Then
K(x, €) < v(x).

1.3. For integers s > r = 1 consider the set

Rr=ixek: =leamg ':<'

S

S 2< U (x), where s is the

smallest number satisfying these inequalities for some 7 }.

~

~
It is obvious that Ay, is measurable and invariant relative to . Moreover, U N

A, and if s, #s5, or r, #7,, then Xswx N sz,rz =4g.

Consider the measurable invariant function defined on A by the equality

1 2 g
E(X)——"Ss: Iaéll’l (1‘4—:), X A, (1.3.1)

It is easy to verify that for each x € A

o

Mxyewsn 1, = eme : f’

e—b0e(x) (1.3.2)
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In addition, the functions C(x) = C(x, e(x)) and K(x) = K(x, e(x)) are measurable on A
For each integer I 2 1, consider the set

Ki,r= {XEKS,,-: C(X)<l, K_l(x)<l}

It is obvious that A/, is measurable, UA;, =4, , and A, CA;}". On the basis of (1.14)
and (1.1.5), for each x € Al any m € Z and any n € Z¥ we obtain

5,7
| df’;m Y 1! (%) EsHaesim) lo]
s Elf’"(x))’

udf;m(x) > (

e Sy (1.3.3)

Vi |27 (=) ol

e E!f"‘(x))’

lafrapl <t () et o]

™™ Ly (F7 (). (1.3.4)
We denote by A’s’ , the set of points x € M satisfying the following conditions:

(1.3.5) There exist subspaces E, . and E, . for which T M =E,, & E
(1.3.6) For vectors v lying in df ™(E;,), i = 1, 2, the estimates (1.3.3) hold.

(1.3.7) The angle ¥(f™(x)) between the subspaces df ™(E . ) and df ™(E,, ) satisfies
(1.3.4).

TrEOREM 1.3.1. 1. A!, C AL CAand AL, C AL}

2. The set Ag’ , is closed.

3. The subspaces E |, and E, . depend continuously on x in the set A;, ,
4. For each integer q and 1 > 1 there is an o = o(q, I, 5) € Z* such that

P (AL) C AL,

5. Theset A;, = U l>1Ai.r is invariant relative to f.

Proor. 1. The inclusion AL, C AL, is obvious. If x € AL,,

then foranyv € F,
X+ (%, v)<ln—:—+ss<0.

Thus x € A. Since (1.3.3) and (1.3.4) remain valid on replacing ! by I + 1, it follows that
A, C A" 1 moreover, the subspaces E,, and E,, do not depend on which of the sets
A.lc,r contain x.

2 and 3. It is easy to see that a decomposition satisfying (1.3.5)—(1.3.7) is unique.
Let x €M, and let x; € A;' , be a sequence of points converging to x. Passing to a sub-
sequence, we may suppose that for each i

dimE,,, =k, dimE,, =n—k
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and the subspaces £, and £, converge, as i > <, to subspaces E,,, £;, C T,M. We
will prove that these subspaces satisfy (1.3.5)—(1.3.7). Letv€E ), andy; €E,, , v; > v.
Since the inequalities (1.3.3) hold for v;, on-putting m = 0 in these and passing to the limit
as [ ~> oo we obtain that (1.3.3), with m = 0, is valid for v. A similar assertion holds for
vectors v € £, . Hence it follows that £,, N E,, =0,sothat TM=E, & E,, . Fix
an integer m. Since x; = X, it follows that dfx’:_‘ - df;", and consequently the subspaces
arr (Eixi) converge to the subspace df"™(E;),j = 1, 2. Let the sequence of vectors v; €
dfm(ij,-) converge to a vector v € df™(E},),7 =1, 2. Since (1.3.3), with a given m, is
valid for the v;, the same will be true for v. Arguing similarly, we obtain that (1.3.4) holds
for each x € Ai,r and any m.

4. Let g and / > 0 be integers. Choose an integer & = a(g, /, s) such that

"' L a. (1.3.8)

If x € f4(A; ), we put E; = dfU(E,

]f’q(x))’] =1,2. ForvEEFE

by (1.3.8) we have

Ix?

19 m2 1= | & im0l < 1 (S ) e sm o
< lecesla\ (é_) eesn+ws\ml “U“< a(%_) eesnﬂsslm\.

The remaining estimates are deduced similarly. Thus x € Ag,.
Assertion 5 follows immediately from 4. The theorem is proved.
Put

A= UAsrn Ade={xes 11: dim E,, =k},

Arsr = Ar ﬂ As.ry A:z.s.r_ = A ﬂ Ai,n
I’i‘k.s.r = Ak n Ks,rv Ké.s.r = Ak n Ki,r-

It is obvious that the sets A} , , and A} |, are measurable and the sets A, , and A, , , are
measurable and invariant. We also put /(x) = dim £, .

1.4, The starting point for further constructions lies in the nonuniform (partial) hyper-
bolicity condition on the set A given by Theorem 1.1.1 (see also Theorem 1.2.1), where in
(1.1.4) and (1.1.5) we must put € = e(x) (see (1.3.1)). In fact this condition holds on a
set A D A. Therefore the following construction can be carried out on A. We note how-
ever, that, by Theorem 0.3, A=A = A (mod 0). We stress that the hyperbolicity condi-
tions on the sets A} ¢,

1.5. Now we construct a special (in general measurable) Riemannian metric, a systema-
tic use of which will significantly simplify the arguments.

Consider the restriction TA of the tangent bundle 7M to the set A. Since A is measura-
ble (and also Borel), TA can be regarded as 2 measurable linear bundle in the sense of [7].
A trivialization of the measurable bundle TA is a measurable family of isomorphisms 7, :

are uniform, although the sets themselves are not invariant.
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T.M - R". A measurable Riemannian metric on TA is a measurable family of positive bi-
linear forms (scalar products) in the spaces T, M. Let y be a measurable Riemannian metric.
A trivialization 7 = {7, } is called a Riemannian trivialization (relative to ) if for any x €
A and v,,v, ETM

Ty, Tulpy == Px (Uy, Uy). (1.5.1)

It is not difficult to show that a Riemannian trivialization exists for any measurable
Riemannian metric.

THEOREM 1.5.1. On A there exist a measurable Riemannian metric ( , );, measurable
functions N'(x) and u'(x) invariant relative to f, and a measurable function A(x) such that
foranyx€EAand m € Z

0AE) <AV () <p' () <]w(x), M) (1.5.2)
AG™ (x) < A(x) ™, (1.5.3)
sup A(x)= As,<oo, (1.5.4)

xEAs r

[ le, V<V @) Qi 17> 00 v=%, 159

where Y'(x) denotes the angle between the subspaces E, , and E, , in the metric {, ). ;

YRl Am)- L (1.5.6)

ProOOF. For x € A put
A ()= () e, (x) = (x) -3, 1.5.7)

The inequality (1.5.2) follows from (1.3.2). Further, put

Op vde= S (M @) <dfoy, Af* 0>y V1 02 € Erny

k=0 (1.5.8)
=]
. ’ 3 k k
(U1 VgD =k2, (W ()™ <df vy df vz>f——km » Uy U E Ea,
=0
and if v; = vil + v , where v’ €E. 5 j=1, 2, then
<0y, U= <U}» V5 4 <%, 3 (1.5.9)

We note that the series on the right-hand side of (1.5.8) converges. In addition, by
(1.1.5), (1.5.2) and the Cauchy-Schwarz inequality,
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[ ol < )1 (52 e [l foal,
Uy, Uy € Fun,

(1.5.10)
’ _ w » 27-1
[ oz ] < C () [1 —(8- 2] [ L, bl
Uy, Uy & Eyx

Using (1.5.8), we obtain that for any x € A and v € E .

) e
uaw=[zawm“w#w%mq

k=0

=V @I LF =0 @0l <V (@) ol
Arguing similarly, it can be shown that forv € E,
Vdfol > u’ (x)]o)..

Finally, it follows from (1.5.9) that y(x) = n/2.
We denote by 7, any Riemannian trivialization corresponding to the Riemannian metric
¢,),. Let k7 (x) be orthogonal (in the metric ¢, ), ) mappings:

®1(x): Eu—12' R'), 22 (x): B! R™P),
and k(x): T,M ~ T, M the mapping defined in the following way:

%(x) (v +1,) = % () v, 4 %% (%) 0,

where v, € £, ,i=1,2. Itis easily seen that there is a constant M > O such that for any
x€A

My )< |2 (x)], < V2.

From this and (1.5.10) it follows that for each x € A and any v € T M the inequality (1.5.6)
is satisfied, where

A(x)=C(x)M“K“(x)max{[l—(%%ee(x))z]—i-, [1—(5_'%&:»)'}-1’-}. (1.5.11)

The inequality (1.5.3) follows from (1.1.4), and (1.5.4) follows from the definition of
AL ,. The theorem is proved.

The measurable Riemannian metric { , ), will be called a measurable: Ljapunov metric.

1.6. In this subsection we will introduce special coordinates in a neighborhood of each
point x € A with the help of a certain Riemannian trivialization, corresponding to the
measurable Ljapunov metric, and also give the representation of f in these coordinates. This
representation will be used in §2 for the construction of families of local stable manifolds
and in §3 for the proof of their absolute continuity.

For each x € A consider the mapping
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Fe=expfiof o exps, (e

defined in some neighborhood U, C T, M. The neighborhoods U, can be chosen so that for
each x € A
1. (Ux)=U. (1.6.2)

Here U is some fixed neighborhood of zero in R” and 7, is a Riemannian trivialization
corresponding to the measurable Ljapunov metric. This trivialization can be chosen so that
for each x € A

Tz (Exx) =R™, 1, (E)=R""®, (1.6.3)
Consider the mapping
fe="Tn o fro(te)?: U >R", (1.6.4)
which, on the basis of (1.6.3), can be written in the form
Fe (1, 0) = (At + e (4, ©), B +hy(ut, 0)). (1.6.5)

Here u € R'®), y € RP0), 4_: RI®) » RIG), B_: R1Ix) o RA-1) g - 7 > RIGF),
g €CL h: U>R"®) and h_ e C".

THEOREM 1.6.1.

1A <M (x), [B[>n (x), (1.6.6)
2:(0)=0, h,(0)=0, dg.(0)=0, dh,(0)=0. (1.6.7)

There exists M > 0 such thatforanyxef\, 2,2, €U0andi=1,2,...,r-1
Vd'te () —d't: () | < MA () |21~ 2, (16.8)

where t - T.M > T, M, t, = (g, h,).
PROOF. Since 7., is an isometry (see (1.5.1)), on the basis of (1.5.5), for any u € R'*)
we obtain
[ Astt) =V hod e (e ul=[d o (1 ulin < ()| ()Ml =2 (1) |u],
and if v € R"7) similar inequalities give
|B ot > (x) ] o).

Since f€ C”, r > 2, from the definition of [, (see (1.6.1)) and the compactness of M follows
the existence of a constant C > O such that for any x € M, w,w, €T Mand/=1,2,...,
r—1
; !
Vd'fdw,)—dfuw,) ;) < Clw,—w, ],

From this and (1.5.6) it follows that for any z,, z, € Uand I=1,2,...,7r— 1 w; =
() 'z, i=1,2)
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18 (2)—d'te (2) |= | d' (F (21) —f 2 (0) 2) — ' (F (2)— i (0) )]
= | T (d'Fx (1) —d' 2 (wa) | = | &'Fx (w))—d'Fe (@) o
< A" fx () —d'Fr (@) Iy, < A (%) Clw,—w,
SAEC V2w, —w,|e=A(x) V2C|z—3,].
The theorem is proved.

§2. The construction of local stable manifolds.

2.1. Let F be Euclidean space with norm [|+]l. Suppose that F can be decomposed as
a direct sum of subspaces £, and E,, F = £, ® E,. Choose open convex neighborhoods
of zero U, and U, in E, and E, respectively. Let F,, be a countable family of Euclidean
spaces with norms |[|-||,,,, m € Z7, isomorphic to F by isometries (a trivialization) Ty Fpy =
F. PutE, =r7'E and U, =1,'(U;),i=1,2, and consider the family of mappings
Fon>

Tmsr©fmo T;zl (4, v) = (Antt + g1m (4, V), BmU + Gam (4, 0)), (2.1.1)
where u €U, and v € U,.
For brevity we denote the composition f,, ° f,,_, °...° fo = ITf;.

THEOREM 2.1.1. Suppose that the following conditions are satisfied:
1. There exist numbers X and u such that

0<CALL, ALy, (2.1.2)
and for any m € 2%
(Anl<M [B [ >n. (2.1.3)

2. The function g,, = (8 m» &2m) € C*, and for any m € Z*
8n (0)=0, dgn(0)=0. (2.1.4)
3. There exist constants K, « and v such that
Mvll, 0<agl, K>0, 2.1.5)
and forany z,, z2, €U, x U, and m € Z*

| dgm (2,) —dgm (2,) | < Kvm | 2,—2, | (2.1.6)

Let k be any number sar:: ying

A <% <minu, v“—). 217

Then there exist positive constants C and ry and a mapping ¢: S > E, ,, where S is the
ball in E| , with center at zero and radius r,, satisfying the following conditions:
1) ¢EC?,
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9(0)=0, d9(0)=0, (2.1.8)
and for any u,, u, €S

L de (1) —do (1) o < Cluy—uy | (2.1.9)

2) Foreachm €Z" and anyu €S

(ﬁ f.-) (1, @ @) EUim XUsm,
=0

(2.1.10)
(H f:) (w, @ (u))“ < 2007 (1, @ (1)) -

=0

3) Let (u, v) €F,, u €F, and let there be a number C > 0 such that for any m € z+

(ﬁnymw

\i=0

< Cxm,

m

(ﬁ f,~> (U, vy = Ui XUsm,

=0

Then v = ¢(u).
4) There exist continuous functions Y, = ¥;(\, u, v, k, a), i = 1, 2, defined on the
open set in R* given by the inequalities (2.1.2), (2.1.5) and (2.1.7), such that

1

1 -
r0=K a'q)l(l’! p‘v v, %, a)’ C=K a"p?.(?\" p" v, %, (1). ) (2'1'11)
Proor. Consider the linear space I', of sequences of vectors {z(m)}, z(m) € F,,,
satisfying
2| = sup x—m | <
leb= sup o |2 (m)],, < oe.
The norm [|-||, makes I', into a Banach space. Consider the open set
W={z=Ty:2z(m)= Uy XUsm}

and the mapping ®,: U, x W->T,:

=5} k
To®x (¢, 2) (0) =(y, - (H B ‘)’gzk (Tez (k))),

k=0 \s$=0

Tn®u (4, 2)(m) = ( (ﬁ As) y+ "j_' ( ’ﬁl As) Gue (2 (R)), (2.1.12)

$=0 k=0 \s=k+1
) (

k=0

k
I1 B;‘m) Gersm (Tesmz (B4 m))) —2(m).

$=0 /

Here for uniformity of notation we regard 727! 4. =1 First we will show that the
mapping ®, is well defined. For this we note that by the mean value theorem, (2.1.4) and
(2.1.6), forany z € U, ,, x U,,,,, m €EZY,

m’
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1gm (Ta2)|=8m (vt} —gm ()| < | dgm (B || Tm2 ] = dgm (5)—dgn (0)]
* [ Tm2 | <KV |51 | Tmz | < Kvom |tz [0

Here & = £(m) lies on the segment joining O and 7,,z. Using (2.1.3), (2.1.13) and the
definition (2.1.12) of @, , we get

(2.1.13)

[D.(5, 2], = 34p %77 Dy (3, 2) (m) |

( m-1 m-1/ m-1
<sw i[ PAIPIESS ( 1| llAkll)Kv'kHZ(k)lbi““

3—0 k=0 \s=k+1

co k
+3 ( Bitn ) N

k=0 =0
m-—1
sup LAk | y[l+su3 x"K | z] [2 ARy ko (14 aik
k=0
co
+;S_\J p,‘(k'i-l)v-(m+k)x(l+a)(m*k)] +lzi,.
=0
(2.1.7) implies the estimates
Sup *m = |, (2.1.14)
me1 o & A\l
sup %A1 ST (A Iy herta)t L p-tet (m max{ﬁ-, —}) . (21.15)
mz20 Pt v x
o] 5 1
SUD ® =My My 1taimy =1 =1y=1,,1+0)% [
m?l.), v u éo (p v x4y =r— (2.1.16)
Put
M=max [ — L , B . (2.1.17)
Ae ln max {"_. , _}.‘_} {— piv it
v
From (2.1.14)—(2.1.17) it follows that
|9, D, < Tyl 4+-2KM ™ 4|2, (2.1.18)

We have thus proved that &, is well defined. From (2.1.4) it follows that
@, (0, 0)=(0, 0). (2.1.19)

We will show that ®, € C!. For this it is sufficient to prove the existence and continuity
of the partial derivatives of &, with respect toy andz. Lety €U, €L, and y + h e
U,. It follows from (2.1.12) that for any z € W and m € Z*
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T (D (4 + B, 2) (M) — D (3, 2) (m)] = (("ﬁl As) h, 0) .

$=0

Therefore

TmdyDu (Y, 2) (M) == ( rﬁl As, 0) . (2.1.20)

S=0
We will prove the continuous differentiability of the mapping ®, relative to z.
Consider the difference ®,(y, z + k) — @, (y, z), where 2 EW, h €T, and z + h E W.
Using (2.1.12) and condition 2 of the theorem, we obtain

(D”(ys z+h)—®x(y, Z) =(YX(2)_[)h+o(y’ 2, h)v

where I is the identity mapping of I' and

K

k=0 \s=k+1

Yx (2) 1 (m)=T7 ( ”SL‘, ( rﬁl As> dg.x (Tez (R)) Teh (k)

[ k
—2 ( 11 BIim)dgmk (s (M + ) Tmash <m+k)),

k=0 \s=0

04, 2 B) (m) =73 (”é'_, ( i As) 04 (2, B) B),

k=0 \s=k+1

\

o0 R
-3 (ITB;‘m) 0, (2, h) (mﬁ—k)).

k=0 \s=0

Here 0,(z, k) (m), i = 1, 2, is defined by
0: (2, 1) (M) = gim (% 2+ h) (M) —im (¥m2 (M) —dGim (m2 () Twh (m).  (2.1.21)
Inequality (2.1.6) and the mean value theorem imply
L0: (2, k) (M)} < | dgim (& (m)) Tt (m)
—dgim (Tmz (1)) Ttk () | < K-}t () o,

(2.1.22)

where £(m) lies on the segment joining 7,,z(m) and 7,,(z + h)(m).
It foliows from (2.1.22) that for any z,, z, EWand h €T,

| (vs (21)—Yx (z)h ”u

<sup {x[ S ( T Asn)xv-k 2 (8)— 2, (B B (),

mzo
= k=0 \S=k+1

R=0 \s=p

+> (TT [ Bsim l]) Kv=B 2 (m4-k) —z, (m + k) [y | o (m-}—k)]Lmk:” .
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The relations (2.1.14)—(2.1.17) imply

[ (v () =V (D) 2 |, < 2K M| 2 —2, [ 1), (2.1.23)

In a similar way it is proved that
Lo 2 W], < 2KM | fe. (2.1.24)
It follows from (2.1.4) that v, (0) = 0. Therefore by (2.1.23)

v« (@), < 2KM |2, 2 W. (2.1.25)

This inequality together with (2.1.24) shows that @, is continuously differentiable with
respect to z and

d:Dy (y, 2)= V= (2)—1. (2.1.26)

In addition, for any y € U,
d; D, (y, 0) = —1. 2.1.27)

From the above and the equalities (2.1.19) and (2.1.27) it follows that &, satisfies all the
conditions of the implicit function theorem. In what follows we will need a version of
this theorem, which we quote below.

LeMMA 2.1.1. Let E, F and G be three Banach spaces and f a continuously differen-
tiable mapping of the product A = A, x A, into G, where A, CE, A, CF,and A;isa
ball about zero with radius r;, i = 1, 2. Suppose that df satisfies a Holder condition in A
with constant a and exponent &, f(0, 0) = 0 and the partial derivative T, = D,f(0, 0) is
a linear isomorphism of F onto G. Let S be the ball in E with center at zero and radius

Ty

—mi T2t
ro=min {rl, r,, 5eb (1 200) (2m)1/a}, (2.1.28)

where b = max(, o) 4 lld,f(x, O)ll and C = |IT; Y\l Then there exists a unique mapping
u: S > A, of class C! satisfying the following conditions:

f(x u(x)=0, u(0)=0,

d d
uﬁ () — 5 x2) u< 8ac (1 +26c) | %, — %, % (2.1.29)
“‘-’E(x)ﬂg 1 4-2bc.
dx
PrROOF. We use the method of proof of Theorem 10.21 in [5]. Denote

g(x, y)=y—T5f (x, y)-
Let (x, y,), (x, y,) €A. Then
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g%, y1)—g (%, 42)=T3" (To (% —5o)—(f (x, y1) —F (x, )

Put 7, = 2cbry. By (2.1.28), 7, <r;, 13 <r,. Let S C E and Q C F be balls about zero
with radii 7, and r; respectively. If x €S and y,, y, € @, then by the choice of 7, and
r, and the mean value theorem we have

U7 (2, g)—F (%, 9)—Toh—y) | < a(ry+19)" | 41— 1] < 2_10“ h—Ys ]
Therefore for any x €S and ¥,, y, €0

I8 e, y1)—g (5, 9 < -l —s,)
On the other hand, for any x €S
lg (e O1=1—T3% (x, 0)| < cbry= L1,

Thus the mapping g: $ x Q - Q satisfies the conditions of a fixed point theorem of [5]
(Theorem 10.14), from which follows the existence and uniqueness of a continuous mapping
u: § = @ such that u(0) = 0 and f(x, u(x)) = 0 for each x €S. The proof that u is con-
tinuously differentiable in S is a verbatim repeat of the corresponding argument in [5] (see
p. 267). From the inequality

14 (5, 9)—df 0, O] <alro+ry)* < L,
c
valid for all (x, y) €S x @, it follows that
ld.f (x, )| < b+ i; (2.1.30)
in addition,
1 1 1
d,f (x, —_—————
ldf (e, 9> L — L= 1
Therefore the mapping dyf(x, ¥) is invertible in § x Q, and it is not difficult to show that
14y'f (x, DI < 2¢. (2.1.31)
Differentiating the equality f(x, u(x)) = O with respect to x, we get
duf (%, 4 (1)) +- dyf (x, u (x)) 2220 = 0.
Inequalities (2.1.30) and (2.1.31) imply that forx €S

du (x)

S < 1426, (2.132)

In addition, for any x,, x, €S
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duf (g, 12 (1)) —def (g, 12.(%)) +(duf (21, 2 (%)) — dyf (X, 1 (x,))) 222 (xo

du (% o
- (1, ) (2 — ) =0,

Inequalities (2.1.30), (2.1.31) and (2.1.32) imply

du (Xl) .__du (X2)
dx

- < 4dac (1 + beP |2, —x, |°

+ 4ac (1 4-2bc) | 2, —x,|* < 8ac (1 4 2bcP | 2, —x, |

The lemma is proved.
It follows from (2.1.23), (2.1.20) and (2.1.27) that &, satisfies the conditions of the
lemma with

c=1, b=1 a=2KM. (2.1.33)

According to the lemma there exists a ball 5 in £, 4 of radius r,, 0 €S C U, and a
mapping ¥: S > W, ¢ € C!, such that for any y €S

$(0)=0, Ox(y, ¥¥))=0. (2.1.34)

By virtue of (2.1.17), (2.1.28) and (2.1.33) the number r, has the form (2.1.11).
Differentiating the second equality in (2.1.34) with respect to y, we get

dy (y)= —[d:Du(y, Y N d,Dx (Y, ¥ (¥))- (2.1.35)

Putting y = 0 in this equality and taking account of (2.1.20), (2.1.27) and (2.1.34), we
find that

dp(0) (m)= ( m]'[ As, 0) : (2.1.36)
We represent Y(y) (m) in the form ¥(y) (m) = (Y, (») (m), ¥,(») (m)), where
V;(0) (m) €E,,,, i =1,2. It follows from (2.1.12) and (2.1.34) that

T (1) (0) =y,

Tty () (M) = (nﬁ As)y +,§ ( }:[ As) (W) k), m>1, (21.37)

k— 0 \s=k+1

S=

T, (¥) (M) = — 2 ( T[ Bs+m) Gem+k (Tmard (9) (M + k), mz 0.(2.1 38)

k=0 §==0

It is easy to see that these equalities imply the relations
TmarPy (4) (M4 1) = ATy (¥) (1) 4 Gum (Tmd () (1)),
Tmaa W (9) (M 1) = BTy () (1) 4 Zam (Tmd (¥) (M),

which mean that foral m€Zt andu €S
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fm (0 () (m)) =% (y) (m 4+ 1). (2.1.39)
Define ¢: S = E,, from the conditions
Q) =%, (1)), u=v(»(0), y=S. (2.1.40)

We will show that ¢{u) satisfies assertions 1—3 of the theorem. The differentiability of
¢ follows from the differentiability of y, and (2.1.8) follows from (2.1.34) and (2.1.36).
Using (2.1.29), (2.1.33), (2.1.37) and (2.1.40), we obtain that for any u,, u, €S

1 (1) —de (o) ho < [ (A (4) —db (9,)) 0) o
L% (51) —dp (4a) [, < 200KM [y — 1, | = 200K M | 4y — 1, |,

This proves (2.1.9). Assertion 1 is proved. In addition, C = 200KM has the form (2.1.11).
Since Y(¥) € W for any y € 8§, using (2.1.29), (2.1.33), (2.1.37) and (2.1.40), we find
that forany u €S and m € Z*

(ﬁ f.~) (4 @ (@) =\

< % | dp ()} 5] 20007 |y} =200 [ufo < 20007 |, @ @) o

(ﬁ f;-) e o)l =1v@mL, < vwl,

i=1

m

In addition,

(ﬁ fi)(u' (P(u))="ab(y)(m)EU1mXU2m-

i=1

Assertion 2 is proved.
Let the point (&, v) and the number C > O be chosen in accordance with the conditions
of assertion 3. Consider the sequence Y(J) = (l'l’ 1J:) @, v). Since

i
| (e

we see that ¢ € T',. From the definition of V it follows that f;y(/) = ¥(! + 1). Therefore
Ty (1) = Areapy (1) +gu (2 (1),
Ty (L4 1) = Brtnp, (1) + ot (v (1))

Hence it follows that for any n >/

-1 -1
TP, (! (U A )y+ > ( 1| As)glk (T (R)),

s=0 k=0 \s=k+1

L Csup »-ixl =C,
1 o

n-l-1 n-l~1 k

Wz(l)—( T Bw)wz(n)— D {ﬂ Bs+1)gok+z (Tersh (R +1)). (2.1.41)

§=0 k_o \ $==0

Since
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l(ﬁ m)w (p’)'

{=0

n-l-1
( m Bziz) by ()] <

=0

on passing to the limit as n = o in the second equality of (2.1.41) we obtain

k=0 \ s=0

Hence from (2.1.38) and (2.1.41) it follows that ® (y, ¥) = 0. Since y € S, by the
uniqueness statement in Lemma 2.1.1 we have Y = {y(y). Therefore

[« k
TP, (1) = ”E ( HB;U) &okrt (Teard (B 4 1)).

P, =% O)=1u, @)=y, (0)=v(0)=0.

Assertion 3, and together with it the theorem, is proved.
Under additional smoothness assumptions on f,, it can be proved that the mapping ¢
constructed in Theorem 2.1.1 also has a higher degree of smoothness.

THEOREM 2.1.2. Assume that, in the conditions of Theorem 2.1.1, for each m € Z+
the function g, (u, v) € C", (u, v) € U; x U,, r = 2, and moreover there exist positive
constants K and K,, 1 =1, ..., r, such that

] E%L:p ld'gm ()| < Kiv-m, (2.1.42)
d"gm (2)—d'gm () | < Kvm | 2—2, %, (2.1.43)

where z,, z, € U, x U,. Let {(u) be the mapping constructed in Theorem 2.1.1. Then
there exist positive numbers rq, Nand Ny, I = 1, . . ., r, depending only on K, K, \, u, v,
k and o, such that for any u, u;, u, €S and ¢(u) € C’

sup|d'p ()| < N, | (2.1.44)

ld’e () —d'e ()| < Nluy—u, ¢ (2.1.45)

PROOF. We use the notation and constructions of Theorem 2.1.1 and show that ®, €
C’. It follows from (2.1.20) that for any y €U, and z € W

diD, (g, 2)=(0,0), 2<ILr.

We will show that ®, is r times continuously differentiable with respect to z. Formally
differentiating (2.1.12) / times with respect to z gives

Tz Ds (4, 2) (m) = (m-l ( ’ﬁ As) d'gie (12 (),

k=0 \s=k+1

Z ( s+m) d Gomak (Tmarz (M4 k)))

k=0
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The inequality (2.1.42) means that the multilinear form d’gm (z) is uniformly bounded;
that is, forany z € U; x U, and A, . .. ,hy €EF, 1 > 2, we have

i
Vd'gm (2) By, - .., K| < Ky [T 1Al

Let h; €T',. From the preceding inequality and (2.1.14)—(2.1.17) it follows that

m-1 i
[4:0u 3, 2) (s - ), < S [g MR T Tl
e k=0 =1
[} l !
+ 2 p,—(k-u)Klv— (mak)ge(m+k)l H “h‘ “u] < 2KIM 'l‘[ “ht ““
k=0 i=1 i=1

Thus the multilinear form d;@x(y, z) is bounded. Obviously it is continuous relative to
y and z. Now we show by induction that dé ®, (¥, 2) is in fact the /th derivative with respect

to z of ®,(y, z). For! =1 this was proved in Theorem 2.1.1. If # €T, is a small incre-
ment, then

IZ-I(D‘K (yy Z+h)—dé‘l®n (y’ z)= di n (y’ z)h‘ +0[ (y) Z, h‘)’
where o,(y, z, h) is defined by

’

%01 (9, 2, ) (m) = ("_ls_‘:( i As) ou (9, 2, h) (k),

k=0 \s=k+1 /

o k
—_— 2 (H B::m) 0y (Y, z, h) (m+k)> :
k=0

s=0

moreover 0,(y, z, h) is defined by (2.1.22), in which g, is replaced by its -derivative. Using
(2.1.42) and (2.1.43), we obtain that

l0i (4, 2, B) (m) )= |d'Gim (& (m)) Twh (m)
— d' Gim (T2 (1)) Tt (M)} < Kiiav™ R (m) [ for 2<1 <,

and

Lour (4, 2 B) (m) | < Kv~m [ (m) |55 for I =r

m

Hence, arguing as above and using (2.1.14)—(2.1.17), we obtain

lo: (9, 2, )|, < 2KiuMRJE for2<i<r,
and

lor (9, 2, )|, < 2KM RS fori=r

This proves that & € C”. From the implicit function theorem we conclude that Y € C”.
Furthermore, there exist constants N, >0, depending only on A, u, v, ¥ and «, such that
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sup |d'p (L < N1 2<I<r.
=S

We will use a version of the implicit function theorem whose proof is similar to that
of Lemma 2.1.1.

LEMMA 2.1.2. In the conditions of Lemma 2.1.1 assume that f € C” and d'f satisfies
a Holder condition in A with constant a and exponent . Then u € C”, and there is a con-
stant N such that for any x|, x, €S

d'u(x)  du(x)

< N|x,—x,|° 2.1.4
o o | %1 —%,| (2.1.46)

From the definition of ¢(u) (see (2.1.40)) and Lemma 2.1.2 (see (2.1.46)) it follows
that for any u,, u, €S

1470 (1) —dp () o < 14 (91) — AV (9) |, < Nty — 12, 5.

The theorem is proved.

2.2. Let fbe a diffeomorphism of M of class C", r > 2, and A the invariant set of
positive measure defined by (0.2). We use the notation of 1.5 and consider the bundle TA
with the Riemannian trivialization 7', corresponding to the Ljapunov measurable metric
{, 7., constructed in Theorem 1.5.1.

ProrosiTION 2.2.1. Let x € A, The family of trivializations
Tm = Tim) - Tfm(x) — Rn

and mappings f,, = ff () (see (1.6.6)), defined in the neighborhoods U,, = U om () (see
(1.6.2)), satisfies the conditions of Theorems 2.1.1 and 2.1.2, where

3¢, -3
7"=;\'s.r=-:‘e s, p'=l~"s,r=r+2e y

1

V= pm=e 0, K=, = A £, (2.2.1)

a=1, as==L1n(1 +%> K = MA (x).

Here the function A(x) constructed in Theorem 1.5.1 and the constant M are the same as in
(1.6.8).

Proor. The repiesentation (2.1.1) follows from (1.6.3)—(1.6.5). Inequalities (2.1.2),
(2.1.5) and (2.1.7) follow from (1.3.2); inequality (2.1.3), from (1.6.6) and (1.5.7). Condi-
tions (2.1.4) are corollaries of (1.6.7). The inequalities (1.6.8) and (1.5.3) imply that for
anym€Z¥, z,,z, €EU(see (1.62)) and I =1,...,r—1

|dtm (21) ""dll‘m (z) | < MA(x) ebesm“zl"'zz |-
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Finally, (2.1.43) is an immediate corollary of (1.6.8). The proposition is proved.
Put
%X(X) =%sr, XE Asr. (2.2.2)

If 5(x) is a positive measurable function on A we denote
Bi (6(X))= {ues Eix: “uﬂz< 6()6)}, i=1,2,

B (3 (x))= B (3 (x))x B* (8 (x)), (2.2.3)
U(x, 8(x)=expsB(3(x)), U =exp (v)7Q.

THEOREM 2.2.1. There exist a measurable function 8(x), x € A, a family of mappings
o(x): BY(6(x)) = B%(6(x)) of class C"™', depending measurably on x € A, and a constant
N > 0 satisfying the following conditions:

1. The set V(x) = {exp,(u, ¢(x)u): u € B1(8(x))} is a submanifold in M of class
crl

2. x € V(x).

3. T,Vix) =E,,.

4. Fory € V(x) and n € Zt we have f"(y) € U} d

n(x) an
P (x), f* () <K NA(x)%» (%) P (%, y)- (2.24)

5. If there are a point y € U(x, 8(x)) and a constant C > 0 such that for each n € Z*

n r
we have f*(y) € Uf"(x) and

P, [ () < Cx (x), (2.2.5)

then y € V(x).
6. Ulx, 8(x)) € U,, where U, is a neighborhood of x (see (2.2.3)) and for any m € Z*

8(f™ (%) > 8 (x) e,

(2.2.6)
8L, = inf 8(x)>0, &(x)<L
xezxi',
7. f(V(x) N U(F(x), 8(F(x))) € V(f(x)).
8. There exists a measurable function G(x), x € A, such that
G(f(x)) =G (x), G.,=sup G(x) oo,
xS0
and if y € V(x), then
d(T,V (x), TV (x)) < G (x) A2(x) 9 (x, y). (2.2.7)

PROOF. Let x € A. Choose a number ro and a mapping ¢ in accordance with Theorem
2.1.1 and Proposition 2.2.1. By Theorem 2.1.2, ¢ € C™!. The number r, and the mapping
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¢ depend on the choice of x, so r, = ro(x) and ¢ = ¢(x). Put 8(x) = ry(x)4~'(x). The
inequalities (2.2.6) are a corollary of (2.1.11), (2.2.1), (1.5.4) and (1.5.3). Assertion 1 is
obvious, and 2 and 3 follow from (2.1.8). We will prove 4. It is known (see [10]) that
there exist §, C; and C, such that for any x, y € M for which p(x, y) <6 we have

C, | exps’ y[, <0 (x, y) < C,lexpx y“ (2.2.8)
From (1.5.6) it follows that
A (x) CyJexpy’ y 1, < P (x, y) < V2, [ expi'y].. (229)

It follows from the above and (2.1.10) that .
o (F" (%), F* (4)) < VIC, (n fi) (e, i (1)

=0

7 (x)
< 200V§C2x" ) @ (u))ﬂ,;< 200 VQ_C,CI1 A(x)x"(x) P (x, y).
Now 4 follows from 2 of Theorem 2.1.1. Assertion 5 is deduced from 3 of Theorem
2.1.1 in a similar way. Let y € f(V(x)) N U(f(x), §(f(x))); then f~1(y) € V(x), and, by
assertion 4, f*(y) = f**1(r-ly) e Un+l( ) and

O () (N =P (" (F (X)), 7 (9)
KNAE) % (%) 0 (%, f7 (1)) = NA (x) % (x) "1 (x) P (%, fHy)).

Since y € U(f(x), 6(f(x))), by 5, in which we must put C = NA(xk(x)po(x, £~ (), we
obtain y € V(f(x)). Thus 7 is proved. From (2.1.9) and (2.1.8) it follows that for any
veS

| doo < C (x) | v]o- (2.2.10)

Here C(x) is the measurable function on A given by (2.1.11). Therefore C(x) = A(x)L(x),
where L(x) is a measurable function constant on the trajectories of the diffeomorphism f
From (2.1.11), (2.1.9), (2.2.10), (2.2.1) and (1.5.6) it follows that for any y € V(x)

d(TV (x), TV (x) < V2C, lrnqa‘z(]. L de @)

0\

<V2C,L(x) Az o)< V2C,C(x) A(x) [max 19k

<V2CLE) Al exps'yl, < V2CLTL (%) A (x) P (x, y).

The theorem is proved.

DEFINITION 2.2.1. The submanifold V(x) is called the local stable manifold passing
through x.

2.3. Some additional properties of local stable manifolds are described in the following
result.

1
THEOREM 2.3.1. 1. Ifx€ AL, yE€AL I, 21 y € Ux, %8 )) and y € V(x),
then
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a0\
ViR OV NU (g8 = 2.
L YEVE) NAY and 1) >1, then
V)N U 86 SV ().

2. If x €A

3. f €A, x,€EN,,i=1,2,...,and x; > x, then V(x;) > V(x) in the C'-

topology in a neighborhood U(x, q), where 0 < g < 6'

ProoF. 1. Let z € V(x) N V() N U(y, %8 ’1) Then z € Ulx, 6 ,), and for every
€ > 0 there are points z,, z, € Ulx, 8! ) such that p(z,, z,) <e,z, € V(x) NVQy),z, €
V(y), z, €V(x). On the basis of Theorem 2.2.1 (see 4), for every n € Z* we have

P (" (%), " @) < NA(x)=" (x) O (x, 2),
P @), [" (2)) < NA(y) %" () (P (21, ) +© (225 ).

Put C = NA;},(p(zl, ¥) + p(z,, ¥) + p(z;, x)). From the latter two inequalities,
the triangle inequality and (1.5.4), it follows that for any n € Z*

P (F" (x), " (2)) <C (%s.)". (2.3.1)
Choose an integer n, so that for all n = n,
Cls ) < b ", (232)
This can be done because kg, < ¢ 1%€" < 1. Choosing € sufficiently small and using
(2.3.1) and (2.3.2), we conclude that f*(z,) € Uf""(x) for all n € Z*. Therefore from
Theorem 2.2.1 (see 5) it follows that z, € V(x), which contradicts the choice of z,.
Assertion 2 is proved similarly.
3. By Theorem 1.3.1 (see 3), Elx!, - F
follows that for any ¢, 0 < ¢ < §!

1x- Therefore from Theorem 2.2.1 it
for sufficiently large 7, ¥'(x;) has the form

5r’

V (x1) = {expe (4 %: () ], < g},
where x;(u) is a mapping of class C"™! of the ball of radius ¢ in E, into the space
E,.. From (2.2.9) and 8 of Theorem 2.2.1 follows the existence of a constant Cs” , such

that for sufficiently large i and any u,, u, € E, llu,ll, < g, llu,li, <gq,

e Jd % @), < Cn,

| d%: () — d% (up)], < Cor |ty — 1y .

Therefore the family of functions x; is compact in the C!-topology. Let y be a
limit point of the sequence x; and Xip = Y. Since x; (O) - 0 and dy; (0) -0, we have
¥(0)=0and dy(0) =0. Fixm € Z+ andu €F, , Hull <gq. Put

z, =expx (U, X, (1), z=expx (4, P (1))
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Since z, - z, for every € > O for sufficiently large i, we have

O™ @) [P <e P () ™ ()<,
Pz, 2)< e, O(xiyx)<e.

Since z, € V(x,.p), (2.2.4) and (1.5.4) imply
O (F™ (@iph F™ (6 ) < N(xsr) " AsrP (21, %2,)-
From the above and the triangle inequality it follows that
P(F™ () [™ (x) < NA%:)" 0 (1, 2).

Since m is arbitrary, from the latter inequality and Theorem 2.2.1 (see assertion 5), we
obtain

expx{(t, YR =V (x), Jul.<gq.

Thus x; = ¢ in the C!-topology. The theorem is proved.
REMARK 2.3.1. Without loss of generality, on the strength of Theorems 2.2.1
and 2.3.1 we may suppose that the number 52}, is so small that for any x, y € A’k’ .7

y € U, 8. ,/8),

V (5) U (3, 8L) D {expe (s @y(w) e = B (- 80r)

where ¢.,: B(%Si., ,) = E, . is a mapping of class C"™", with

max max [y, )]+ | do, (2] L 1.
veal v (xte,) wes(lel, o !

DEFINITION 2.3.1. Let x € A} ;. The collection of local stable manifolds
passing through points y € A} ;, N Ulx, &% ,/8)is called the family of local stable mani-
folds Sﬂc, 5,7 ()-

In conclusion we give one further result on local stable manifolds. Let x € A
and y € V(x). Since the trajectories of the points x and y, under the action of 7,
n=20,1,..., come together with exponential speed, the variational equation along
the trajectory of y can be considered as obtained from the variational equation along
the trajectory of x by a rapidly decaying (with increasing time) perturbation of the
first order. From this and Theorems 15.2.1 and 17.1.1 of [4] follows

PROPOSITION 2.3.1. 1. Letx € X and y € V(x). Then y is forward regular,
and

s(x) =s(y), L@)=%E)., i=1 ..., sk)
where x;(x) is the value of the multiplier x* at x (see §0.3).

2. Letx €Al and y € KN V(x). There exists K = K(, s, r) such that for
any n € 2%
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r

(470 ], <K (L) ol v By=T (2, (233)

f"(u)

ldf"v |, > K™ (r—':z)ne‘“s" lol, veEy,. 2349
3. Letx € Aand y € V(x). Then for every x € T, V(x)
X* (y, 0) <O
§3. Absolute continuity of families of local stable manifolds

3.1. Let A be the set of positive measure, invariant relative to f, satisfying (0.2).

We consider a set A’k sr (see §1.3) having positive measure. For y € Ak s,r We denote
by V(y) the local stable manifold in the neighborhood U(y, 8% ,) of y (see Theorem 2.2.1).
Let x be a point of density of A’k,“. We consider the famﬂy St (x) of local stable

manifolds (see (2.3.1)). Choose q, 0 < g < s_,/S, and put

k,s,r

Absr (x)= U V)N T q). (3.1.1)

! —
yEAk,s,rnU(x'q)

It follows from Theorem 1.3.1 that A’k s,r 18 closed in U(x, q). Consider a local
open smooth submanifold W C U(x, q) such that the set exp;l W is the graph of a

smooth mapping ¢: U - E, defined in some neighborhood U C E,, by the relation

tHpu)=u, uesl, (3.1.2)

where ¢ is the projection onto E,  parallel to £, . Put

W |=max|¥ (u max | d .
| W1 max | ¢ ()], + max | di ()], (3.1.3)

It is easy to see that there is a constant e’k > 0 such that if
l W‘ Sk $.73 (314)

then the submanifold W intersects each local stable manifold V(y), y € Ak sr D Ulx, q),
in not more than one point; moreover, the intersection is transversal. A submanifold W
satisfying the above conditions (see (3.1.2) and (3.1.4)) will be called a transversal to the
family Sk 5,10

Let W! and W? be two smooth submanifolds, transversals to the family S, 5,7 %)
There exist open subsets W! C W! and W2 C W2 for which the successor mapping

p:f\és,ﬂ\%“»/\ksrﬂ 4

is defined. Namely if y € W! N V(w) and w € U(x, g) N A’ then

k.\'r’

py)=W"NV(w). (3.1.5)
Theorem 2.3.1 implies that p is a homeomorphism.

DEFINITION 3.1.1. The family Sk s,/(x) is called absolutely continuous if any
successor mapping, constructed as above, is absolutely continuous.
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3.2. TuEOREM 3.2.1. There exist constants ¢\, , and J} . , satisfying the following
conditions
. The family Sk s, Ax) in the neighborhood U(x, qk s ,) is absolutely continuous.

2. If y is a point of density of A ks N W1, then the Jacobian J (p)») satisfies
[J(p)(y)—1 l< Jhsr (W 4| W2]). (3.2.1)
Proor. Consider a point w € Ak sr UG, 7),0< g < 8' /8,2 family of trivializa-
tions 7, = Tfm(w)' Tfm( )M - R”, and the mappings f,,, ffm ~1(w) defined in the
neighborhoods U, = Ufm(w) C Tfm( M (see §1.6). We denote by || II the measurable

Ljapunov norm in Tfm(w)M’ by fi-l,, the Riemannian norm in T m(w)M, and by |||l the
norm in R?. We define the numbers \, i, », k, « and € by (2.2.1). Let

@ (" (@) : B'(® (F" @))) > B* (3 (f" (@)
be the smooth mapping constructed in Theorem 2.2.1. We put ¢ m = o(f™(w)) and

€E.m

-10 . .
where q,, = qge 5", qp <8(w). By Theorem 2.2.1, B., C B{E(f™(w)), i =1, 2.
Consider a point P = (uq, vy) € B, on the graph of the function ¢, v, = ¢4(u,), and put,
formeZ*,

Theorem 2.2.1 (see assertion 7) implies that v, = ¢,.(x,,).
Put

It is not difficult to verify, using (1.3.1) and (2.2.1), that

x E<p, —z—t—<n, <Ly, BN (3.2.2)
Fix a §, > 0, and write §,, = §,£™ and
B (vm, 6m) {ve Ezfm (m) —Um nm

LemMa 3.2.1. If lluglly < qo(200v2 A% )7 and 8 < qo/2, then B(v,,,, q,,) C BZ,.

Proor. If v € By,,, 5,,), then from (1 %), (1.5.6), (2.1.10), the conditions of the
lemma and (3.2.2) it follows that

101, <V0ml, + 82 < V21 0nl, +8m
< 200 V2xm [0y, 48 < 200 V2454 [0l + 88" < 4o

The lemma is proved.
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LEMMA 3.2.2. Let ¥: B(vy, 64) > E,, be a smooth mapping, where

max o), =C  max |dp, @), =C. (32.3)

vEB(v,.6,) vEB(v,,0,

Then there exists a § = q(l, s, r, C) < 6;,/8 such that if gy < g and 6, <q,/2, then there

is a sequence of smooth mappings .. B@,,,§,) > Elfm(w), m > 0, for which

{(bm (0), 8)20E B (Ums 8m)} C {frn (Y1 (0), 0): 0 E B (VUmes )}, (3:2.4)

Gmn= max  |$n @), < (200 +CAs) GE™, (3.2.5)
vEB©;.0,)
bn= max |dyn, (v)ﬂ,'n < Cnm, (3.2.6)
o=B(v,,.5,,)

Proor. Denote
C,= C, C;=200+ CAi,r,
7= (C+ 1) MAL, (C,+ AL, min {(un—A), (w—E)}.

Here M is the same as in (1.6.8). Lemma 3.2.1 implies that § > 0. It is easy to see that
if gy < g, then

3.2.7

B> MAL (C AL (C+ 1) g+ & (3.2.8)

For the proof of the lemma we proceed by induction. We suppose that we have constructed
functions ¥,, Kk =0, 1, ..., m, satisfying the assertions of the lemma. Put
D=1n0, Bn="TmB(Om On)s Bm (0)="Tmm (0).
It follows from (1.6.5) that for v € B(v,,,, §,,)
Tmarfmer (Pm (V), 0) = (11, 5) = (Am+1‘{p'm (5) +8m+1 (Pm (0), ),
(3.29)
Brst + Pmes (m (0), 0)),
where
Amar= Af’"(w)’ Br= Bfm(w)o Emi1r =g mypyy R = hfm(w).

Denote by 17,,: §m - R*¥ the mapping associating the vector §"to the vector § (see
(3.2.9)). We will show that

| #mar0y — m+152 | > Eﬂgl —52 ] (3.2.10)

From the mean value theorem it follows that for v,, v, € B(v,,, §,,)
hmsr (B (0y), 03) — Bimss(D(03), ORKSUP | At r(DN(m(03) — B (0,)] +- 10, — 7, D-
(3.2.11)

Here the supremum is taken over all points z lying on the segment joining the points
@,,(,), v,) and (J,,(,), v,). By (1.5.3), (1.5.4) and (1.6.8) we have
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| a2 = | dmesl2) — dimosON < MAL 2], (3.212)

Since y,,, by the induction hypothesis, satisfies (3.2.5) and (3.2.6), it follows that (3.2.7)

and the inequalities (1.5.3), (1.5.4) and (1.5.6) imply the estimates
[ (01)—%m ()] < Cr [ —5; b
~ - (3.2.13)
lzl< max ([ pr @] +[0: ) < CrgoE™ + Ac v 8,8

Therefore (3.2.11)—(3.2.13) imply that
Bass(Bm (01), Oy) —Pimsa(bra (O3), TN < MALAC, + ALNC + g™, (3.2.14)
On the other hand, by (1.6.6)
| Brsr (0, —0,)| > 1 |0, — 0, |, (3.2.15)

Therefore (3.2.2) and (3.2.8) imply (3.2.10). Since 5, , = £5,,, we have

fm (Bm (vrm 6m)) OB (Um+1, 6m+1)- (3.2.16)

Hence, in tumn, it follows that the mapping ¥, . ;) = 7.1, (2,0 4 17
On the basis of (2.1.10), we obtain

B4 K “ T‘ﬁmﬂ (;mﬂ)“ -+ ma_x u d@m.ﬂ (U)“ n 5“ < QOOQO‘K”‘“ + bm.,lquMHA:,r’V—(mﬂ).
v=Bm (3217

7, (v) satisfies (3.2.4).

Choose 7, near to zero, such that v + 7 € §m +1- There exists a unique 7 € R"™¥ such
that

0+ T=Bunss (0 -+ 7) By (G (047), 747).
Using (3.2.9), we obtain that
'E= Bm+];+ hm+l (11;;11 (;“" :E)» 5““ ;)"—hm+1 (Em (5)1 ‘5)

From (3.2.11)—(3.2.15), in which we must put 3'1 =% +7 and ;2 =7, it follows that

11> (e — MAL (€ + AL (C+ 1) g BT
Again using (3.2.9), we obtain that

| Pmsr (0 + 0 —Bmas O < | Ao | O (0 +T)— P (0)
(3.2.18)

+gmur (;lsm (54— ;), 5—{- '?) —8m+u (Tpm (5)’ ;)”

Since inequalities similar to (3.2.11) and (3.2.12) hold for g,,, ., ;, on dividing (3.2.18) by
Hi7il, passing to the limit as 7 - O and taking the least upper bound over all v E §m, we
obtain
Ab,, + MAL (Cy+ AL ) (€ + 1) g (mavD)™”

B — MAs.r (Cl + As,r) (C + 1~) 4o (Tlg"’_z)m

b <
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Since, according to the induction hypothesis, b, < C,n™ = Cn™, (3.2.7) implies that
b, .1 <Cn™*!. From this (3.2.17) and (3.2.2) it follows that

Bmiz < (2009, + CAs, o) (B < Crg ™"

The lemma is proved.
From Lemma 3.2.2 and (1.5.3), (1.5.4) and (1.5.6) follows

max | ¥m (0)] < V2C,qt™,

PSPt (3.2.19)

max | dyn @) < V2C,AL, (v i)™,

o=B(0,;,65,)

Taking C = 1 in (3.2.7), we define a number § depending only on the numbers /, k, s and
r. There exists a qiy s such that

Ghsr < (2001 2A4L ) 1g (3.2.20)

and for any point w € Ulx, q;c, sr)
expwB, (200 V 24:,,)"9) DU (%, gh.sr). (3.2.21)

We consider in the neighborhood Ulx, q;’ s,») @ smooth submanifold W, transversal to the
family S . (x). Letw € Aﬂc, s.r N UG, qéc’ s,r)- We choose q’k, s,y 50 small that

ks, r

the set exp W is the graph of a smooth mapping
Y: U= E,, (see (3.1.2)), given in some (3.2.22)
neighborhood U C £,

Thus we will suppose that qlkl s,r is chosen in accordance with the conditions (3.2.20)—
(3.2.22). Without loss of generality we can assume that (see (2.3.3))

max |$ ()< 1, max ldy (@< 1
o=U
Lety = V(w) 0O W. Put

expey=P=(tp o) [m(P)=Pn=/(thm, 0m), meZ¥
g(w, W)= 200V 24}, max |y (u)].
Then =
9@, W) <48, g, W)< 7
(3.2.23)
loolo < (200 ¥ 245 q(w, W).

Further, by (3.1.3), (3.2.3), (3.2.7), (1.5.6) and (3.2.21) there is a constant C3 = C3(,, s, r)
such that for any w € A} o N Ulx, 4% ;,)
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Cyg(w, W)+ C, < G| W1 (3.2.24)

Taking 8, = %q(w, W) and applying Lemmas 3.2.1 and 3.2.2, we construct a mapping
¥,.: BQ,,,8,,) _)Elfm(w)' We denote

Wor=Wn (0, y, 8)= {€xPmy, (¥m (v), 0): v =B (U, Om)}. (3.2.25)
It is obvious that W, is a smooth submanifold in M. By (3.2.4) and (3.2.16)
FHWn) C Wit (3.2.26)

We consider in the neighborhood U(x, g} ; ,) the set Al o (see (3.1.1)), and two smooth

k,s,r
submanifolds W! and W2, transversal to the family S{c' 5,/(x) and intersecting V(w,), w, €

A;c' ar U(qllc, s,r), in the Points y! and y? respectively.
Let W), = W, (w,, ', 8,) be the submanifolds defined by (3.2.25),i =1, 2. By
(3.2.26)

A=F"(Wn " (Bhs) = Wi Ak
Therefore there exists a point w, € A} 57 N Ulx. qlk,s,r) such that z' € V(w,). Put
Py=expa,y==(us, v;), P =Tr(P)=(u}, 0}),

2=V(w) N W2, expaz=/(to, Vo)
eXDby )" (7)) = (Uh, )= fir (&, O3,
i=1,2, k=1,...,m.

LemMA 3.2.3. For every a > 0 there exists m, = m,(, s, r, @) such that for any
mz=m,

Un & B (v, 8a), (3227
where §,, = (8, + a)t™.

ProoF. We will estimate |52, — v2,1l,,- We have
| 007 | < Ve — O [ 4§ — 0 o (3.2.28)
Since f™(z!) € W), (2.1.10), (1.5.4) and (1.5.6) imply

lom — 0l < | 05—k b + [0 =02 |

L On+V2(0nln+ 107 ) < 8, +200 V2AL 06, )" (| W2 |+ [W2 ). @229
Since z!, z? € W(w,), (2.2.8), (2.2.4) and (1.5.3) imply
lon —vnle < CT'O (7" (), ™ (%)
(3.2.30)

K CN (s, )" As.rP (2 2) < CN AL () (| W2 | | W),
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Thus it follows from (3.2.28)—(3.2.30) and (3.2.2) that |52, — v2,Il,,, <&, if m is so
large that

A5, 200V 24+ CTN) (e, )™ (| WP | | W2 ) < 0"
The lemma is proved.

LEmMA 3.2.4. Forany o> 0,8, < BIWl + IW?l) and m > m,(c) (see Lemma 3.2.3)

p(F™ (Wi (@, 8 80) () Absr) CF" (Wi (@, 42, 8 +0)),

where p is the successor mapping connected with the manifolds W' and w2,

The proof follows from Lemmas 3.2.1, 3.2.3, the inclusion (3.2.26) and the inequality
(3.2.23).

The last assertion shows that to compare the measures of the sets 4 C Ak sr MW and
p(A) we must learn to compare the parts of these sets lying in the inverse images of the
submanifolds W, (w, y', 8,) and W,,(w, %, 8, + a) respectively.

LEMMA 3.2.5 (see [3], Lemma 6). Let z' = f™(z) € W}. There exist constants
Cs =Cs(l, s, r)and Cg = Cy(l, s, 1) such that

”dffm(z)l I \dffm(yx)l W1 —1|<C5(IWII+IW2D1
T @ (3.2.31)

Tl e 11970 1< Co(| W24 | W2,

|
Tpmigy ¥ m

where \B| denotes the coefficient of volume expansion for the mapping B.

PROOF. Since fis of class C2, there exists a C, > 0 such that

“ df;xl _df;: “< C7p (21’ 22)»

where z; and z, are arbitrary points in M. Therefore there exists Cg such that for any
subspace 4

a2 al =142 A | < CoP (21, 2,). (32.32)

In addition, there exists a Cy > 0 such that for any z € M and two subspaces 4,, 4, C
T,M of the same dimension

[[dfz |5 | =] dfz' o, | < Cod (A, Ay). (32.33)

Denote
E— Ty Whs J(k, 2)= Idfi‘k(z) lslzz I

It follows from (3.2.19), (3.2.24), (3.2.32) and (3.2.33) that
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[ (k, 2)—J (&, ;)| < CeP (F* (2), T (92))

(3.2.34)
+Co d (Egy E2)< Cro (| W || W2 ) (v,
where C; o = C;o(, s, r) is a constant. Obviously there exists a J, > 0 such that
I I (R, 2) < o (3.2.35)

The first inequality in (3.2.31) follows from (3.2.34) and (3.2.35). The second inequality
follows similarly. The lemma is proved.

We denote by uﬁn the Riemannian volume in f™(W’) induced by the Riemannian metric
of the manifold M, i = 1, 2.

LEMMA 3.2.6. There exists C;, = C,,(, s, r) > O such that forany m €Z*, a > 0,
8gs 8, < H(IWH + WW21) and any two measurable sets X' C W} (w, »*,8,) and X* C
W2(w, ¥*, 8,) for which lu} (X" )(2,(X?))™! - 11<a, we have

B (™ (X)
—_— g wt W2 | i q). 3.2.36
B2 (™ (X2) l\ (W17 +a) (3:236)
ProoF. Denote
A= |df;" b b =1, 2.

Fori =1, 2 we have
(T (X = [ A2 duh @) = Atz i (X,
xi
where z; € X'. Therefore from the conditions of the lemma and (3.2.31) it follows that
Bo (F™ (XY) _
we (F™ (X3)

1

==

AR , My (X1)
A, (24) uZ (X2)

b (X)), | o A A Aw) ’

u? (x2) T AW A AW
ul, (X1) .
xpz x +a<Cu([W1|+|W2|+a).

The lemma is proved.
We will now show how to cover the “nice” parts of f™(W?), ie. the sets

m (f\’k, sr D W!), by certain sets lying in the submanifolds Wm(wj, ¥ 84) with centers at
certain points w;. This covering will not only have finite multiplicity not depending on m
(such a cover was constructed, for example, in [3]), but will be almost a decomposition;
that is, the sum of the measures of the intersections of elements of the cover is sufficiently
small by comparison with the value IW'1+ IW2Il. Here certain “superfluous” pieces of the
submanifold f™(W1) are covered and we must take care that the measure of these pieces

should be sufficiently small. For this we use a method proposed in [3].



FAMILIES OF INVARIANT MANIFOLDS 1299

Let B, be a closed ball in W! of radius # and 4 = A}

. M B,. We select a number
B > 0 such that

‘ ut (Bt+B) _

1 2
W (B) 1‘47(1 WL W) (3.237)

LEMMA 3.2.7.  There exist 84, 0 <8y, < B(IW'| + IW?1), and for each m € Z* sets
of points {Wi} and {y} Y.i=1,..., ny, satisfying the following conditions:
. @€ Aber VU@, G i€ UE ) NV @) j=1, ..., m.
2 ["A)C Wrm U Wi [ oh 3 0) W= U Wi (01 5} 8
c fm (Bup)-

ProOF. Letw € A’k's'r N Ux, q’k’s,,) and y! € W' N V(w), and let Q(»!, ) be the

ball in the submanifold W! with center at y! and radius y. There exists ¢ = #(y) < 7, not
depending on w and y, such that

Ws (@, g, (V) Q" V) (3.2.38)

60=min{t (%) w4 we |)}. (3.2.39)
Fix m > 0 and choose from the covering set

U w1 (w, yl, 6_0)
weAl 2
R,s,r

a finite subcover. The corresponding sets we denote by W) (w;, ¥}, %85),j=1,...,n
We must show that W;, C f™(B,4p)- If this is not so, then there exists a point

p e 0(f" (Bug) N W (@), yj, 8o)

1

for some j. By (3.2.38), (3.2.39) and (3.2.26), f ™(p) € Q(y}, 148) and, by the same
token, f~"(p) €9(B,, ;). This contradiction proves the lemma.

The following lemma on covers with bounded (independent of m) multiplicity is
proved by a simple modification of the argument of [3] (§2, Lemma 7).

LEMMA 3.2.8. There exist dy > 0, an integer L > 0 and for every m € Z* a set of
balls Qz;, d,,), i =1, ..., n,, in the submanifold Fm (W) with centers at points z; and
radii d,, = dy¢™ satisfying the following conditions:

o~ 23 ng ~
D Wnc U Q2 dn) C U Q2 2dm) C Wi
=1 =1
2) Foreachj=1,...,n, thereisanindex i, 1 <i< n,, such that
Q@ 2dp) C Wh(wy, yi, 8).
3) The multiplicity of the cover of ’W,’n by the sets Q(z]., 2d,,) is equal to L.
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Fix m > 0 and consider any ball ((z;, 2d,,). For somei 1 <i<n,,

Q (Zf’ 2dm) C Wt:'ln (wb yt: 60)'

We denote
Qi=expa,Q (2 '2dm), zj=expuy;, z;=1g,(3),
where t’ﬁi is the projection onto £, P P
LEMMA 3.2.9. For each €, 0 <€ < 1, there exists m, = m,(¢, 1,5, 7) € Z* such that
forany m 2 m,

3 parallel to E

P (@ (%, (@) 8Bz 2dm)) < &d

The proof follows from (3.2.1) of Lemma 3.2.2, (3.2.19) and (3.2.25).
Fix an arbltrary €,0<e¢ < 1, and consider a cover of the ball B(z (2 — e)d,,) by

closed cubes DU, i=1, :» of diameter ed,, with disjoint interiors. The cubes are

constructed in the obwous way relauve to the Euclidean structure on E, FM(wy) generated
by the Riemannian metric. We denote by V(D ) the Riemannian volume of the cube D
It is easy to see that for @,, = af™, a >0,

V((Dy)g,) "

Clz E ’ (3 -2 -40)

V(D)

where C,, is a constant and (Bii)a denotes the a-blowing up of 5,.,-. Put (see (3.2.25))
Dyj = exp, {(y%, (v), 0): v = D). (3:241)

(We recall that the graph of ¥}, coincides with exp:,li W..) Itis easy to see that the sets
D; intersect only on the boundary, and if m = m, (see Lemma 3.2.9), then

Ni -
Q (Zj, 2dm) - U Dij D Q (Zl', d,-,,). (3.2.42)
=1
Making similar constructions for each ball Q(z 2d,),j=1,...,n,, we construct

sets Dy; which, by Lemma 3.2.8 (see assertion 1) and (3.2.42), cover the set Wl The
multiphclty of the cover, as before, does not exceed L. We will show how it is possible,
neglecting part of the elements of this cover, to obtain a cover which at most (in measure)
points has multiplicity 1. For this, passing successively from Q(z;, 2d,,) to Q(z;4,, 2d,,),
we neglect those sets D,;, | whose centers are contamed in the union of the sets D, k <
J, retained in the preceeding steps. Let D, i = , IV, be the renumbered elements of
the cover obtained. It is not difficult to see that

s
X

.

U D= D,. (3.2.43)

i=1i=
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LeMMA 3.2.10. There exists a C; 5 = C, s, s, r) such that for every € > 0 and
any m = m, (see Lemma 3.2.9)

- N ~
1. WU D:C Was
i=1

2.
N

IRt t28)
=1 — — 1< Cge. (3.2.44)
B (™ (U D))

PrROOF. The first assertion follows immediately from (3.2.43) and Lemma 3.2.8 (see
assertion 1). In order to prove the second assertion we consider the cover of W;, by the

sets Q(z;, (2 —€)d,,), 7 =1, ..., n,. Since the multiplicity of the cover does not exceed
L, we have

n

> un(Q (2 (2—¢)dm))

= (3.2.45)

< Luh (0 @z, @—2)dnl) < Lk (U D).

=1

We denote by n(x) the number of sets D; containing x, and put
Dej=tx < f™ (W) P (x, 0Q (2, (2—e) d) < edm}-

Here p is the distance on the submanifold f™ (W) induced by the Riemannian metric. It is
obvious that

b (Dej) < Craep @z (2—2)dm)) (3.2.46)
where C, , is a constant. Therefore if D, = U%}2D,;, then
ns ns
pn(De) < S i (De)) < Crge 3} bm Q) (2-—2) drm))- (3.2.47)
j=1 i=1
It is easy to see also that
N
n(x)=1, xg&D:U (U D). (3.2.48)
=1

Therefore (3.2.45)—(3.2.48) imply

N
S e@= | nduh@<ph(U D)
i=1 o, —

| C=

i

+(L—1) i D)< (U DI(1+(L—1)LC0).
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Now (3.2.44) follows from Lemma 3.2.7, in which we must put X2 = U"IVD,. and X! =
X\ D,_. The lemma is proved.
We complete the proof of the theorem. Choose & > O and consider the set

D= expa, {(¥n (v), 0): v = (D))} Wi (@), g}, ).
Since N N
U Wa(w 45 d+a)C U D

=1 i=1

on the basis of Lemma 3.2.4 we have for m = m,
N m
_L_,l1 D; D" (p(A)). (3.2.49)

In addition, from the continuity of the Riemannian metric on M, the inequalities
(3.2.19) and (3.2.40) and the definitionof u (see [10]), it follows that there exists a
constant Cy o = C,((,, s, r) such that
b (D J
uz (D)

—1

<C1e(;:: + \W‘I+IW21). (3.2.50)

It follows from (3.2.49), (3.2.50), (3.2.36), (3.2.44), (3.2.37) and Lemmas 3.2.6,
3.2.7, 3.2.9 and 3.2.10 that for m = max{m,(c), m,(e)}

N ~
we (P (AN wo(F™ (D))

i=1

<[VHCL W]+ 1V ) +Cua (S 1P +172)))
€T WD) < (14+Ca (17141 W1 = +2))

X o (Brag) < (1 +C (| W+ W2+ = +e))pz<3¢).

Here C,, = C,,(, s, r) and C;4 = C,g(/, s, r) are constants. Since the ball B, is
chosen arbitrarily, the mapping p is absolutely continuous. Now let z be a point of
density of B = w! n Aﬁc, 5 and B,(2) the ball in Ww! with center at z and radius ¢
For sufficiently small ¢

wBNB () nfl Lawm w2
lul(s,(z» ]|<mm{2’2(\ |+172)}.

Therefore from the above it follows that
. o 1
W (B N @) < (1+Co (| W 1+1W2] & T o) (BN B, D),

where C,5 = C,4(l, s, 7) is a constant. Since the numbers a, € and d,, are chosen
arbitrarily, where @ can be chosen after d;, and ¢, it follows that
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R (p (B N B: (@) < (1 +Cyo (W |+ W2 ) e (B N B: (2))- (3.2.51)

Applying similar assertions to the mapping p~ !, given on the set p(B N B(2)), we
obtain that

i (B N B(2) < (1 +Coo (W1 W2 ) s (p (B N Be (2)))- (3.2.52)

The inequality (3.2.1) follows from (3.2.51) and (3.2.52). The theorem is proved.

3.3. Consider a set A;c, s,» Of positive measure, and let x be a point of density of
A;c’ s~ There exists a partition £™ of the neighborhood U(x, qﬁc’ 5,7) (the number q;’” was
constructed in Theorem 3.2.1), each element of which is an (n — k)-dimensional submanifold
transversal to the submanifold ¥(x). We denote the elements of this partition by Cysm(¥),

Y EV(x). Let A C Cpgn(x) N Al . be a measurable set. Put

k.s.r

A= U (V@) NU K, ghsr)- (33.1)

{ -
AL V@NA=E

Using the absolute continuity of the families of local stable manifolds, we will show
that the partition ¢ of A4 into the submanifolds V(z), z € A’k,s’,, W(z) N A # &, has a sys-
tem of conditional measures absolutely continuous relative to the measure on ¥(z) induced
by the Riemannian metric. The corresponding argument is due to Ja. G. Sinai (see [2],
Russian p. 153, English pp. 147—148).

Let u,, be the measure on Czsm(y) induced by the restriction of the Riemannian metric

on M to Cysm(¥). In it we introduce another measure fi,, putting for any measurable set 4

lly (A)=v (A)
Let v, denote the measure on the submanifold ¥(z) induced by the Riemannian metric.

ProprosiTiION 3.3.1. 1. ﬁy Is absolutely continuous relative to My

2. The partition § is measurable, and the conditional measure b, on an element of the
partition is absolutely continuous relative to the measure v,, z € A’k, sp V@) NA# B,

3. Foralmost all y € A, v,(V(2)) > 0, where z € A’k’s,, and V(2) N A = y.

Proor. It follows from Theorem 2.3.1 that ¢ is measurable. Denote by T[y the
conditional measure induced by v on the element Cssm(y) and by k the measure in the
quotient space j/ssm = X. It is obvious that there exist a measurable function ¢, = z.(s),

$ € Crem(), ¢ = $(¥), ¥ € V(2), z € Ay, ., such that

duy (5)=t,45) duy(s),  dx(y) =0 () dv(y)-

Let B C A be an arbitrary set of positive measure. Then from the above and Fubini’s
theorem it follows that
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v(B)= f de(y) | ¥s(s)di,(s)= Sd&(y) [ %857, (s) duy (s)

ésm (¢9)] Esm(y)

= {@%0) [ 10065 (00, (0) 00, (4) dte, 0

Esm(‘lo)

= [ du, @ E J(9) %5 (P (9)) ¢ (0 (@) dit ()

gsm (qa)

= | 0@ [ 7u(0) %5 (0u(9) £ (0u (@) @ () dv, (w0,

Esmwo) Vig)

Here J, (q) is the positive measurable function arising from the absolute continuity of the
successor mapping  Pao’ Cesm(@o) > Cesm (), P, (@) =s. (We note that J, (q) = O for
q € Cesm(gy) N A.) For fixed ¢ and variable q, the points p,(q) run through V(g)-
From the latter equality it follows that on the elements C. (q) the conditional measure is
absolutely continuous relative to the measure v Vgs and the measure on ff/f is absolutely
continuous relative to u,. Assertions 1 and 2 are proved.

In order to prove assertion 3 we denote

Y={e A M Allz.s,r L V2 (CE (Z)) =0},
and let Z = UerCg—(V)~ Obviously ¥ C Z. From 1 and 2 it follows that

YN <V@D= [ %(C@)die)= [ 1()v.(C: (@) diix(2) =0.
Z{5 Z/8

Here /(z) is the measurable function arising from the absolute continuity of ¥, relative to

v,. The proposition is proved.

3.4. ProrosiTiON 3.4.1. Let Ay ;,) > 0. There exists a set N C M of measure

zero such that for any 1 € 2% and x € A} s, AN

Ve (V (x) N Arsr)=vx(V (x))

(recall that v, is the Riemannian volume on V(x) induced by the Riemannian metric on M).

ProOF. Let N, be the set of nonregular points in M. We have »(V,) = 0 (see
Theorem 0.3). Letx €A, ,. Putd, ={y € V(x): y €N, } and consider the set N,
of those points x € A, ; , for which v, (4,) > 0. The set N, is measurable. We will show
that w(N,) = 0. If this is not so, then for some / € Z* the set N, N Afc' s,» has positive
measure. Let x be a point of density of this set. By Proposition 3.3.1, vy(V(y) NN)=0
for almost all y € A} (. N Ulx, q%,s,,)- Thus the set of those points y € Aoy N
U(x, q’k’ s,») for which vy( V(») N N;) > 0 has zero measure. This contradiction shows
that W(V,) = 0. Ifx € Aﬁc,&: U N,), then almost any (relative to v.) point y € V(x)
is a regular point, and, by Prc  .iion 2.3.1, y € Ay .. The proposition is proved.
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