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FAMILIES OF INVARIANT MANIFOLDS CORRESPONDING TO NONZERO

CHARACTERISTIC EXPONENTS

UDC 517.9

Ja. B. PESIN

Abstract. A theorem on conditional stability is proved for a family of mappings of class
C e , satisfying a condition more general than Ljapunov regularity. Using this theorem, fami-
lies of invariant manifolds are constructed for a diffeomorphism of a smooth manifold onto a
set where at least one Ljapunov characteristic exponent is nonzero. The property of absolute
continuity is proved for these families.
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Introduction

0.1. In this paper we consider a cascade (that is, a dynamical system with discrete

time) generated by a diffeomorphism / of a smooth closed η-dimensional manifold Μ and

preserving a finite measure ν compatible with smoothness (that is, equivalent to the measure

induced by some Riemannian metric). We fix in Μ an auxiliary Riemannian metric: the

corresponding scalar product and norm on the tangent space TXM will be denoted < , ) x and

\\·\\χ (sometimes the index χ will be omitted). The required class of smoothness of/will be

specified in the statements of theorems, but the smoothness of Μ and the Riemannian metric

can, without loss of generality, be taken to be class C°°. There is defined on the tangent

bundle TM a measurable function (see [7])

V(χ, υ) =ΊϊϊτΊ - ln||dfnv\, νe= TXM, (0.1)
n—oo Π

called the Ljapunov characteristic exponent (the number χ+(χ, υ) is called the characteristic

exponent of the vector υ at the point x).

Our basic assumption is that the measurable invariant (relative to /) set

for some υ(= TxM} (0.2)

has positive measure.

If we interpret the existence of a vector ν €Ξ ΤχΜ with a nonzero exponent as a certain

"partial hyperbolicity" property at x, then we may say that on Λ our cascade is "nonuni-

formly partially hyperbolic". "Partially" here means that the existence of vectors with zero

exponent is not excluded, and "nonuniformly" means that the inequality, expressing for vec-
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1262 Ja. B. PESIN

tors υ S TXM with negative exponents the change of \\dfv\\ n with increasing n, is not

uniform in JC. For comparison we note that the case when hyperbolicity is not partial but

is, as we say, "complete" (no vectors with zero exponents) and is "uniform", is the well

known case of U-systems [1], [2].

First we consider an individual trajectory {/"(x0)}, where x0 ε Λ, and the mapping

along it

dfn:TXcM^Tfn{xo)M (0.3)

(in the case of continuous time there are corresponding variational equations along the

trajectory x(t)). Since in a linear approximation the behavior (relative to {f(x0)}) of

neighboring trajectories is described by these mappings, there then arises the question: does

some "stability condition" of the trajectory {f"(x0) } follow from our weak variant of

"hyperbolicity", namely, the existence of a smooth submanifold V(x0) C Μ such that the

trajectories {/"(*)} with initial value JC G V(X0) become arbitrarily near to {/"(x0)}- It

is known that the answer, in general, is negative.

The similar circumstances for the problem of stability of the trivial solution x(t) = 0

of a system of differential equations

^ ), (0.4)

where χ and / are vectors, A is a matrix, uniformly bounded and continuous, and \\f\\ ~

o(\\x\\) (or even OflWI2)) uniformly in t, are more widely known. Namely, it is known that

negativity of all Ljapunov characteristic exponents of the "linear approximation" χ = A(t)x

is not sufficient for Ljapunov stability of the solution x(t) = 0 of the system (0.4) (see,

for example, [4]). There exist different sufficient conditions providing an affirmative an-

swer to the question raised.

The problem of interest to us is concerned with the case of a stability condition. In

the analytic case, Ljapunov proved such a theorem for a system of differential equations

satisfying a regularity condition. In this paper we prove a similar theorem for cascades of

class C1 + e and those points JC0 € Λ at which the linear approximation (0.3) satisfies a

regularity condition or a certain general condition (see Theorems 2.1.1 and 2.1.2). In addi-

tion we are interested in the invariant manifolds V(x0) not for a single point, but for a

whole set of such points having positive measure. Accordingly we obtain some information

on the dependence of F(x 0 ) on x0.

This result is intended for use in the metric theory, playing for the smooth cascades

considered here the same role as the well-known Hadamard-Perron theorem [6], [8] (more

precisely, the version uniform relative to initial data [1]) plays for U-systems.

In metric theory it is appropriate to deal not with one individual trajectory but with

a set of trajectories of positive measure; therefore it is necessary to consider not the

separate invariant manifolds but families of such manifolds. For U-systems, Anosov showed

that these families have a very important special property which one calls absolute continuity

(see [1]). (In essence, it is just this property that allows the use of invariant manifolds in

the metric theory.) In our case we will prove an analogous result (see §3).
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The uniform hyperbolicity of U-cascades gives them rich metric properties: they are

ergodic, have positive entropy and even have the ^-property. In our case the hyperbolicity

is weaker, but some analogue of these results is retained [9] (at least in the case when in

Λ all the exponents are different from zero ; however, we will give proofs in the general

case because, firstly, they do not follow from [9], and, secondly, the assertions proved are

used to get a new result—a formula for the entropy of a dynamical system; see [9]). These

proofs are based on the above-mentioned properties of invariant manifolds.

The author expresses his deep thanks to D. V. Anosov and A. B. Katok, under whose

guidance this paper was written.

0.2. In this paper we will constantly use the following notation in addition to that

introduced above:

< , > and | | · | | are the standard scalar product and corresponding norm in Euclidean

space R".

/ is the identity mapping of the corresponding space (which one will be clear from

the context).

Z + and R + are the sets of nonnegative integers or reals.

ρ and d are the distances in Μ and TM respectively, induced by the Riemannian

metric.

B(x, r) is the open ball in the manifold Μ with center at χ and radius r.

T*M is the cotangent bundle; d'f = ((<//)*Γ1: T*M -» T*M.

0.3. In conclusion we recall some information about the Ljapunov characteristic ex-

ponents (see [4] and [7]).

The upper index "plus" in the notation of exponents means- that they are obtained as

"time" « -> + oo (See (0.1)). Similarly we define the exponent χ~ as η -*• - °°. Correspond-

ingly we should speak of "forward" and "backward" exponents, although, as a rule, work-

ing with the first we will omit the "forward".

For each χ Ε.Μ the restriction of χ + to the subspace TXMtakes not more than η val-

ues (distinct and different from - °°). We denote these values in order by

\ ( * ) < X, ( * ) < . . . < XSM (x), s (x) < n. (0.5)

Put Lt(x) = {υ e ΤχΜ: χ(χ, ύ) < xt(x)}. The subspaces L^x) form a filtration of ΤχΜ;

that is,

0 = Lo(x)CLx(x)d · · - CL s l x )(x) = ΤχΜ. (0.6)

Put dim L{(x) = k{(x). The integer-valued functions s(x), k^x), . . . , ks^(x) and the

family of subspaces L^x), i = 1, . . . , s(x~), depend measurably on x. The characteristic

exponent χ + is invariant; that is, for each χ € Μ

If we replace df by d'f on the right-hand side of (0.1), we obtain a characteristic exponent

χ' + on the cotangent bundle, called an adjoint exponent.

Let χ € Μ, υ e TXM and φΕΤ*Μ. Then

tJ7(9(4ff)) = Φ (»)=·· (0.7)
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From this follows the so-called adjoint condition: χ+(χ, υ)+ + χ + (x, φ) > 0. A normalized

basis e(x) = {ez-(jc)} € TXM is called normal if the first fej(x) vectors of the basis lie in

LJ(JC), the following k2(x) - kx(x) lie in L2(x) \L,(x), etc. If e(x) = {e,-(x)} is a normal

basis at the point x, then

e»(x) =

is a normal basis at /"(*)·

Let e'(x) = {e-(x)} € Γχ*Λί be the dual basis. The cte/ecr of the pair of bases is the

function

γ (x, e(x), e' (x)) = max {X+ (x, e,· (χ)) + χ'+ (χ, el (χ))}.
i

By virtue of the adjoint condition, y(x, e(x), e'(x)) > 0. The irregularity coefficient of the

exponent χ + is the function

V (x) = min γ (x, e (x), e' (x)),

where the minimum is taken over all possible pairs of dual bases (e(x), e'(x)). The exponent

χ + (or the pair of exponents χ + and χ ' + ) is called regular at χ if y(x) = 0, and points at

which this condition is satisfied are called forward regular.

THEOREM 0.1 (see [4]). Let χ be a forward regular point. Then the following asser-

tions are true:

1) χ,ίχ) = - x',00·

2) The filtration connected with χ '+ consists of the subspaces L^(x) {the annihilator

of the subspace I,(x)).

3) Each basis dual to a normal basis is normal.

4) For each « S Z the point f"(x) is forward regular.

A point χ is called backward regular if it is forward regular for the exponent χ~. A

point χ is called regular if it is both forward and backward regular. We have detailed the

notion of regularity, in contrast to [4] and [7] (their notion of regularity corresponds to

our "forward regularity").

If 0 is a measurable invariant function on the manifold M, then its Ljapunov characteris-

tic exponent at χ is

Χ+(φ {X)) = lira - In | φ (/" (x)) |. (0.8)

We similarly define the exponent χ~(φ(χ)) for η -* - °°.

THEOREM 0.2 (see [7], Theorem 4). If χ is regular, then there exist subspaces E^x),

/ = 1, . . . , s(x), satisfying the following conditions:

1) L,(x) =θ*£»Ε,(χ), i = 1, . . . , s(x).

2) Uniformly in υ € E^x)

lim ln—\\dfnv\=±Xj(x).
η—±ρο Π
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3) χ~(Γ7(*)) = x+(ry(x)) = (kf(x) - ί , , , Μ ^ Μ , where Tf(x) is the volume of the

parallelepiped in the space Ε Ax).

4) For each n^Zthe point f"(x) is regular, anddfE^x) = £} </"(*)).

5) There is a decomposition T*M = Φ ^ · * Ε'-(χ) with similar properties relative to the

exponent χ ' + ; moreover, ife(x) = {e^x)} is a normal basis for which et(x) € Ε Ax), kj_x(x)

< i < kf(x), and if e'(x) = {ε\{χ)} is the dual basis, then e'f(x) e E'f(x), kH1(x) < i < kj(x).

THEOREM 0.3 (see [7], Theorem 1). Let f be a dynamical system on the smooth

manifold M, preserving a finite Borel measure. Then relative to this measure almost any

point χ e Λί is regular. The function s(x) and the subspaces E1 (x), . . . , E^^x) depend

measurably on x.

§ 1. Invariant distribution and the Ljapunov metric

1.1. Let / b e a diffeomorphism of Μ of class Cr, r > 2, preserving a measure v, and let

the measurable invariant set Λ defined by (0.2) have positive measure. We denote by Λ the

set of regular points in Λ. From Theorem 0.3 it follows that ι^Λ) = v^S).

Let χ € A. We consider the filtration (0.6) and the subspaces Ε Ax), j = 1, . . . , s(x),

at the point χ (see Theorem 0.2). We denote by k(x) the largest natural number such that

for each υ G Lk,xAx)

According to the definition (0.2), 1 < k(x) < s(x) and /t(/(x)) = k(x).

Let l(x) be an arbitrary measurable invariant function satisfying the condition 1 < l(x)

<k(x). Put

£ιχ = Θ £/(*), Εζχ= Θ Ει (χ),
/ W W + 1 (1.1.1)

From Theorems 0.3 and 0.2 it follows that the functions λ(χ) and μ(χ) and the sub-

spaces Elx and E2x depend measurably on χ and satisfy the following conditions:

0 < λ ( χ ) < μ ( * ) , λ ( * ) < 1 , λ (/(*))= λ (χ), μ(/(*)) = μ(«); (M.2)

= EiM, i = l ,2 . (1.1-3)

THEOREM 1.1.1. There exist measurable functions C(x, e) and K{x, e), e > 0, χ G Λ,

satisfying the following conditions:

1) For every m £ Z

2) For any η € Ζ +
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ldfn

V\^C(xB)Xn(x)e*nlvl,

B)rn(X)e-eniv\\ lx)>

ε)μ·(Λ)β-|0|,

)μ-*(χ)β·>|

3. Let y(x) be the angle between the subspaces Elx and E2x. Then K(x, e) < γ(χ).

PROOF. We begin by proving

LEMMA 1.1.1. Let X C Μ be a measurable set invariant relative to f and let A(x, e)

be "a measurable function on X which for some e > 0 and all! m G Ζ satisfies the condition

(χ), ε )< M2(x, ε) e*M, (1.1.6)

where M^ix, e) and M2(x, e) are measurable functions. Then there are measurable functions

Bx{x, e) and B2(x, e) such that for any m € Ζ

Β ^ χ , ε Χ ^ Κ χ , ε ) < β 2 ( χ , ε ) , (1.1-7)

.ε),

(1.1.8)

*)·

PROOF. (1.1.6) implies the existence of a natural number m(x, e) such that for m e Z,

Iml > m(x, e),

—4e < - i - ΙηΑ (Γ (χ), ε) < 4ε.
\m\

Bl(x,z)= min {l
-m(*,eK£<m(j:,e)

β 2 (χ, ε) = max {1, A (f (χ), ε) if*1'1}.
—m(x,s)^i^m(x,e)

The functions B.-(x, e), / = 1,2, are measurable. In addition, for each η € Ζ

β, (χ, ε) *-" " " < Λ (Γ (*), ε) < β, (χ, ε) β«'Λ|. (1.1.9)

If the numbers &j < 1 < b2 have the property that for each η G Ζ

V ) , ε), ( l . l .H)

then Z>! <Βλ(χ, e) and 2>2 > B2(x, e). Thus

β χ(χ, 8 ) = s u p { 6 < 1: for each η (1.1.10) is satisfied}, (1.1.12)
β^ (χ, ε) = inf {b > 1: for each « (1.1.11) is satisfied }.

The inequality (1.1.9) implies (1.1.7), and also the inequalities
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Α (Γη (Χ), ε) < B2 (χ, ε) β4 8""*' < B2 (χ, ε)

A (fn+n (*), ε) > Β, (χ, ε) <f4E|n+m| > S x (χ, ε)

Comparing these two inequalities with (1.1.9), written at the point fm(x), and taking

account of (1.1.12), we obtain (1.1.8). The lemma is proved.

REMARK. If a measurable function ψ(χ) has exact exponents (positive and negative),

equal to zero, then the function A(x, e) = φ(χ) satisfies the condition of Lemma 1.1.1 for

any e > 0.

Fix e > 0 and consider the angle y(x) between the subspaces Elx and E2x- By

Theorem 0.2, for each χ € Λ

χ + (γ(χ)) = ) Γ ( γ ( χ ) ) = 0 ; (1.1.13)

moreover, the exponents are exact. Applying Lemma 1.1.1, we construct a function K(x, e)

satisfying the second inequality in (1.1.4) and assertion 3 of the theorem.

Let χ € Λ. We denote dfjx = dfx \E.(x), j = 1, . . . , s(x).

LEMMA 1.1.2. For any e > 0 there is a function D(x, e), χ € Λ, satisfying for any

m € Z and 1 < / < l(x) the condition

(1.1.14)

such that for each η € Z +

where χ- = χ.-(χ) (see (0.5)).

PROOF. By Theorem 0.2 there is a number n(x, e) > 0 such that for each η > η(χ, e)
1 η η 1

η η

1 r η 1

π η

where we have put d'f-x = d'f\E>^ (Ej(x) are the subspaces of T*M occurring in Theorem

0.2). 7

Define

D1(x, ε ) = max {l, | |d/iJ

, ε ) = min

D (χ, ε) = max {Dl (χ, ε), D? (χ, ε)}.

The function D(x, e) is measurable, and for any η GZ+ and 1 < / < l(x)
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e)e t t ' - ° I <|d^I< D(x, e)

, ε)β(-χ>-"ε)η< 1 dfj?|< D(*, ε)
(1.1.16)

, ε) </-*> -ε)" < 1 rf'/fc I < D {Χ> ε ) β<-*/ <·*

, ε) Α -ε)" < || <ffi? | |< D (χ, ε)
If a number c? > 1 has the property that for any η £ Ζ + (1.1.16) are satisfied on replacing

D(x, e) by d, then d > D(x, e), Thus

£>(̂ , e) = inf{cf > 1: for each η > 0 (1.1.16) is satisfied (1117)

on replacing D(x, e) by d }.

We will compare the values of £)(x, e) at the points χ and fmx, m e Z + . We make

some preliminary remarks. We define a mapping rx: Γ̂ Λ/ -* ΤχΜ, putting τχ(φ) = υ̂ , for

φ e 7"̂ Λί, where the vector u^ satisfies

<σφ, Ό) = φ (υ)

for each υ € ΓχΛί. Let {e"} be an orthonormal basis in E(f"(x)), {e* } the dual basis in

£j(r<*))· Then u e,n = ef. Let the mappings df»fmM and Tfn+m{x)d'Qm(x)T-^(x) rel-

ative to the basis {e"} be given by matrices A'n m and B'n m respectively. Condition (0.7)

written in our notation gives

where T denotes the transposed matrix. Therefore for each η > 0 the matrix of df"m

has the form

•̂ O.n+m \Ao,m) — Ao,n+m\Po,m) •

We will use the inequalities (1.1.16) in order to estimate the norm of the operator

<*/." for different n. We consider the following cases:

1. n>0.

2. n>0, m—/i

3. «>0, n—m>0.
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Similar inequalities hold for d'f" , n, m € Z + . Comparing the relations obtained

and (1.1.16), written out for fix), and also taking account of (1.1.17), we get that (1.1.14)

holds for any m G Z . Arguing similarly, it is not difficult to show that this inequality also

holds for each integer m < 0. The lemma is proved.

If we replace m by - m and χ by fm(x) in (1.1.14), we obtain

D(fm(x), e)>yD(x, e)e-2*tm\ (1.1.18)

Let χ £ Λ. We consider two disjoint subsets σχ and a2 of the set of natural numbers

from 1 to l(x). Put

L (x) = φ Et (x), Μ (X) = θ Ει (Χ)

and consider the angle ya σ (χ) between the subspaces L(x) and M(x). By Theorem 0.1,

(1.1.13) is satisfied for each χ € Λ. Therefore, by Lemma 1.1.1 the function ya a (x)

satisfies the estimate

with some function Kc a (x, e) satisfying the second inequality in (1.1.4). Put

T(x, e) = min/Ca1aI(x, ε),

where the minimum is taken over all possible pairs of disjoint subsets σ1 and σ2 of the set

of natural numbers from 1 to l(x). The function T(x, e) also satisfies the second inequality

in (1.1.4).

Let υ Ε Ε1χ,υ = Σ^ χ^υ ;·, where υ;- e Ej(x). From the above follows the existence of

a constant L > 1 such that

7 = 1

Put

, ε).

From (1.1.4) and (1.1.18) it follows that C\ (x, e) satisfies (1.1.6) of Lemma 1.1.1,

where

Mx (x, ε) = - L YD (χ, ε), Λί2 (χ, ε) = I D 2 (χ, ε) Τ"1 (χ, ε).
π

Therefore there exists a function C^x, e) > Cj(x, e) satisfying the first inequality in (1.1.4)

for all m e Z. In addition, by virtue of (1.1.15) and (1.1.19), the first two inequalities in

(1.1.5) are satisfied with the function Cx(x, e) for each υ € Elx and η € Z + .

Our construction is symmetric relative to the passage to the inverse mapping. Here the

subspaces Elx and E2x exchange roles. Thus, repeating the preceding argument with the

mapping f~x and the subspace E2x, we construct a measurable function C2(x, e), satisfying

the first inequality in (1.1.4). In addition, for any υ e E2x and η € Z + the first two in-

equalities in (1.1.5) are satisfied with the function C2(x, e).

Put
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C(x, ε ) = max {^(x, ε), C2(x, ε)}.

It is not difficult to verify that the measurable function C(x, e) satisfies the first inequality

in (1.1.4), and that the inequalities (1.1.5) are satisfied with C(x, e). The theorem is proved.

1.2. It follows from Theorem 1.1.1 that it is possible to introduce a nonuniform par-

tially hyperbolic structure in Λ. We will briefly describe the corresponding construction.

As above, let k(x) denote the largest natural number such that χ+(χ, υ) < 0 for each

k(x) s < * '

Elx=@Ej(x), Eix = θ Ef(x),
/ /=*W+2 (1.2.1)

It is not difficult to see that

TXM = E1X 0 Eox θ £κ, dfEu = £tft,), t = 1, 2, 0,

(1.2.2)

In addition, X t ( x ) + I W = 0 and x+(x, v) > 0 for each υ € £" 2 χ .

The following is proved in the same way as Theorem 1.1.1.

THEOREM 1.2.1. There exist measurable functions C(x, e) and K(x, e), e > 0, χ € Λ,

satisfying (1.1.4) and the following conditions:

1. For each υ € Elx (or υ G £"2χ) t n e inequalities (1.1.5) Λσϋ

2. For a«y R £ Z and ν € £0;i[

W 1 | < Ι4Τ"ο|-^ C (χ, e)e e > l |J v\\.

3. £ei Ύ(:{χ) be the angle between the subspaces Eix and Ex, / = 0, \,2, i Φ j . Then

K(x, e) < 7(*).

1.3. For integers s > r > 1 consider the set

A s ,r={xe=A: ' - Ζ 1 ^ < λ ( χ ) < - < ' - ^ < μ(χ), where s is the
s s s

< ( ) < <
s s s

smallest number satisfying these inequalities for some r }.

It is obvious that As r is measurable and invariant relative to / Moreover, U J > r > 1 A j r =

Λ, and if χ, Φ s2 or rx Φ r2, then Λ r Π Λ̂  = 0 .

Consider the measurable invariant function defined on Λ by the equality

( ) x e= Λ,.,. (1.3.1)

It is easy to verify that for each χ e Λ

λ (χ) e-'rew < 1, — e**w < ^ - ^ e-60eW. (1.3.2)
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In addition, the functions C(x) = C(x, e(x)) and K(x) - K(x, e(x)) are measurable on Λ.

For each integer / > 1, consider the set

At,r={x<=As,r: C(*)</, ICl(x)<l}-

It is obvious that A£ r is measurable, (JA^ r = Λ,>Γ and AJ r C A ^ 1 . On the basis of (1.1.4)

and (1.1.5), for each χ € X'sr, any mGZ and any η e Z + we obtain

( L 3 3 )

We denote by Al

s r the set of points χ €.M satisfying the following conditions:

(1.3.5) There exist subspaces Elx and E2x for which TXM = Elx θ Ε2χ.

(1.3.6) For vectors υ lying in dfm(Eix), i = 1,2, the estimates (1.3.3) hold.

(1.3.7) The angle y(fm(x)) between the subspaces dfm(Elx) and dfm(E2x) satisfies

(1.3.4).

THEOREM 1.3.1. 1. Λ]>r C Λ$>r C Λ and \l

s r C Λ ^ 1 .

2. The set A's r is closed.

3. The subspaces Elx and E2x depend continuously on χ in the set /\fs r.

4. For each integer q and I > 1 there is an a = af/j, I, s) € Z+ such that

f9 (Air) (Z Air.

5. The set As r = U r ) ] A j r is invariant relative to f.

PROOF. 1. The inclusion Aj r C Λ^ r is obvious. If χ 6 A j r , then for any υ € ΖΓ1χ

Thus x e Λ. Since (1.3.3) and (1.3.4) remain valid on replacing / by / + 1, it follows that

A^ r C Λ^.1 ; moreover, the subspaces Εχχ and E2x do not depend on which of the sets

A^ r contain x.

2 and 3. It is easy to see that a decomposition satisfying (1.3.5)—(1.3.7) is unique.

Let χ e M, and let xi G Λ^ r be a sequence of points converging to χ Passing to a sub-

sequence, we may suppose that for each i

dim ElXi = k, dim E^ = n—k
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and the subspaces Elx. and E2x. converge, as ί -* <*>, to subspaces Elx, E2x C TXM. We

will prove that these subspaces satisfy (1.3.5)—(1.3.7). Let υ GElx and u{ GElxJ υ,- ·* υ.

Since the inequalities (1.3.3) hold for uf, on putting m = 0 in these and passing to the limit

as ζ -* °° we obtain that (1.3.3), with m = 0, is valid for v. A similar assertion holds for

vectors vGE2x. Hence it follows that Elx Π £ 2 χ = 0, so that TXM = Elx θ £ 2 χ . Fix

an integer m. Since xf- -* x, it follows that df™ -*• df™, and consequently the subspaces

df" (EjX.) converge to the subspace dfm(E-k), j = 1,2. Let the sequence of vectors u. G

dfm(EjXj) converge to a vector υ G dfm{Efx), j = 1,2. Since (1.3.3), with a given m, is

valid for the uf, the same will be true for υ. Arguing similarly, we obtain that (1.3.4) holds

for each χ € Λ̂  r and any m.

4. Let q and / > 0 be integers. Choose an integer α = a(q, I, s) such that

te**lrt<a. (1-3-8)

If χ &fq(A'Sir), we put Ejx = df%E.f_qix)\ / = 1, 2. For υ € £ , χ , by (1.3.8) we have

'wP I < ί (τ)" ι ο ι

The remaining estimates are deduced similarly. Thus χ G A*r.

Assertion 5 follows immediately from 4. The theorem is proved.

Put

Λ = U As,r, Λ = { « ε Λ : dimElx = k),

Ak.s.r = Ak β As.r, Aft,s,r = i 4 * Π As,r,

A*.s,r = >lfc Π As.r. Afc,s,r = J4* Π As,r.

It is obvious that the sets A'k s r and A'k J r are measurable and the sets Ak s r and Afc s r are

measurable and invariant. We also put l(x) = dim £* l x-

1.4. The starting point for further constructions lies in the nonuniform (partial) hyper-

bolicity condition on the set A given by Theorem 1.1.1 (see also Theorem 1.2.1), where in

(1.1.4) and (1-1.5) we must put e = e(x) (see (1.3.1)). In fact this condition holds on a

set A D A . Therefore the following construction can be carried out on A. We note how-

ever, that, by Theorem 0.3, Λ = Λ = Λ (mod 0). We stress that the hyperbolicity condi-

tions on the sets Λ^ s r are uniform, although the sets themselves are not invariant.

1.5. Now we construct a special (in general measurable) Riemannian metric, a systema-

tic use of which will significantly simplify the arguments.

Consider the restriction 7A of the tangent bundle TM to the set Λ. Since Λ is measura-

ble (and also Borel), TA. can be regarded as a measurable linear bundle in the sense of [7].

A trivialization of the measurable bundle TA is a measurable family of isomorphisms τχ:
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ΤχΜ -*• R". A measurable Riemannian metric on 7Λ is a measurable family of positive bi-

linear forms (scalar products) in the spaces TXM. Let ψ be a measurable Riemannian metric.

A trivialization r = {τχ } is called a Riemannian trivialization (relative to ψ) if for any χ €Ξ

A and i>t, ν2 Ε ΤχΜ

T i o , > = Ψ * K , y2). (i-5.1)

It is not difficult to show that a Riemannian trivialization exists for any measurable

Riemannian metric.

THEOREM 1.5.1. On A there exist a measurable Riemannian metric < , )'x, measurable

functions ~k'{x) and μ'(χ) invariant relative to f and a measurable function A(x) such that

for any χ G A and m e Ζ

; (1-5.2)

Α ( Γ (x)) < A (x) e S £ W | m | ; (1.5.3)

sup A (x) = Air < oo; (1.5.4)

£ κ |£1,1'Γ ι>μ'(4 v 'W=y, d-5.5)

where y'(x) denotes the angle between the subspaces Elx and E2x in the metric <, )'x;

ψ\·1<\·ί<Α(χ)\\.1. (1.5.6)

PROOF. For χ G λ put

λ'^ΗλΟΟβ***», μ'(Λ:) = μ(Λ:)β-ίε«. (1-5.7)

The inequality (1.5.2) follows from (1.3.2). Further, put

* = 0 (1.5.8)

<»i. " 2 > ; = S (μ' W) r t <^Γ*θι. dr\>f-k(x) - »i. «2 e E « ,

and if υ,- = υ/ + vf, where u/ S £". , i, / = 1,2, then

U 2

2>;. ( i .5.9)

We note that the series on the right-hand side of (1.5.8) converges. In addition, by

(1.1.5), (1.5.2) and the Cauchy-Schwarz inequality,
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" i · 0 · 6 5 * " (1.5.10)

Using (1.5.8), we obtain that for any χ € A and υ € £"lx

L*=o

Arguing similarly, it can be shown that for υ € E2x

Finally, it follows from (1.5.9) that y(x) = π/2.

We denote by τ χ any Riemannian trivialization corresponding to the Riemannian metric

< , ) x . Let κ>(χ) be orthogonal (in the metric < , )x) mappings:

κ 1 (x): Elx -+ τ ; 1 ( R ' W ) , κ2 (*) : £ w -+1"1 (R"- / w ) ,

and K(JC): ΤχΜ -*• ΤχΜ the mapping defined in the following way:

where uf € £ f a , /" = 1, 2. It is easily seen that there is a constant Μ > 0 such that for any

From this and (1.5.10) it follows that for each χ € Λ and any υ € T^M the inequality (1.5.6)

is satisfied, where
_ i_ i_

A(x)^C(x)M-1K-1 (x)maxifl - ( i M g ^ ' l * , h -/U^eeuA1]"8 J . (1.5.11)

The inequality (1.5.3) follows from (1.1.4), and (1.5.4) follows from the definition of

Aj r. The theorem is proved.

The measurable Riemannian metric < , >̂  will be called a measurable Ljapunov metric.

1.6. In this subsection we will introduce special coordinates in a neighborhood of each

point χ € Λ with the help of a certain Riemannian trivialization, corresponding to the

measurable Ljapunov metric, and also give the representation of / in these coordinates. This

representation will be used in §2 for the construction of families of local stable manifolds

and in §3 for the proof of their absolute continuity.

For each χ € λ consider the mapping
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Jx = e x p ^ ο / ο exp*, (1 -6.1)

defined in some neighborhood Ux C TXM. The neighborhoods Ux can be chosen so that for

each 1 6 Λ
rx{Ux)=U. (1.6.2)

Here U is some fixed neighborhood of zero in R" and rx is a Riemannian trivialization

corresponding to the measurable Ljapunov metric. This trivialization can be chosen so that

for each χ € Λ

xx(Eu)=RlM, x'x(Eix) = Rn-lM. (1.6.3)

Consider the mapping

f'x = r'nz) ο fx °(t'xT1 • U -> R", (1.6.4)

which, on the basis of (1.6.3), can be written in the form

f'x (u, v) = (Axu + gx(u, υ), Bxv + hx(u, 0)). (1-6.5)

Here u € R i ( x ) , υ € R"-'<*\ Αχ. R / ( x ) •+ Kl{x\ Βχ: Κ"'1*-*) -> R»-'<*\gx: U-+ R / ( x ) ,

^ € Cr, Ax: i/ -» RnW(x> and fcx € Cr.

THEOREM 1.6.1.

11 A , | | < λ » , | θ ; 1 | - 1 >μ' (*) . (ΐ·6.6)

&(0) = 0, Λ,(0)=0, <te(0) = 0, dft«(0)=0. (1.6.7)

e x i s i j Μ > 0 s u c / z f A a r / o r a n y χ € Λ , ζ , , z 2 € ί 7 α η ί / I = 1 , 2 , ... , r - I

' ' MA (*)Iz,-2kI, (1-6.8)

: ΓΧΜ •* Γ / ( χ ) Μ, tx = (gx, hx).

PROOF. Since τ'χ is an isometry (see (1.5.1)), on the basis of (1.5.5), for any u €

we obtain

1 = I x'fwd fx (xx)-*u 1 = \\d f'x {x'j* u |;w < λ ' (x) 1 {x'x)-*u ί = λ' (χ) 1 u I,

and if υ € R"~'vJt) similar inequalities give

Since / € C , r > 2, from the definition of fx (see (1.6.1)) and the compactness of Μ follows

the existence of a constant C> 0 such that for any χ € Μ, w,, w 2 G 7yif and 7 = 1 , 2 , . . . ,

/ · - 1

From this and (1.5.6) it follows that for any zv z2 £ U and 7 = 1, 2, . . . , r - 1 (wf =

( T ' x T 1 z l , i = 1,2)
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Id!tx{ζχ)-άι1χ(z2) ||= 1 d!(f'x(zj-df'x(0)zj-d1 (fx{z2)-dfx(0)z2)I

HK/w (d'fx(vi)-dlfx(wt)\=l d!fx (wJ-dfMwJUM

<A(x)\dlfx(w1)-dlfx(w2)lnx)^A(x)C\\w1-wil

< Λ (*)C γ2\wx-w&= Α (χ) ν^Ιζ,-ζ,Ι.

The theorem is proved.

§2. The construction of local stable manifolds.

2.1. Let F b e Euclidean space with norm | | · | | . Suppose that F can be decomposed as

a direct sum of subspaces E1 and E2,F=E1® E2. Choose open convex neighborhoods

of zero t/j and U2 in E1 and E2 respectively. Let Fm be a countable family of Euclidean

spaces with norms \\m\]m, m GZ+, isomorphic to F b y isometries (a trivialization) Tm: Fm -»

F. Put Eim = τ " 1 Ei and Uim - τ " 1 (C/,·), / = 1,2, and consider the family of mappings

t m + l ° fm ° fm1 («, ϋ) = (AnU +glm (U, v), BmV + g2m (u, v)), (2.1.1)

where u e Ul and υ G U2.

For brevity we denote the composition fm ° / m _ t ° . . . ° / 0 = Π™/)·.

THEOREM 2.1.1. Suppose that the following conditions are satisfied:

1. There exist numbers λ and μ such that

0<λ<1, λ<μ, (2.1.2)

and for any m € Z +

2. 77ze /iincrion gm = fe,m, ̂ 2 m) e c ' . a m i for any m<=Z+

g m (0 )=0 , ^ m ( 0 ) = 0. (2.1.4)

3. There exist constants K, a and ν such that

λα<ν<1, 0<σ<1, Κ>0, (2.1.5)

and for any zv z2 Si/, χ t/2 awe? m £ Z +

II 4gm ^ t ) - 4 ? » (*2)«< /CV" I Z l-z 21|°. (2.1.6)

£er κ be any number saw ying

λ<κ<πιιπ(μ ( v°). (2.1.7)

Then there exist positive constants C and r0 and a mapping φ: S -*• E20, where S is the

ball in £ , 0 with center at zero and radius r0, satisfying the following conditions:
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<p(0)=0, dq>(O)=O,

and for any uv u2 G S

1 dq> (uj—άφ («,) | o < C\ul—u2 ζ.

2) For each m € Z + and any u € 5

1277

(2.1.8)

(2.1.9)

n fi) ("· ψ("» < 2 0 0 > c m ι ( " · φ ("))υ»-

(2.1.10)

3) Let (μ, υ) S FQ, u e F, and let there be a number Ο 0 such that for any m Ε Ζ +

1.1=0 \ί=*0

Then υ = φ(μ).

4) 772ere ex/s/ continuous functions φ. = ψ,·(λ, μ,ν,κ,α),ί= 1,2, defined on the

open set in R 4 gzVew fry the inequalities (2.1.2), (2.1.5) and (2.1.7), such that

L - -
= /ΓβΨι(λ, μ,ν,κ,α), C=/( αψ2(λ, μ, ν, κ, α).

(2.1.11)

PROOF. Consider the linear space ΓΚ of sequences of vectors {z(m) }, z(m) € Fm,

satisfying

The norm | | · | | κ makes TK into a Banach space. Consider the open set

and the mapping Φ κ : ί/j χ W -> Γ^:

/- 2) (0) =
oo /A

- 2 Μι SJI

Λ=ο \s=0 J

, z)(m) =

—2 (Π

(2.1.12)

=o \s=o

Here for uniformity of notation we regard Π^."^1 As = /. First we will show that the

mapping Φ κ is well defined. For this we note that by the mean value theorem, (2.1.4) and

(2.1.6), for any z e ( / , m χ U3m, m € Z+ ,
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)-gm (0)Κ \dgm {l)\\xmz\\ = \dgm (l)-dg
(2.1.13)

x 1 xmz Κ Κν-« Ι ξ |Γ 1 xmz ϊ < /Cv" I xmz ||1+α.

Here ξ = |(m) lies on the segment joining 0 and rmz. Using (2.1.3), (2.1.13) and the

definition (2.1.12) of Φ κ , we get

Ι φ * (y· *) I = sup κ-"Ί χηφκ (y, ζ) (m) ||

< sup κ-^λ1"Ι ί/ J + sup x-m/C 121 V

Lft=o

-,

-f|z| .J
(2.1.7) implies the estimates

J>o κ ~ ' " λ ' " = ! ' (2.1.14)

sup κ-^λ ^ (X~tv~1>i1+a)ι < — λ '^" 1 In max — , - Π , (2.1.15)

CO

sup «-.«ν- «κίΐ+βνημ-ι y (μ-ΐγ^κ1""1)* = ϋΐ . (2.1.16)

Put

Ι ν μ

From (2.1.14)—(2.1.17) it follows that

|Φχ(#. 2 r ) L < l l ' l + 2 ^' j W f t z lx + a +I z L· (2.1.18)

We have thus proved that ΦΚ is well defined. From (2.1.4) it follows that

Φκ(0, 0 ) = ( 0 , 0 ) . (2.1.19)

We will show that Φκ € C1 . For this it is sufficient to prove the existence and continuity

of the partial derivatives of Φκ with respect to y and z. Let y Ε Ul, h € £", and y + h Ε

Ux. It follows from (2.1.12) that for any ζ € W and m Ε Ζ +
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, z)(m)-OK(y, z)(m)]=((m]\ At\h, θ) .

Therefore

Xn4fl>* (y, z) (m) == [ [ f A,, 0 |. (2.1.20)
\S=0 /

We will prove the continuous differentiability of the mapping Φκ relative to z.

Consider the difference 4>K(y, ζ + h) - Φκ(γ, ζ), where ζ e W, h € Γκ and ζ + h € W.

Using (2.1.12) and condition 2 of the theorem, we obtain

(y, ζ, Λ),

where / is the identity mapping of Γκ and

f
oo / ft

S Π 5"m )
*=o \s=o /

0 (y, z, A) (/n) = τ"1 ί 2

Here ofe, h) (m), i = 1, 2, is defined by

ο* (z, A) (m) = g i m (Tm (z + A) (m))—g[m {xmz{m))—dgim {xmz (m))xmh (m). (2.1.21)

Inequality (2.1.6) and the mean value theorem imply

fl o, {z, h) (m) || < I dg im (i (m)) xmh (m)
(2.1.22)

—«fefa, (xmz(m)

where ξ(τη) lies on the segment joining rmz(m) and r m (z + h)(m).

It follows from (2.1.22) that for any zv z2 € W and Λ e Γκ

f
<sup κ-

A=0 \s=o / II
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The relations (2.1.14)—(2.1.17) imply

Ι (Υ*(*ι)-Υχ (*»))* ! „ < MMl^-z^Whl. (2.1.23)

In a similar way it is proved that

to(y,z,h)l<2KM\\hl+a. a L 2 4 )

It follows from (2.1.4) that yK (0) = 0. Therefore by (2.1.23)

2, Z<=W. (2.1.25)

This inequality together with (2.1.24) shows that Φκ is continuously differentiate with

respect to ζ and

dz<X>x(y,z)=yK(z)—I. (2.1.26)

In addition, for any y Ε Ux

dz<S>*(y, 0) = - / . (2.1.27)

From the above and the equalities (2.1.19) and (2.1.27) it follows that Φκ satisfies all the

conditions of the implicit function theorem. In what follows we will need a version of

this theorem, which we quote below.

LEMMA 2.1.1. Let E, F and G be three Banach spaces and f a continuously differen-

tiate mapping of the product A = Αχ χ A2 into G, where Αλ C E, A2 C F, and Af is a

ball about zero with radius rjt i = 1,2. Suppose that df satisfies a Holder condition in A

with constant a and exponent a, /(0, 0) = 0 and the partial derivative TQ = D2f(0, 0) is

a linear isomorphism of F onto G. Let S be the ball in Ε with center at zero and radius

(2.1.28)

where b = maX(x oyGA \\dxf(x, 0)|| and C = Ι Ι ^ 1 1 | . Then there exists a unique mapping

u: S -*• A2 of class C 1 satisfying the following conditions:

/(*,«(*)) = 0, u(0) = 0,

8ac(l +2bcf \Xl-xAa, (2-1.29)

PROOF. We use the method of proof of Theorem 10.21 in [5]. Denote

g(x,y) = y—T;1f(x,y).

(χ, yxX (*.
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g(*. yu—

Put r3 - 2cbr0. By (2.1.28), rQ < τχ, r3 < r2. Let S C Ε and Q C F be balls about zero

with radii r0 and r 3 respectively. If χ € S and j x , j 2 6 Q , then by the choice of r0 and

r3 and the mean value theorem we have

3 ) a || ̂  _ ί

Therefore for any ^ € 5 and yv y2 € Q

On the other hand, for any χ € S

\\g(x, 0)[=|-777(*, 0)I< c6re=lr,.

Thus the mapping g: S χ Q -*• Q satisfies the conditions of a fixed point theorem of [5]

(Theorem 10.14), from which follows the existence and uniqueness of a continuous mapping

u: S -*Q such that H(0) = 0 and f(x, u(x)) = 0 for each xGS. The proof that u is con-

tinuously differentiable in 5 is a verbatim repeat of the corresponding argument in [5] (see

p. 267). From the inequality

1 df (x, y)-df (0, 0) | |<α(r 0 + rs)
a<±,

valid for all (x, y) e S χ Q, it follows that

Κ/(*>ί/) | ]<ί>+-; (2.1.30)

in addition,

Therefore the mapping dyf(x, y) is invertible in S χ Q, and it is not difficult to show that

1 d~y

lf (x, y) 1 < 2c. (2.1.31)

Differentiating the equality f(x, u(x)) = 0 with respect to x, we get

dxf (x, u (x)) + dyf (x, u (x)) ^ = 0.

Inequalities (2.1.30) and (2.1.31) imply that for χ € S

|^p| |<l+26c. (2.1.32)

In addition, for any * , , x2 6 S
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dj(xv u(Xl))-dxf(x2, ui

Inequalities (2.1.30), (2.1.31) and (2.1.32) imply

The lemma is proved.

It follows from (2.1.23), (2.1.20) and (2.1.27) that Φ κ satisfies the conditions of the

lemma with

c = l, 6 = 1 , a = 2KM. (2.1-33)

According to the lemma there exists a ball 5 in El0 of radius r0, 0 € S C £/, and a

mapping ψ: 5 -»· if, ψ € C1 , such that for any j 6 S

ψ (0) = 0, Φ * (ί/, Ψ (ί/)) = 0. (2.1.34)

By virtue of (2.1.17), (2.1.28) and (2.1.33) the number r0 has the form (2.1.11).

Differentiating the second equality in (2.1.34) with respect to y, we get

<ίψ (y) = - [4Φ*(y, Ψ (y))]'1 du®* (y, Ψ (y)). (2.1.35)

Putting y = 0 in this equality and taking account of (2.1.20), (2.1.27) and (2.1.34), we

find that

dy(O)(m)=(f[Ano\. (2.1.36)

J
We represent φ(γ) (m) in the form ψ(>>) (m) - (φλ(γ) (m), t^2(y) (m)), where

,-Ο') (»i) € Eim, / = 1,2. It foUows from (2.1.12) and (2.1.34) that

\I LI s / ί£ΐ Ι 11 I

(y)(m) = — V. Π Bs+m gm+k (fm+At {y) (m + «)). m > 0.
ν»/ ν / ZJ ι 11 ι (2.1.38)s--o

It is easy to see that these equalities imply the relations

τπι+ιψχ (y) (m + 1) = ^mtm^i (i/) («) + gtm (Τ^ψ (ί/) (/«)),

tm + 1 ^ 2 (ί/) (/Π -f 1) = Brr^m

which mean that for all m S Z + and u £ S
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ΜΨ(ίΟ ("»))=·* («/)(« + !). (2.1.39)

Define φ: 5 ->£" 2 0 from the conditions

ί/eS. (2.1.40)

We will show that <p(u) satisfies assertions 1—3 of the theorem. The differentiability of

φ follows from the differentiability of φ, and (2.1.8) follows from (2.1.34) and (2.1.36).

Using (2.1.29), (2.1.33), (2.1.37) and (2.1.40), we obtain that for any uv u2<ES

(Ul)—dq> («,) i|0 < | (<1ψ (yj—£ίψ (y2)) (0) ||0
< 1 d$ (ί/j) - 4 ψ ($/,) 1κ < 200/CM 1 {/χ - % Γ = 200/(M || ut - «2 f.

This proves (2.1.9). Assertion 1 is proved. In addition, C = 200KM has the form (2.1.11).

Since φ(γ) € W for any y € 5, using (2.1.29), (2.1.33), (2.1.37) and (2.1.40), we find

that for any u S S and m G Z+

f = l vi=l /

In addition,

Ι π ft) ( " · φ ( " ) ) = Ψ {y) (m) e ^ x u*m-

Assertion 2 is proved.

Let the point («, v) and the number C > 0 be chosen in accordance with the conditions

of assertion 3. Consider the sequence φ(ί) = (n |_ j/ f ) («, u). Since

sup κ"' I ( fj fi ) (u, P) < C sup κ~'κ' = C,
*>· Ili-i J { />0

we see that φ € ΓΚ. From the definition of ψ it follows that /{φ(1) = ψ(/ + 1). Therefore

/) + gu

Hence it follows that for any η > I

l-x \ /-i / l-i

Π^ρ+Σ Π
s=o / *=o \s=ft+i

τ«Ψ. (0 = Π BSli τηψ2 (η)— ^ ( f{ BJi/ ^2 f t + / (τΛ+1φ (k +1)). (2.1 -41)
\ s=o / ft=o \s=o

Since
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if ) I j Γ ) Τ\i f B&) τ*% («
J ν μ ;ι

on passing to the limit as η -*• °° in the second equality of (2.1.41) we obtain

00 / ft Ν

H%(I) = - 2 Π 5 " ' &** (τ*4/ψ (* + /)).

Hence from (2.1.38) and (2.1.41) it follows that ΦΚΟ, ψ) = 0. Since y € 5, by the

uniqueness statement in Lemma 2.1.1 we have φ = ΨΟ0. Therefore

Ψι (!f) = Ψΐ (°) = «> Φ («) = Ψ2 (#) (0) = ψ (0) = p.

Assertion 3, and together with it the theorem, is proved.

Under additional smoothness assumptions on fm it can be proved that the mapping φ

constructed in Theorem 2.1.1 also has a higher degree of smoothness.

THEOREM 2.1.2. Assume that, in the conditions of Theorem 2.1.1, for each m € Z +

the function gm(u, ύ) € Cr, (μ, u ) € { / j χ U2, r > 2, and moreover there exist positive

constants Κ and Kt, I = 1,. . . , r, such that

^up^ ] dlgn (z) I < Ktrm, (2.1.42)

II drgm (zj—d'gm (zt) | < K\-m I zx—z2 ||a, (2.1.43)

where zx, z 2 G ί/j χ £/2. £e? ψ(«) 6e iAe mapping constructed in Theorem 2.1.1. 77ien

f/zere ex/si positive numbers r0, Ν and Nv 1 = 1, . . . , r, depending only on Κ, Κ,, λ, μ, ν,

κ and a, such that for any u, uv « 2 € 5 and φ(ύ) G C

sup 1 dly (u) Κ N{, (2.1.44)

^N\Ul-uX. (2.1.45)

PROOF. We use the notation and constructions of Theorem 2.1.1 and show that Φ κ €

C. It follows from (2.1.20) that for any y e i/, and ζ € W

We will show that Φκ is r times continuously differentiable with respect to z. Formally

differentiating (2.1.12) / times with respect to ζ gives

m-\ / m-x \

Π Λ U'ft*

ft=o \s=o / /
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The inequality (2.1.42) means that the multilinear form d'gm(z) is uniformly bounded;

that is, for any z e t / , χ U2 and hl, . . . , ft, e F, I > 2, we have

1 dlgm (z) (/»!, · · -, h,) \\ < Krr*" {[\ht ||.

i=l

Let h{ e Γκ. From the preceding inequality and (2.1.14)—(2.1.17) it follows that

rm-l I

m > 0 Lft=o ί=ι

I -I

J ] ΙΛί ||κ
£=1 J

f [ 1 h{ |
f = l

Thus the multilinear form όι

ζΦκ(γ, ζ) is bounded. Obviously it is continuous relative to

y and z. Now we show by induction that dl

z$K(y, z) is in fact the /th derivative with respect

to ζ of ΦχΟ'. ζ). For / = 1 this was proved in Theorem 2.1.1. If h € ΓΚ is a small incre-

ment, then

d^OnCy, z+h)—<£lOx(y, z)=diox(y, z)h + o,(y, z, h),

where Oj(y, z, h) is defined by

ι, ζ, h) (m) =

CO / ft

-Σ(Π*
k=o \s=o

/m-i 1

\*-o \

J

m-i

Π y \1 . 0 .
/

J
moreover oa(y, z, h) is defined by (2.1.22), in which g. is replaced by its /-derivative. Using

(2.1.42) and (2.1.43), we obtain that

1 Oil {y, z, h) (m) 1 = \d gim (I (m)) tm/i (m)

— d'gtm ( W (m)) τ ^ (m) \\ < Κ / + 1 ν - ||/ι (m) JU, for 2 < / < Λ

and

1 O i , (y, z, ft) (m) 1 < Kvm || ft (m) p a for / = r.

Hence, arguing as above and using (2.1.14)—(2.1.17), we obtain

I! Oi (y, z, h) I < 2Kl+lM 1 ft β for 2 < / < r,

and

1 o r (y, z, h) | κ < 2/^Λί 1 ft 1Γ° for / = r.

This proves that Φ κ G C"\ From the implicit function theorem we conclude that ψ e C .

Furthermore, there exist constants N1 > 0, depending only on λ, μ, ν, κ and α, such that
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p
y<=S

We will use a version of the implicit function theorem whose proof is similar to that

of Lemma 2.1.1.

LEMMA 2.1.2. In the conditions of Lemma 2.1.1 assume that / e C and drfsatisfies

a Holder condition in A with constant a and exponent a. Then u € C, and there is a con-

stant Ν such that for any χχ, x2 e S

chr
( 2 , . 4 6 )

From the definition of <p(u) (see (2.1.40)) and Lemma 2.1.2 (see (2.1.46)) it follows

that for any u1, u2 € S

The theorem is proved.

2.2. Let / b e a diffeomorphism of Μ of class C, r > 2, and Λ the invariant set of

positive measure defined by (0.2). We use the notation of 1.5 and consider the bundle Th

with the Riemannian trivialization τ , corresponding to the Ljapunov measurable metric

<, )'x, constructed in Theorem 1.5.1.

PROPOSITION 2.2.1. LetxE.Asr. The family of tnvializations

f/n = ^f(m) · * fm(x) * ^

and mappings fm = f (see (1.6.6)), defined in the neighborhoods Um - U (see

(1.6.2)), satisfies the conditions of Theorems 2.1.1 and 2.1.2, where

ν » ν,., = e " 5 E s , κ = κ5,Γ = λ5,Λβε*. (2.2.1)

α = 1, ε , = ̂ 1η(ΐ+-?-), K=MA(x).

Here the function A(x) constructed in Theorem 1.5.1 and the constant Μ are the same as in

(1.6.8).

PROOF. The repiesentation (2.1.1) follows from (1.6.3)—(1.6.5). Inequalities (2.1.2),

(2.1.5) and (2.1.7) follow from (1.3.2); inequality (2.1.3), from (1.6.6) and (1.5.7). Condi-

tions (2.1.4) are corollaries of (1.6.7). The inequalities (1.6.8) and (1.5.3) imply that for

any m 6 Z + , zvz2 e U (see (1.6.2)) and / = 1, . . . , r- 1

\d'tm (z1)-dltm (*,)!!< Λ14(
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Finally, (2.1.43) is an immediate corollary of (1.6.8). The proposition is proved.

Put

κ (χ) = xs. r, χ £Ξ As.r. (2.2.2)

If δ(χ) is a positive measurable function on Λ we denote

Β? (δ (χ)) = {u e= Elx: 1" L < δ (χ)}, ι = 1, 2,

β (δ (χ)) = θ 1 (δ (χ)) Χ Β2 (δ (^)), (2-2.3)

1/ (χ, δ (χ)) = ex P x S (δ (χ)), U'x = exp, ( t ^ Q .

THEOREM 2.2.1. 77zere ejcisf α measurable function δ(χ), χ € Λ, α /a/raTy of mappings

φ(χ): Βχ(δ(χ)) -*• Β2(δ(χ)) of ctos C " 1 , depending measurably on χ G A, a«c? α constant

N> 0 satisfying the following conditions:

1. 77ze xef F(JC) = {expx(«, <£(X)M): « € Λ^δίχ))} is a submanifold in Μ of class

c-1.
2. xG V(x).

3. TxV(x) = Elx.

4. Fory G F(x) a«d n € Z + we ftare f(y)

Ρ (fn (Χ), Γ (ί/)) < ΛΜ (x) κ» (Χ) Ρ (Χ, y). (2-2.4)

5. //there are a pointy € U(x, δ(χ)) and a constant C> 0 SMC/Z fftai for each η € Z+

we have fn(y) G U'n. . <zw<i

Ptf"W.r(yKCx»(4 (2.2.5)
then y e F(x).

6. U(x, δ(χ)) G (7̂ , w^ere U'x is a neighborhood of χ (see (2.2.3)) and for any m € Z+

(2.2.6)
δί.,= inf ό ( χ ) > 0 , δ ( χ ) < 1 .

7.

8. 77zere ex/stt a measurable function G(x), χ S Λ, SMC/Z

) = G ( x ) , G s , r =sup G(JC)<OO,

ify e F(x), r/;en

d (TyV (x), TXV (x)) < G (χ) Α2 (χ) Ρ (χ, y). (2.2.7)

PROOF . Let χ € Λ. Choose a number /-0 and a mapping φ in accordance with Theorem

2.1.1 and Proposition 2.2.1. By Theorem 2.1.2, φ G Cr~y. The number r0 and the mapping
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φ depend on the choice of x, so rQ = ro(x) and φ = φ(χ). Put δ(χ) = ro(x)A~1(x). The

inequalities (2.2.6) are a corollary of (2.1.11), (2.2.1), (1.5.4) and (1.5.3). Assertion 1 is

obvious, and 2 and 3 follow from (2.1.8). We will prove 4. It is known (see [10]) that

there exist δ, Cx and C2 such that for any x, y S Μ for which p(x, y) < δ we have

ΐ 1 ? I < P (*. y) < c* II exp;V I- (2.2.8)

From (1.5.6) it follows that

A~l (x) C, S exp"1 y i < Ρ (χ, ί/)< /2C 21| exp^V £ . (2-2-9)

It follows from the above and (2.1.10) that

p(/», r ω χ vTcJf π ft) («. 9/("))||
ll\'=o J \\fn(x}

< 200K2C2x« (x) || (α, φ («))£< 200 V'lC^T Α (χ) κ" (χ) Ρ (χ, y).
Now 4 follows from 2 of Theorem 2.1.1. Assertion 5 is deduced from 3 of Theorem

2.1.1 in a similar way. Let y Gf(V(x)) η U(f(x), 8(f(x))); then / ^ ( y ) € F(x), and, by

assertion 4, /"(y) = / " + 1(T10')) e ίΤ η + , (χ) and

Ρ (/" (*), Γ (Γ iy)) = Ρ ( f 1 if (χ)), Γ1 (y))

< Ν Α (Χ) κ" (Χ) Ρ (Χ, Γ 1 (ί/)) = ΝΑ (Χ) κ (χ) κ""' (χ) Ρ (χ, f-\y)).

Since y Ε U(f(x), δ(/(χ))\ by 5, in which we must put C = ΝΑ(χ)κ(χ)ρ(χ, f~l(yj), we

obtain y e V(f(x)). Thus 7 is proved. From (2.1.9) and (2.1.8) it follows that for any

<C(x)Mk (2-2-10)

Here C(x) is the measurable function on Λ given by (2.1.11). Therefore C(x) = A(x)L(x),

where L(x) is a measurable function constant on the trajectories of the diffeomorphism /

From (2.1.11), (2.1.9), (2.2.10), (2.2.1) and (1.5.6) it follows that for any y € V(x)

d (TyV (x), TXV (x)) < /2C 2 max I dff (υ)
Μο<11«11·

max |ofc< Y2C2C(x)A(x) max
M

< V2 Cfi (x) A (x) flexp^V L < V2CZC?L (χ) Α2 (χ) Ρ (χ, y).

The theorem is proved.

DEFINITION 2.2.1. The submanifold V(x) is called the local stable manifold passing

through x.

2.3. Some additional properties of local stable manifolds are described in the following

result.

T H E O R E M 2.3.1. 1. If χ € Al
sr, y e A1^, lx>l,y<E U(x, Va[_r) and y £ V(x),

then
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2. Ifx € A [ , j e V(x) η Λ̂ 1,. and Ιχ > 1, then

3. Ifx € Λ^, χ,, e Λ^, 1 = 1 , 2 , . . . , and xf -* x, then V(xs) -> V(x) in the C1-

topology in a neighborhood U(x, q), where 0 < q < 5l

s r.

PROOF. 1. Let ζ e V(x) η V(y) η U(y, # δ ^ Γ ) . Then ζ e £/(x, δ ^ ) , and for every

e > 0 there are points zx, z2 e U(x, δ^ r ) such that p(zv z2) < e, zx € V(x) η V(y), z2

), z2 έ K(^). On the basis of Theorem 2.2.1 (see 4), for every η € Z+ we have

Ρ (Γ (x), Γ &)) < ΛΜ (χ) κ" (Χ) Ρ (Χ, ζ,),

Ρ (/" (2ι), /" (ζ,)) < ^ (ί/) κ" (y) (Ρ (?1, y) + Ρ (ζ2, y)).

Put C = ΝΑι

ε\(β(ζν y) + ρ(ζ2, y) + ρ(ζν χ)). From the latter two inequalities,

the triangle inequality and (1.5.4), it follows that for any η € Z+

ρ (Π*). Γ (
Choose an integer n0 so that for all η > nQ

C(x i > r )"<f iU" l o e i n . (2.3.2)

This can be done because KS r < e~lOes" < 1. Choosing e sufficiently small and using

(2.3.1) and (2.3.2), we conclude that fn{z2) e U' for all η G Z + . Therefore from

Theorem 2.2.1 (see 5) it follows that z 2 e F(x), which contradicts the choice of z2.

Assertion 2 is proved similarly.

3. By Theorem 1.3.1 (see 3), Elx. -»• Elx. Therefore from Theorem 2.2.1 it

follows that for any q, 0 < q < s's>r, for sufficiently large /", V(x{) has the form

F (xt) == {exp, (u, χ< («))·· I K < <7),

where X,(M) is a mapping of class C~l of the ball of radius q in Elx into the space

E2x. From (2.2.9) and 8 of Theorem 2.2.1 follows the existence of a constant C/ r such

that for sufficiently large i and any ux, u2 € Elx> ilwjl^ < q, II"2IU ^ ?>

sup |rfX,-(u)le<Ci.r,

< C[.r I«,-«,|ς.

Therefore the family of functions χ,, is compact in the C 1 -topology. Let ψ be a

limit point of the sequence χ(- and χ, ->• φ. Since χ,. (0) -»• 0 andd^ (0) ->0,we have

φ(0) = 0 and άψ(0) = 0. Fix m e Z + and u € Elx, \\u\\x <q. Put P

(«, ψ («))·
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Since z{ -*• z, for every e > 0 for sufficiently large i we have

ρ (Γ (zg. r w) < ε, p r (χ1ρ), r (*» < ε,

P ( z i p , z ) < e , Ρ ( χ 1 ρ ) χ ) < ε .

Since zf e V(x( ), (2.2.4) and (1.5.4) imply

Ρ ( Γ (zipl fm (*,,)) < ΛΤ(Κ,.ΓΓΛ'5.ΓΡ ( V x'ip).

From the above and the triangle inequality it follows that

Ρ ( Γ (ζ), Γ (*))< NA[A\.r)
m Ρ (χ, ζ).

Since m is arbitrary, from the latter inequality and Theorem 2.2.1 (see assertion 5), we

obtain

Thus χ . ->• ψ in the C1-topology. The theorem is proved.

REMARK 2.3.1. Without loss of generality, on the strength of Theorems 2.2.1

and 2.3.1 we may suppose that the number 8l

s r is so small that for any x, y G \'k s r,

y e U(x, 5^/8),

V(y)f]U (xr blr) Z> fexpx («, <M«)): « e β ( χ δ ^ ) j ·

j ) -*· ^ ^ is a mapping of class Cr~l, with

max max [|| φ, (u)j| 4-1 άφβ (u)\) < 1.

DEFINITION 2.3.1. Let χ € A'k s r. The collection of local stable manifolds

passing through points ^ ε Λ ^ , , η U(x, δ[ r/8) is called the family of local stable mani-

folds Sl

ks_r(x).

In conclusion we give one further result on local stable manifolds. Let χ € Λ

and y £ V(x). Since the trajectories of the points χ and y, under the action of/",

η = 0, 1, . . . , come together with exponential speed, the variational equation along

the trajectory of y can be considered as obtained from the variational equation along

the trajectory of χ by a rapidly decaying (with increasing time) perturbation of the

first order. From this and Theorems 15.2.1 and 17.1.1 of [4] follows

PROPOSITION 2.3.1. 1. Let χ € Λ and y €. V(x). Then y is forward regular,

and

s ( x ) = s { y ) , X / ( x ) = 3 C i ( y ) . t = l , . . . . s ( * ) ,

where x,(x) is the value of the multiplier χ + at χ (see §0.3).

2. Let χ € A/>r and y e Λ η V(x). There exists Κ = KQ, s, r) such that for

any η G Z +
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| Ό \\y, a e £ l s = TyV (x), (2.3.3)

•""'ΊσΙ, v^E2y. (23 A)

3. Let χ e Λ and y e V(x). Then for every χ e TyV(x)

§3. Absolute continuity of families of local stable manifolds

3.1. Let Λ be the set of positive measure, invariant relative to /, satisfying (0.2).

We consider a set Al

k s r (see § 1.3) having positive measure. For y € Al
k s r we denote

by V(y) the local stable manifold in the neighborhood U(y, δ[ r ) of y (see Theorem 2.2.1).

Let χ be a point of density of Λ^ s r. We consider the family Sl

k s r(x) of local stable

manifolds (see (2.3.1)). Choose q, 0 < q < 5^/8, and put

ALr(x)= U_ V(y)r\U(x,q). (3.1.1)
l

It follows from Theorem 1.3.1 that Al

k s r is closed in U(x, q). Consider a local

open smooth submanifold ICC U(x, q) such that the set exp"1 W is the graph of a

smooth mapping \p: U -*• Elx defined in some neighborhood ί/C E2x by the relation

(u))=u, u<=U, (3.1.2)

where t is the projection onto E2x parallel to Elx- Put

| W\ = max 1 ψ (ui + max || dip (u)\\x. (3.1.3)

It is easy to see that there is a constant e^ s r > 0 such that if

et.., (3-1.4)

then the submanifold W intersects each local stable manifold V(y), y € Λ^ s r η U(x, q),

in not more than one point; moreover, the intersection is transversal. A submanifold W

satisfying the above conditions (see (3.1.2) and (3.1.4)) will be called a transversal to the

family Sksr(x).

Let IV1 and W2 be two smooth submanifolds, transversals to the family Sk s r(x).

There exist open subsets If1 C I C 1 and W2 C W2 for which the successor mapping

P : KLr η w1 - K,r η w*

is defined. Namely if y e W1 η F(w) and w e U(x, q) η Al

k s r, then

p(y)=W2nV(w). (3.1.5)

Theorem 2.3.1 implies that ρ is a homeomorphism.

DEFINITION 3.1.1. The family S'k s r(x) is called absolutely continuous if any

successor mapping, constructed as above, is absolutely continuous.
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3.2. THEOREM 3.2.1. There exist constants ql

k s r and Jl

k s r satisfying the following

conditions:

1. The family Sk s r(x) in the neighborhood U(x, q'k s r) is absolutely continuous.

2. Ify is a point of density of Aks r η W1, then the Jacobian J(p)(y) satisfies

\J(p)(y)-n<AsA\w1\ + \^z\)- (3.2.D

PROOF. Consider a point w € A'k s r η U(x, q), 0 < q < 8l

s /8, a family of trivializa-

tions Tm = r'fm{wy Tfm(w)M -> R", and the mappings fm = / / m _ 1 ( w ) defined in the

neighborhoods U = U C Τ Μ (see §1.6). We denote by \\'\\'m the measurable

Liapunov norm in Τ _,. Λ̂ί, by | | · | | _ the Riemannian norm in Τ _ . Μ, and by | | · | | the
J r / (w) m / (w)

norm in R". We define the numbers λ, μ, y, κ, a and e s by (2.2.1). Let

φ (fm (a»)): Β1 (δ (/" (a>))) - ν β 2 (δ ( Γ (a>)))

be the smooth mapping constructed in Theorem 2.2.1. We put 0 m = <t>(fm(w)) and

«>. i= 1. 2, Bm = Bl

mxB2

m,

where qm = qoe
 l u e * " \ q0 < δ(νν). By Theorem 2.2.1, B'm C ff(S(fm(w))), / = 1, 2.

Consider a point Ρ = (« 0, u 0) e 5 0 on the graph of the function φο,υο = 0O(«O), and put,

form e Z + ,

Pm = («m, fm) = fm (P), «m ^ ^m, Vm S S m .

Theorem 2.2.1 (see assertion 7) implies that vm = $„,(«„,)·

Put

| f η
s

It is not difficult to verify, using (1.3.1) and (2.2.1), that

(3.2.2)

Fix a δ 0 > 0, and write 6 m = 6 0 £ m and

S (fm, δ») = {o e £ l P ( m ) ·· Ι σ—σ» t < 6m}.

LEMMA 3.2.1. //||«0 | |0 < « 0 ( 2 0 0 ν ^ ^ Γ Γ 1 *«d δ 0 <qo/2,thenB(vm, qm) C

PROOF. If D efi(um, 5m), then from u 4), (1.5.6), (2.1.10), the conditions of the

lemma and (3.2.2) it follows that

< 200 Κ2κ« I v0 (0 + bm < 200 / ^ U " 1 1 o« ID + «0

The lemma is proved.
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LEMMA 3.2.2. Let φ0: Β(υ0, δ 0 ) -^^Ίο be a smooth mapping, where

ma* l%(v)i=C, max \\d^0(v){ =C. (3.2.3)

Then there exists a q = q(l, s, r, C) < δ^ /8 such that ifq0 < # and δ 0 < qo/2, then there

is a sequence of smooth mappings \pm: B(vm, 5 m ) -* Ε m , m > 0, for which

{(ipm (»)· σ) : Ό s β (y«, 6m)} (Z {/m (ipm-i (»), U) : y s β (vm.lt δη,-χ)}, (3.2.4)

a m = max ||^m (a)L < (200 + CAl

s,r) qol
m, (3.2.5)

i>m= max l ^ m ( u ) j ^ < C n ' " . (3.2.6)

PROOF. Denote

C2 = C, ^ = 2 0 0 + 0 ^ . , , }

^ = ( C + l ) M 4 r ( C x + ,4L)rriin{^Ti—λ), ( μ - ξ ) } .

Here Λί is the same as in (1.6.8). Lemma 3.2.1 implies that q > 0. It is easy to see that

if <?0 < q, then

μ > Μ Al

v (C, 4- Air) (C + 1) ft + ξ. (3.2.8)

For the proof of the lemma we proceed by induction. We suppose that we have constructed

functions \j/k, k = 0, 1, . . . , m, satisfying the assertions of the lemma. Put

~V = XmV, Bm = tmB (Dm, 5m), ifm (p) = fηχψ/η (»)·

It follows from (1.6.5) that for vGB(vm, 8m)

(V), V) = (u, v) = (An+$m (?) +gm+i ($m (θ), »).
(3.2.9)

+i (ψη (»), «)).

where

Denote by tm: Bm -*• R"~k the mapping associating the vector ?Tto the vector β (see

(3.2.9)). We will show that

i Κ - c J . (3.2.10)

From the mean value theorem it follows that for υ,, υ2 € B(um, δ,,,)

S /w, ($m (oi), o j - f t m + 1 ( $ m K ) , rJKsup 1 dfc«+i(z)IKi*».(^) —Ψ« K ) l 4-1 ζ—σ,|).
(3.2.11)

Here the supremum is taken over all points ζ lying on the segment joining the points

&& Ί ^m(^2>' «a)· BM ( L 5 · 3 ) ' C1-5-4) a n d ( L 6 · 8 ) w e h a v e
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1 dhm+1(z)l = 1 dhm^(z) -dhm+1(Ot < MAlrV™ \z\. (3.2.12)

Since \j/m, by the induction hypothesis, satisfies (3.2.5) and (3.2.6), it follows that (3.2.7)

and the inequalities (1.5.3), (1.5.4) and (1.5.6) imply the estimates

1 &(2)|| < p fl 21|,
~ „ (3.2.13)

1 ζ | | < max {| vfm (P/)| + 1 Vi \\) < 0 1 ? 0 Γ -f ^ t v - δ,,!".

Therefore (3.2.11)-(3.2.13) imply that

hm+1($m fa), o,) — hm+1($m (v2), v2)l < MAiACx + Al,r)(C + 1 ΜΆ&~*Γ- (3.2.14)

On the other hand, by (1.6.6)

I Sm+iK—VtK > μ 1 »i — ** I (3.2.15)

Therefore (3.2.2) and (3.2.8) imply (3.2.10). Since 8m+, = | 6 m , we have

fm (Bm (t»m, bm)) Ζ) Β (Om+i, 6m + I). (3.2.16)

Hence, in turn, it follows that the mapping tym + l(y) = ^ + l t m + 1Tm(v) satisfies (3.2.4).

On the basis of (2.1.10), we obtain

a * . < 1 im+, (vm+1)\ + max | |d$ m + 1 (v)\\\v\
o s s « (3.2.17)

Choose f, near to zero, such that 0 + f ε 5 m + χ. There exists a unique τ € R"~fc such
that

), v + x).

Using (3.2.9), we obtain that

From (3.2.11)—(3.2.15), in which we must put υ j = υ + τ and υ 2 = υ, it follows that

IX1 > ( μ - M^l[r (C, + ΛΖ.Γ) (C + 1) q0 (φ^)"1) \χ\.

Again using (3.2.9), we obtain that

^ + i (v + t j — ^ + i (5)| < 1 A^-i 11 $ m (w+τ)—Ψ™ (0)1
(3.2.18)

(σ), ΰ)||.

Since inequalities similar to (3.2.11) and (3.2.12) hold for gm+,, on dividing (3.2.18) by

||?||, passing to the limit as τ -*• 0 and taking the least upper bound over all υ G Bm, we

obtain

Xbm + MAlr (Ct + A\r) (C + 1) q0
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Since, according to the induction hypothesis, bm < C2TJOT = Crf, (3.2.7) implies that

bm + i < Cnm + l . From this (3.2.17) and (3.2.2) it follows that

(200q
0 J -

The lemma is proved.

From Lemma 3.2.2 and (1.5.3), (1.5.4) and (1.5.6) follows

max W^H^V^C^r,
6 m )

(3.2.19)

rnax || d^m (v)\\ < 4
( o 6 n )Taking C = 1 in (3.2.7), we define a number q depending only on the numbers /, k, s and

r. There exists a ql

k s r such that

ίί,«, < (200 Υ2Αΐ.Γ)-*η (3.2.20)

and for any point w e U(x, ql

k s r)

V i ) - ^ ) Z5£/(Λ, gl,s,r). (3.2.21)

We consider in the neighborhood U(x, 4^,,.) a smooth submanifold W, transversal to the

family S£ StrM- Let w € A'k s r Π U(x, q'kiSr)· We choose ql

k s r so small that

the set expw H' is the graph of a smooth mapping

ψ: U-+Elw (see (3.1.2)), given in some

neighborhood U C E2w.

(3.2.22)

Thus we will suppose that ql

k s r is chosen in accordance with the conditions (3.2.20)—

(3.2.22). Without loss of generality we can assume that (see (2.3.3))

max Ι ψ (υ% < 1, max | dip (o)f0 < 1.

Let y = V{w) n W. Put

eXpiV = P = («0. vo)> fm(P) = Pm= («m, »m), '« ^ Z+,

Then

(3.2.23)

Further, by (3.1.3), (3.2.3), (3.2.7), (1.5.6) and (3.2.21) there is a constant C 3 = C3Q, s, r)

such that for any w G A.'ks r Π ί/(χ, q\ s r)
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(3.2.24)

Taking 6 0 = Vujiw, W) and applying Lemmas 3.2.1 and 3.2.2, we construct a mapping

Κ •• B<Vm' « » ) •* E

lfm{wy
 W e d e n o t e

U7m = Wm (w, y, \) = {eXp r ( t t ) ) (ψ» (w), σ): ο ε= Β (om, δ«)>. (3.2.25)

It is obvious that Wm is a smooth submanifold in AT By (3.2.4) and (3.2.16)

r(^m)c^«.i. ( 3 · 2 - 2 6 )

We consider in the neighborhood U(x, q'k s r) the set A'ksr (see (3.1.1)), and two smooth
submanifolds W1 and W2, transversal to the family S'ks r(x) and intersecting F(Wj), w1 €
A j j j . n ί/( '̂λ s r), in the points y1 and ̂ 2 respectively.

Let W'm = ^ ( W J . J 1 ' , δ 0 ) be the submanifolds defined by (3.2.25), ι = 1,2. By
(3.2.26)

Therefore there exists a point w2 e A'fc 5>r η U(x. ?^,>Γ) such that z1 e F(Wj). Put

y = (ui, ti), Pi = Λ (Ρ1) = Κ, oj),

2) Π R72, ^ _

i = 1, 2, A = 1, . . . . m.

LEMMA 3.2.3. For every a > 0 f/zere exisft Wj = mfi, s, r, a) such that for any

m > m,

» » e f i ( a §„,), (3.2.27)

where δ m = ( δ ο + α ) Γ ·

PROOF. We will estimate \\U^ - u^,llm· We have

—o«l». (3.2.28)

Since /""(ζ1) e W .̂, (2.1.10), (1.5.4) and (1.5.6) imply

1 Vl

m—Ol

m In - f || 0 / £ — » ^ JL̂

ν2(|ο^(»4- \\vl\U)<6m+200/iMi,(xv)"(| l^ | +I1F21).

Since zl, z2 G F(w2), (2.2.8), (2.2.4) and (1.5.3) imply

.rP (21,2s) < CTW^i» J)1" (I ̂  I +1 w I).
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Thus it follows from (3.2.28)-(3.2.30) and (3.2.2) that | |ϋ£ - v2

m\\m < 5 m if m is so

large that

A{r (200 V2+ Cl'N) (xs,r)"· (| W
l \ + \ W* | )< αξ1.

The lemma is proved.

LEMMA 3.2.4. For any a > 0, 5 0 < HlW11 + llV21) and m > m^a) (see Lemma 3.2.3)

Ρ (Γ* (Wm (w, y\ \)) Π KLr) α Γ iWm {w, y\

where ρ is the successor mapping connected with the manifolds W1 and W2.

The proof follows from Lemmas 3.2.1, 3.2.3, the inclusion (3.2.26) and the inequality

(3.2.23).

The last assertion shows that to compare the measures of the sets A C A'fc 5 r Π W1 and

p(A) we must learn to compare the parts of these sets lying in the inverse images of the

sub manifolds Wm(w, y1, δ 0 ) and Wm(w, y2, δ0 + a) respectively.

LEMMA 3.2.5 (see [3], Lemma 6). Let z 1 = fm(z) € W^. There exist constants

Cs = C5(l, s, r) and C6 = C6(l, s, r) such that

\T m\-\ df]^ \T wl Γ - 1 1 < c 5 (| w-1+\w I),
<Z) m fmiyt) (3 2 31)

where \B\ denotes the coefficient of volume expansion for the mapping B.

PROOF. Since / i s of class C 2 , there exists a C7 > 0 such that

where zx and z 2 are arbitrary points in M. Therefore there exists C 8 such that for any

subspace A

I K i ' U - l d t f U l |<C 8P( 2 l, z2). (3.2.32)

In addition, there exists a C9 > 0 such that for any ζ GM and two subspaces Alt A2 C

of the same dimension

11V? UI - 1 dfV U 11< C9 d (Alt A,). (3.2.33)

Denote

It follows from (3.2.19), (3.2.24), (3.2.32) and (3.2.33) that
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, Z)-J (k, yi)\ < C8P (rk (z), rk (&»

+ C9 d (£*,, £*)< CM (1 IF | +1 W*\) (ην"1)6,

where C 1 0 = C10(/, s, r) is a constant. Obviously there exists a / 0 > 0 such that

(3.2.34)

? £ ) ^ J 0 . (3.2.35)

The first inequality in (3.2.31) follows from (3.2.34) and (3.2.35). The second inequality

follows similarly. The lemma is proved.

We denote by μ^ the Riemannian volume in fm(W) induced by the Riemannian metric

of the manifold M, i = 1, 2.

LEMMA 3.2.6. There exists C1 λ = C^Q, s, r) > 0 such that for any m € Z+ , a > 0,

δ 0 , 81 < HCIW'I + IW2 I) awd UTJJ> iwo measurable sets X1 C ^ ( w , / , δ 0 ) and X2 C

W^Ov, 7 2 . «i)/or ννΛ/οΛ Ι μ ^ ί Χ 1 ) ^ ^ 2 ) ) " 1 - 11 < β, we

J (3.2.36)

PROOF. Denote

tz | • |, ι - I , 2 .

For / = 1, 2 we have

μ'ο (Γ"" (Χ')) = { At (Ζ) άμίη (Ζ) = At (Ζ,) μίη

where z(. € ΛΓ1. Therefore from the conditions of the lemma and (3.2.31) it follows that

— 1 j

— 1
Λ 2 (ζ 2 )

— 1

The lemma is proved.

We will now show how to cover the "nice" parts of fm(W1), i.e. the sets

fm(Al

ks r Π Wl), by certain sets lying in the submanifolds Wm(w,, y\ δ 0 ) with centers at

certain points vv;·. This covering will not only have finite multiplicity not depending on m

(such a cover was constructed, for example, in [3]), but will be almost a decomposition;

that is, the sum of the measures of the intersections of elements of the cover is sufficiently

small by comparison with the value \Wl I + \W2 I. Here certain "superfluous" pieces of the

submanifold / m (R' ' 1 ) are covered and we must take care that the measure of these pieces

should be sufficiently small. For this we use a method proposed in [3].
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Let B. be a closed ball in Wl of radius t and A = Λί . . , Π Β We select a number

β > 0 such that

: — (I W11 f Ι \F21). (3.2.37)

LEMMA 3.2.7. 77iere exisi δ 0 , 0 < δ 0 < ^(IW11 + \W21), and for each m e Z + sett

of points {w-} and {yj }, j = 1, . . . , nv satisfying the following conditions:

fl£/(Jt. ?*.5.r), itf e ί/ (*, ςί.,,Γ) Π V" (ι»/), / = 1, . . . , ηλ.

/ V 2 / ι/=ι

PROOF. Let w e Al

Ksr η C/(x, ql

ksr) andy1 e W1 (Ί F(w), and let 2 O 1 , γ) be the

ball in the submanifold Wl with center at y1 and radius γ. There exists / = t(y) < 7, not

depending on w and 7, such that

WKw,!?, t(y))(^Q(y\ y). (3.2.38)

Put

(3.2.39)

Fix m > 0 and choose from the covering set

U w

a finite subcover. The corresponding sets we denote by Wl

m(w-,yh V£50), / = 1, . . . , n1.

We must show that W^ C / m ( B i + ( 3 ) . If this is not so, then there exists a point

for some j . By (3.2.38), (3.2.39) and (3.2.26), rm(p) e Q(yj, %β) and, by the same

token, f~m(p) £ 9(i? f+/3). This contradiction proves the lemma.

The following lemma on covers with bounded (independent of ni) multiplicity is

proved by a simple modification of the argument of [3] (§2, Lemma 7).

LEMMA 3.2.8. There exist d0 > 0, an integer L > 0 and for every m e Z + a set of

balls Q(zj, dm), j = 1, . . . , n2, in the submanifold f"(Wl) with centers at points z;- and

radii dm = <2 0 | m satisfying the following conditions:

2) For each j = 1, . . . , n2 there is an index i, 1 < / < « , , such that

3) The multiplicity of the cover of W^ by the sets Q(z-, 2dm) is equal to L.
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Fix m > 0 and consider any ball β(ζ· , 2dm). For some /, 1 < i < nt,

We denote

Q / = expi'Q (z,-, [2dm), zy = exp^ y , zy = # , (z)),

where r£. is the projection onto £ 2 / m ( l t i ( ) parallel to ^ 1 / I f l ( w / ) ·

LEMMA 3.2.9. For eacfc e, 0 < e < 1, /Acre exists m2 = m 2(e, /, s, r) ε Ζ + sucft that

for any m > m2

Ρ (3 (C(. (Q/)), dB (ζ,, 2dm)) < edm.

The proof follows from (3.2.1) of Lemma 3.2.2, (3.2.19) and (3.2.25).

Fix an arbitrary e, 0 < e < 1, and consider a cover of the ball Β(ζ",, (2 - e)dm) by

closed cubes Z3f/-, / = 1, . . . , Λ ·̂, of diameter edm with disjoint interiors. The cubes are

constructed in the obvious way relative to the Euclidean structure on E2f
m(w)

b h R i i ri W d b FXD) h R l h
y 2f

m(w) g

by the Riemannian metric. We denote by FXD,-·) the Riemannian volume of the cube S { · .

It is easy to see that for am = a ? m , a > 0,

— 1 C^—, (3.2.40)

where C 1 2 is a constant and (D«)a denotes the α-blowing up of Dy. Put (see (3.2.25))

Da = expo,, {/ψ^ (υ), ν): Ό e D/ y}. (3.2.41)

(We recall that the graph of ψ^ comcides with exp"1. H^,.) It is easy to see that the sets

Df- intersect only on the boundary, and if m > m2 (see Lemma 3.2.9), then

Q (Zj, 2dm) ZD ύ Du 3 Q (zy, dn). (3.2.42)

Making similar constructions for each ball Q(zi, 2cfm)j / = 1, . . . , n 2 , we construct

sets Dfj which, by Lemma 3.2.8 (see assertion 1) and (3.2.42), cover the set W^. The

multiplicity of the cover, as before, does not exceed L. We will show how it is possible,

neglecting part of the elements of this cover, to obtain a cover which at most (in measure)

points has multiplicity 1. For this, passing successively from Q(z;-, 2dm) to Q(Zj+l, 2dm),

we neglect those sets Di+, whose centers are contained in the union of the sets Dik, k <

/, retained in the proceeding steps. Let D{, i = I, . . . , N, be the renumbered elements of

the cover obtained. It is not difficult to see that

U A = U U A/· (3-2.43)
1=1 ; = 1 ,·=!
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LEMMA 3.2.10. There exists a C13 = Cj 3(/, s, r) such that for every e > 0 and

any m > m2 (see Lemma 3.2.9)

l.

2.

ν
1=1

— 1

μ1

0(Γ'η(.υ Dt.

; c^. (3.2.44)

PROOF. The first assertion follows immediately from (3.2.43) and Lemma 3.2.8 (see

assertion 1). In order to prove the second assertion we consider the cover of W^ by the

sets Q(jj, (2 - e)dm), j = 1, . . . , n2. Since the multiplicity of the cover does not exceed

L, we have

/, (2—

< Ltf* (U Q(z,; (2-s)dm))<

We denote by n(x) the number of sets Dt containing x, and put

DeJ = { x e / * ( l ^ z ) :"P (x, 5Q (z/, (2—ε)dm))

m ((j A).

(3.2.45)

Here ρ is the distance on the submanifold fm(W) induced by the Riemannian metric. It is

obvious that

V-m (Ρεί) < ^ 4 ε μ (Q (zh (2 —ε) dm)), (3.2.46)

where C 1 4 is a constant. Therefore if Z?e = U"2-D e/' ^ n e n

μϊηψζΧ y, μίι &tl) < C i4 e Σ μ̂ " (Q (2/· (2 — ε ) d«))· (3.2.47)

It is easy to see also that

n(x)=l,

U O,·
£ = 1

1 = 1

Therefore (3.2.45)-(3.2.48) imply

Ν

D,)

(3.2.48)

i—l
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Now (3.2.44) follows from Lemma 3.2.7, in which we must put X2 = Ό" Dt and X1

X2\ De. The lemma is proved.

We complete the proof of the theorem. Choose α > 0 and consider the set

Dt = exp^ {(α|4 (υ), Ό) : υ <= (Α)α> C W*m (w,, y), 60).

Since Ν
U

on the basis of Lemma 3.2.4 we have for m > m

U Α (3.2.49)

In addition, from the continuity of the Riemannian metric on M, the inequalities

(3.2.19) and (3.2.40) and the definition of μ (see [10]), it follows that there exists a

constant C 1 6 = C16(/, s, r) such that

- £ - - 1 (3.2.50)

It follows from (3.2.49), (3.2.50), (3.2.36), (3.2.44), (3.2.37) and Lemmas 3.2.6,

3.2.7, 3.2.9 and 3.2.10 that for m > maxim^a), m2(e)}

+C
1 8

Here Cj 7 = Cx 7(/, i, r) and C1S = Cx 8(/, s, r) are constants. Since the ball Bt is

chosen arbitrarily, the mapping ρ is absolutely continuous. Now let ζ be a point of

density of Β = W1 Π A!

k s r, and Bt(z) the ball in W1 with center at ζ and radius /.

For sufficiently small t

μ* (β Π Bt (ζ))
- 1

μ» (Β, (Ζ))

Therefore from the above it follows that

μ1. (Ρ(Β Π B* (*)))*

min {-1,1(1 HTM-H

Π

where C , 9 = C19(l, s, r) is a constant. Since the numbers a, e and d0 are chosen

arbitrarily, where a can be chosen after d0 and e, it follows that
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[Βί(ζ)))<(1+€19(\^
1\ + \^\))μΙ(ΒηΒί(ζ)). (3.2.51)

Applying similar assertions to the mapping p~l, given on the set p(B Π Bt(z)), we

obtain that

μΐ (Β Π Bt (ζ))< (1 + C 1 9 {ψ11 + ! W* D) μο (Ρ(Β Π Bt (z))). (3.2.52)

The inequality (3.2.1) follows from (3.2.51) and (3.2.52). The theorem is proved.

3.3. Consider a set Al

k s r of positive measure, and let χ be a point of density of

Λ .̂ s r. There exists a partition £ s m of the neighborhood U(x, q'ktStr) (the number ?JtF,>r was

constructed in Theorem 3.2.1), each element of which is an (n - fc)-dimensional submanifold

transversal to the submanifold V(x). We denote the elements of this partition by C ? s m (y) ,

y G V(pc). Let A C C%sm{x) η Al

ksr be a measurable set. Put

A= U (V(z)r\U(x,qi,s,)). (3.3.1)

Using the absolute continuity of the families of local stable manifolds, we will show

that the partition ξ of A into the submanifolds V(z), ζ e A'ksr, V(z) Γ\Α Φ 0, has a sys-

tem of conditional measures absolutely continuous relative to the measure on V(z) induced

by the Riemannian metric. The corresponding argument is due to Ja. G. Sinai (see [2],

Russian p. 153, English pp. 147-148).

Let μ be the measure on Cj s m (y) induced by the restriction of the Riemannian metric

on Μ to C^sm(y). In it we introduce another measure μγ, putting for any measurable set A

Let vz denote the measure on the submanifold V(z) induced by the Riemannian metric.

PROPOSITION 3.3.1. 1. ily is absolutely continuous relative to μ .

2. The partition ξ is measurable, and the conditional measure vz on an element of the

partition is absolutely continuous relative to the measure vz, ζ G A'fc s r, V(z) Π Α Φ 0.

3. For almost ally G A, v2(V(z)) > 0, where ζ G Al

k s r and V(z) Π A = y.

PROOF. It follows from Theorem 2.3.1 that ξ is measurable. Denote by μ the

conditional measure induced by ν on the element C^sm(y) and by κ the measure in the

quotient space Alysm = X It is obvious that there exist a measurable function t = t (s),

s G CismOO, Φ = «60,y e V(z), ζ e Al

ksr, such that

dag (s) = iy (s) d\i.y(s), dx (y) = φ {y) dvz (y).

Let Β C A be an arbitrary set of positive measure. Then from the above and Fubini's

theorem it follows that
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v(5)= | d%(y) tB (s) du,y (s) = \dx(y) \

Φ?ο(?) j" Ju{q)tB{Pu{q))t(ou(q))y{u)dvq(u).

Here Jqo(q) is the positive measurable function arising from the absolute continuity of the

successor mapping pq0: C^sm(q0) -»• C f s m ( » , P, ofa) = s. (We note that Jq0(q) = 0 for

q έ C i s m ( ? 0 ) Π A.) For fixed # and variable q0 the points pq0(q) run through Ffa).

From the latter equality it follows that on the elements CJq) the conditional measure is

absolutely continuous relative to the measure vq, and the measure on Α/ζ is absolutely

continuous relative to μ . Assertions 1 and 2 are proved.

In order to prove assertion 3 we denote

K = { z e i i l A*,,.r: v2 (C t (z)) = 0},

and let Ζ = U>, ey
c j-6 ;)· Obviously Υ C Ζ From 1 and 2 it follows that

ν (K) < ν (Z) = j vz (Cc (2)) άμΧ (z)= J / (z) vz (Cc (ζ)) φ , (z) = 0.
-ζ/ε ζ/ι

Here /(ζ) is the measurable function arising from the absolute continuity of vz relative to

vz. The proposition is proved.

3.4. PROPOSITION 3.4.1. Let i>(Afc s r)>0. There exists a set Ν C Μ of measure

zero such that for any 1 S Z + and χ S Λ.̂  s r\iV

(recall that vx is the Riemannian volume on V(x) induced by the Riemannian metric on M).

PROOF. Let Nt be the set of nonregular points in M. We have v(N{) = 0 (see

Theorem 0.3). Let χ € Ak s ... Put Ax = {y € V(x): y 6 iV,} and consider the set -/v"2

of those points χ € Afc s r for which ^XG4X) > 0. The set Λ̂ 2 is measurable. We will show

that v(N2) = 0. If this is not so, then for some / € Z+ the set N2 Π Λ^ s r has positive

measure. Let χ be a point of density of this set. By Proposition 3.3.1, vy(V(y) Π Ν,) = 0

for almost all y € A^ i> r Π £/(x, ^ ' f c ( i > r ) . Thus the set of those points y € Al
ksr Π

U(x, q'k s r ) for which vy(V(y) Π TVj) > 0 has zero measure. This contradiction shows

that v(N2) = 0. If χ e Al

kSt, U N2), then almost any (relative to νχ) point ^ e V(x)

is a regular point, and, by Pa iiion 2.3.1, y & A f c J r . The proposition is proved.

Received 2/MAR/76
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