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Path connectedness and entropy density of the space of
hyperbolic ergodic measures

Anton Gorodetski and Yakov Pesin

Abstract. We show that the space of hyperbolic ergodic measures of a given
index supported on an isolated homoclinic class is path connected and entropy
dense provided that any two hyperbolic periodic points in this class are ho-
moclinically related. As a corollary we obtain that the closure of this space is
also path connected.

1. Introduction

In this paper we consider homoclinic classes of periodic points for C1+α dif-
feomorphisms of compact manifolds and we discuss two properties of the space of
invariant measures supported on them and equipped with the weak∗-topology –
connectedness and entropy density of the subspace of hyperbolic ergodic measures.
The study of connectedness of the latter space was initiated by Sigmund in a short
article [32]. He established path connectedness of this space in the case of tran-
sitive topological Markov shifts and as a corollary, of Axiom A diffeomorphisms.
Sigmund’s idea was to show first that any two periodic measures (i.e., invariant
atomic measures on periodic points) can be connected by a continuous path of er-
godic measures and second that if one of the two periodic measures lies in a small
neighborhood of another one, then the whole path can be chosen to lie in this
neighborhood. In order to carry out the first step Sigmund shows that any peri-
odic measure can be approximated by a Markov measure and that any two Markov
measures can be connected by a path of Markov measures. We use Sigmund’s idea
in our proof of Theorem 1.1.

A different approach to Sigmund’s theorem is to show that ergodic measures on
a transitive topological Markov shift are dense in the space of all invariant measures.
Since the latter space is a simplex and ergodic measures are its extremal points,
it means that this space is the Poulsen simplex (which is unique up to an affine
homeomorphism). The desired result now follows from a complete description of
the Poulsen simplex given in [28] (see also [17]).
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112 A. GORODETSKI AND YA. PESIN

Since Sigmund’s work the interest to the study of connectedness of the space
of hyperbolic ergodic measures has somehow been lost,1 and only recently it has
regained attention.2 In [18] Gogolev and Tahzibi, motivated by their study of
existence of non-hyperbolic invariant measures, raised a question of whether the
space of ergodic measures invariant under some partially hyperbolic systems is
path connected. This includes, in particular, the famous example by Shub and
Wilkinson [31]. Some results on connectedness and other topological properties of
the space of invariant measures were obtained in [8,17].

All known proofs of connectedness of the space of invariant measures are based
on approximating invariant measures by either measures supported on periodic or-
bits or Markov ergodic measures supported on invariant horseshoes. It is therefore
natural to ask whether such approximations can be arranged to also ensure conver-
gence of entropies. If this is possible, the space of approximants is called entropy
dense. Some results in this direction were obtained in [23]. We stress that ap-
proximating hyperbolic ergodic measures with positive entropy by “nice” measures
supported on invariant horseshoes so that the convergence of entropies is also guar-
anteed, was first done by Katok in [25] (see also [2, 26]). We use this result in
the proof of our Theorem 1.5 where we approximate also some hyperbolic ergodic
measures with zero entropy as well as non-ergodic measures.

We shall now state our results. Consider a C1+α-diffeomorphism f : M → M
of a compact smooth manifold M . Let p ∈ M be a hyperbolic periodic point. By
the index s(p) of p we mean the dimension of the invariant stable manifold of p.

We say that a hyperbolic periodic point q ∈ M is homoclinically related to
p and write q ∼ p if the stable manifold of the orbit of q intersects transversely
the unstable manifold of the orbit of p and vice versa.3 Notice that this is an
equivalence relation. We denote by H(p) the homoclinic class associated with the
point p, that is the closure of the set of hyperbolic periodic points homoclinically
related to p. Note that H(p) is f -invariant. Homoclinic classes were introduced by
Newhouse in [29].

A basic hyperbolic set gives the simplest example of a homoclinic class, but in
general the set H(p) can have a much more complicated structure and dynamical
properties. In particular, it can contain non-hyperbolic periodic points, and it
can support non-hyperbolic (periodic or not) measures in a robust way, see [3,
5, 11, 27] for a more detailed discussion. 4 It can also contain in a robust way
hyperbolic periodic orbits whose index is different than the index of p (i.e. their
stable manifolds have different dimensions than the dimension of the stable manifold
at p), see [4,20,21]. Moreover – and this is of importance for us in this paper –
there may exist hyperbolic periodic points in H(p) of the same index as p that are
not homoclinically related to p, see [11,15]. Besides, it can happen that periodic
orbits outside the homoclinic class H(p) accumulate to H(p); for example, this is

1At the time of writing this paper there is no single reference to the paper by Sigmund [32]
in MathSciNet.

2Soon after this paper was completed, several new works related to the subject appeared, see
[9,13]

3The stable (respectively, unstable) manifold of the orbit of a periodic point is the union
of stable (respectively, unstable) manifolds through every point on the orbit. If q ∼ p, then
s(q) = s(p).

4It is conjectured that existence of non-hyperbolic ergodic measures is a characteristic prop-
erty of non-hyperbolic homoclinic classes, see [3,11].
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PATH CONNECTEDNESS AND ENTROPY DENSITY 113

part of the Newhouse phenomena, and also occurs in the family of standard maps,
see [16,19]. We wish to avoid both of these complications, and we therefore, impose
the following crucial requirements on the homoclinic class H(p):

(H1) For any hyperbolic periodic point q∈H(p) with s(q)=s(p) we have q∼p.
(H2) The homoclinic class H(p) is isolated, i.e., there is an open neighborhood

U(H(p)) of H(p) such that H(p) =
⋂

n∈Z
fn(U(H(p))).

We stress that these requirements do hold in many interesting cases, see exam-
ples in Section 2. In particular, Condition (H2) holds if the map f has only one
homoclinic class. This is the case in Examples 1 and 2 in Section 2. We also note
a result in [8] that is somewhat related to Condition (H2): if the map f admits a
dominated splitting of index s, then a linear combination of hyperbolic ergodic mea-
sures of index s can be approximated by a sequence of hyperbolic ergodic measures
of index s if and only if their homoclinic classes coincide.

The space of all invariant ergodic measures supported onH(p) can be extremely
rich and contain hyperbolic measures with different number of positive Lyapunov
exponents as well as non-hyperbolic measures. We denote by Mp the space of all
hyperbolic invariant measures supported on H(p) for which the number of negative
Lyapunov exponents at almost every point is exactly s(p). We say that μ has index
s(p). Further, we denote by Me

p the space of all hyperbolic ergodic measures in
Mp. We assume that the space Mp is equipped with the weak∗-topology.

Theorem 1.1. Under Conditions (H1) and (H2) the space Me
p is path con-

nected.

Notice that without Conditions (H1) and (H2) the conclusion of Theorem 1.1
may fail, see Subsection 2.2.

It follows immediately from Theorem 1.1 that the closure of Me
p is connected.

In fact, a stronger statement holds.

Theorem 1.2. Under Conditions (H1) and (H2) the closure of the space Me
p

is path connected.

Remark 1.3. It is interesting to notice that the closure of Me
p is not a Choquet

simplex (and hence, not a Poulsen simplex), see Proposition 2.7 in [9].

We shall now discuss the entropy density of the space Me
p.

Definition 1.4. A subset S ⊆ Mp is entropy dense in Mp if for any μ ∈ Mp

there exists a sequence of measures {ξn}n∈N ⊂ S such that ξn → μ and hξn → hμ

as n → ∞.

Theorem 1.5. Under Conditions (H1) and (H2) the space Me
p is entropy dense

in Mp.

2. Examples

In this section we present some examples that illustrate importance of Condi-
tions (H1) and (H2).

2.1. Non-hyperbolic homoclinic classes satisfying Conditions (H1)
and (H2). We describe a class of diffeomorphisms with a partially hyperbolic
attractor which is the homoclinic class of any of its periodic points and which
satisfies Conditions (H1) and (H2). We follow [10]. Let f be a C1+α diffeomorphism

Licensed to Penn St Univ, University Park.  Prepared on Wed Aug  2 20:49:22 EDT 2023for download from IP 132.174.254.159.



114 A. GORODETSKI AND YA. PESIN

of a compact smooth manifold M and Λ a topological attractor for f . This means
that there is an open set U ⊂ M such that f(U) ⊂ U and Λ =

⋂
n≥0 f

n(U). We
assume that Λ is a partially hyperbolic set for f , that is for every x ∈ Λ there is an
invariant splitting of the tangent space TxM = Es(x)⊕ Ec(x)⊕ Eu(x) into stable
Es(x), central Ec(x) and unstable Eu(x) subspaces such that with respect to some
Riemannian metric on M we have that for some constants

0 < λ1 < λ2 < λ3 < λ4, λ1 < 1, λ4 > 1

the following holds:

(1) ‖dfv‖ < λ1‖v‖ for every v ∈ Es(x),
(2) λ2‖v‖ < ‖dfv‖ < λ3‖v‖ for every v ∈ Ec(x),
(3) ‖dfv‖ > λ4‖v‖ for every v ∈ Eu(x).

If Λ is a partially hyperbolic attractor for f , then for every x ∈ Λ we denote
by V u(x) and Wu(x) the local and respectively global unstable leaves through x.
It is known that for every x ∈ Λ and y ∈ Wu(x) one has TyW

u(x) = Eu(y),
f(Wu(x)) = Wu(f(x)) and Wu(x) ⊂ Λ. Moreover, the collection of all global
unstable leaves Wu(x) forms a continuous lamination of Λ with smooth leaves, and
if Λ = M , then it is a continuous foliation of M with smooth leaves.

An invariant measure μ on Λ is called a u-measure if the conditional measures
it generates on local unstable leaves V u(x) are equivalent to the leaf volume on
V u(x) induced by the Riemannian metric. It is shown in [30] that any partially
hyperbolic attractor admits a u-measure: any limit measure for the sequence of
measures

μn =
1

n

n−1∑
k=0

fk
∗m

is a u-measure on Λ. Here m is the Riemannian volume in a sufficiently small neigh-
borhood of the attractor (see [30] for more details and other ways for constructing
u-measures).

In general a u-measure may have some or all Lyapunov exponents along the
central direction to be zero.5 Therefore, following [10] we say that a u-measure μ
has negative central exponents on an invariant subset A ⊂ Λ of positive measure if
for every x ∈ A and v ∈ TxE

c(x) the Lyapunov exponent χ(x, v) < 0.
We consider the following requirement on the map f |Λ:
(D) for every x ∈ Λ the positive semi-trajectory of the global unstable leaf

Wu(x) is dense in Λ, that is⋃
n≥0

fn(Wu(x)) =
⋃
n≥0

Wu(fn(x)) = Λ.

Condition (D) clearly holds if the unstable lamination is minimal, i.e., if every leaf
of the lamination is dense in Λ. It is shown in [10] that if μ is a u-measure on Λ
with negative central exponents on an invariant subset of positive measure and if
f satisfies Condition (D), then 1) μ has negative central exponents at almost every
point x ∈ Λ; 2) μ is the unique u-measure for f supported on the whole Λ; and 3)
the basin of attraction for μ coincides with the open set U .

5Clearly, the Lyapunov exponents in the stable direction are negative while the Lyapunov
exponents in the unstable direction are positive.
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It is easy to see that in this case:

(1) hyperbolic periodic points whose index is equal to the dimension of the
stable leaves6 are dense in the attractor Λ; the homoclinic class of each of
these periodic points coincides with Λ;

(2) the homoclinic class satisfies Conditions (H1) and (H2), and hence, The-
orems 1.1, 1.2, and 1.5 are applicable.

Let f0 be a partially hyperbolic diffeomorphism which is either 1) a skew prod-
uct with the map in the base being a topologically transitive Anosov diffeomorphism
or 2) the time-1 map of an Anosov flow. If f is a small perturbation of f0 then
f is partially hyperbolic and by [24], the central distribution of f is integrable.
Furthermore, the central leaves are compact in the first case and there are compact
leaves in the second case. It is shown in [10] that f has minimal unstable foliation
provided there exists a compact periodic central leaf C (i.e., f �(C) = C for some
� ≥ 1) for which the restriction f �|C is a minimal transformation.

Furthermore, it follows from the results in [1] that starting from a volume pre-
serving partially hyperbolic diffeomorphism f0 with one-dimensional central sub-
space, it is possible to construct a C2 volume preserving diffeomorphism f which
is arbitrarily C1-close to f0 and has negative central exponents on a set of positive
volume. Moreover, if C is a compact periodic central leaf, then f can be arranged
to coincide with f0 in a small neighborhood of the trajectory of C.

We now consider the two particular examples.

Example 1. Consider the time-1 map f0 of the geodesic flow on a compact
surface of negative curvature. Clearly, f0 is partially hyperbolic and has a dense
set of compact periodic central leaves. It follows from what was said above that
there is a volume preserving perturbation f of f0 such that

(1) f is of class C2 and is arbitrary close to f0 in the C1-topology;
(2) f is a partially hyperbolic diffeomorphism with one-dimensional central

subspace;
(3) there exists a central leaf C such that the restriction f �|C is a minimal

transformation (here � is the period of the leaf);
(4) f has negative central exponents on a set of positive volume;
(5) the unstable foliation for f is minimal and hence, satisfies Condition (D).

We conclude that in this example the whole manifold is the homoclinic class of
every hyperbolic periodic point of index two and that this class satisfies Conditions
(H1) and (H2).

Example 2. Consider the map f0 = A × R of the 3-torus T 3 = T 2 × T 1

where A is a linear Anosov automorphism of the 2-torus T 2 and R is an irrational
rotation of the circle T 1. It follows from what was said above that there is a volume
preserving perturbation f of f0 such that the properties (1) – (5) in the previous
example hold, and hence the unique homoclinic class satisfies Conditions (H1) and
(H2).

Remark 2.1. It was shown in [6] that the set of partially hyperbolic diffeomor-
phisms with one dimensional central direction contains a C1 open and dense subset
of diffeomorphisms with minimal unstable foliation. However, in our examples we
use preservation of volume to ensure negative central Lyapunov exponents on a

6This dimension is dimEs + dimEc.
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116 A. GORODETSKI AND YA. PESIN

set of positive volume, so we cannot immediately apply the result in [6] to obtain
an open set of systems for which Conditions (H1) and (H2) hold, compare with
Problem 7.25 from [7].

Remark 2.2. In both Examples 1 and 2 the map possesses a non-hyperbolic
ergodic invariant measure (e.g. supported on the compact periodic leaf). We believe
that in these examples presence of non-hyperbolic ergodic invariant measures is
persistent under small perturbations. Indeed, since the central subspace is one
dimensional, the central Lyapunov exponent with respect to a given ergodic measure
is an integral of a continuous function (i.e., log of the expansion rate along the
central subspace) over this measure, existence of periodic points of different indices
combined with (presumable) connectedness of the space of ergodic measures should
imply existence of a non-hyperbolic invariant ergodic measure. See [3,5,14,22] for
the related results and discussion.

2.2. Homoclinic classes that do not satisfy Conditions (H1) and
(H2). There is an example of an invariant set for a partially hyperbolic map with
one dimensional central subspace which is a homoclinic class containing two non-
homoclinically related hyperbolic periodic orbits of the same index, hence, not sat-
isfying Condition (H1), see [11,12,15]. Moreover, the space of hyperbolic ergodic
measures supported on this homoclinic class is not connected due to the fact that
the set of all central Lyapunov exponents is split into two disjoint closed intervals,
see Remark 5.2 in [12].

As we already mentioned in Introduction, Condition (H2) does not always hold
even for surface diffeomorphisms, see for example, [16,19]. This condition ensures
that the hyperbolic horseshoes and periodic orbits that we use to approximate a
given hyperbolic ergodic measure do belong to the initial homoclinic class. We do
not know whether given a not necessarily isolated homoclinic class, every hyper-
bolic ergodic invariant measure supported on this homoclinic class can always be
approximated in such a way.

3. Proofs

The space M of all probability Borel measures on M equipped with the weak∗-
topology is metrizable with the distance dM given by

(1) dM(μ, ν) =
∞∑
k=1

1

2k

∣∣∣∣∫ ψk dμ−
∫

ψk dν

∣∣∣∣ ,
where {ψk}k∈N is a dense subset in the unit ball in C0(M). While the distance
defined in this way depends on the choice of the subset {ψk}k∈N, the topology it
generates does not. We will choose the functions ψk to be smooth.

Proof of Theorem 1.1. By a hyperbolic periodic measure μq we mean an
atomic ergodic measure equidistributed on a hyperbolic periodic orbit of q.

Lemma 3.1. Let q1, q2 ∈ H(p) be hyperbolic periodic points with index s(q1) =
s(q2) = s(p). Then the hyperbolic periodic measures μq1 and μq2 can be connected
in Me

p by a continuous path.
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Proof of Lemma 3.1. By Condition (H1), the points q1 and q2 are homoclin-
ically related. By the Smale-Birkhoff theorem, there is a hyperbolic horseshoe Λ 7

that contains both q1 and q2. Lemma 3.1 now follows from the results by Sigmund,
see the proof of Theorem B in [32]. �

We wish to approximate a given hyperbolic measure by periodic measures.
There are several results in this direction, see, for example, [2, Theorem 15.4.7].
However, we need some specific properties of such approximations that are stated
in the following lemma.

Lemma 3.2. For any μ ∈ Me
p and any ε > 0 the following statements hold:

(1) There exists a hyperbolic periodic point q ∈ H(p) with s(q) = s(p) such that
we have dM(μq, μ) < ε for the corresponding hyperbolic periodic measure
μq;

(2) There exists δ > 0 such that for any hyperbolic periodic points q1, q2 ∈
H(p) with s(q1) = s(q2) = s(p) if the corresponding hyperbolic periodic
measures μq1 and μq2 lie in the δ-neighborhood of the measure μ, then
there exists a continuous path {νt}t∈[0,1] ⊂ Me

p with ν0 = μq1 , ν1 = μq2

and such that dM(νt, μ) < ε for all t ∈ [0, 1].

Proof of Lemma 3.2. Let R be the set of all Lyapunov-Perron regular
points, and for each � ≥ 1 let R� be the regular set (see [2] for definitions). There
exists � ∈ N such that μ(R�) > 0. For a μ-generic point x ∈ R�, by Birkhoff’s
Ergodic Theorem, there exists N ∈ N such that for any n > N

(2) dM

(
1

n

n−1∑
k=0

δfk(x), μ

)
<

ε

2
.

Choose L ∈ N such that
∑∞

k=L+1
1

2k−1 < ε
4 . Let {ψk} be the dense collection of

smooth functions {ψk} from the definition (1) of the distance dM and let C = C(ε)
be the common Lipschitz constant of the functions {ψ1, . . . , ψL}. Let U(H(p)) be
a neighborhood of H(p) such that H(p) =

⋂
n∈Z

fn(U(H(p))); its existence is guar-
anteed by (H2). Let us now choose δ > 0 such that Cδ < ε

4 and δ-neighborhood
of H(p) is in U . Since μ is a hyperbolic measure, by [2, Theorem 15.1.2], there
exists n > N and a hyperbolic periodic point y ∈ M of period n such that
distM (fk(x), fk(y)) < δ for all k = 0, . . . , n − 1 and s(y) = s(x). Then the or-
bit of y is in U , and hence belongs to H(p). Also, we have

(3)

dM

(
1

n

n−1∑
k=0

δfk(x),
1

n

n−1∑
k=0

δfk(y)

)

≤
L∑

k=1

1

2k

∣∣∣∣∣
∫

ψkd

(
1

n

n−1∑
i=0

δfi(x)

)
−
∫

ψkd

(
1

n

n−1∑
i=0

δfi(y)

)∣∣∣∣∣+
∞∑

k=L+1

1

2k−1

≤Cδ +
ε

4
<

ε

2
.

The first statement of the lemma now follows from (2) and (3).
To prove the second statement let q1, q2 ∈ H(p) be any hyperbolic periodic

points such that s(q1) = s(q2) = s(p) and the corresponding hyperbolic periodic

7By a hyperbolic horseshoe we mean a locally maximal hyperbolic set Λ which is totally
disconnected and such that f |Λ is topologically transitive.
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measures μq1 and μq2 lie in the δ-neighborhood of the measure μ. By Conditions
(H1) and (H2), the points q1 and q2 are homoclinically related and hence, there is
a hyperbolic horseshoe which contains both points. The desired result now follows
from [32] (see the proof of Theorem B). �

We now compete the proof of Theorem 1.1. Let η and η̃ ∈ Me
p be two hyperbolic

ergodic measures. By Statement 1 of Lemma 3.2, there are sequences of hyperbolic
periodic points qk and q̃k in H(p) with s(qk) = s(q̃k) = s(p) such that for the
corresponding sequences of hyperbolic periodic measures {μqk}k∈N and {μq̃k}k∈N

we have μqk → η and μq̃k → η̃. By Lemma 3.1, there is a path {νt}t∈[ 13 , 23 ] in Me
p

that connects μq1 and μq̃1 , that is, ν 1
3
= μq1 and ν 2

3
= μq̃1 . By Statement 2 of

Lemma 3.2, for any k ∈ N there are paths

{νt}t∈[ 1

3k+1 , 1

3k
] and {νt}t∈[1− 1

3k
,1− 1

3k+1 ]

in Me
p that connect measures μqk , μqk+1

and measures μq̃k , μq̃k+1
, respectively.

Applying again Lemma 3.2, we conclude that the path {νt}t∈[0,1] given by the
above choices and such that ν0 = η and ν1 = η̃ is continuous. The desired result
now follows. �

Proof of Theorem 1.2. Arguments similar to those used in the proof of
Lemma 3.2 (see also the proof of Theorem B in [32]) show that the following
statement holds:

Lemma 3.3. For any ε > 0 there exists δ > 0 such that for any two measures
μ1, μ2 ∈ Me

p with dM(μ1, μ2) < δ there exists a continuous path in Me
p connecting

μ1 and μ2 of diameter smaller than ε.

Now Theorem 1.2 can be obtained using Lemma 3.3 in the same way Theorem
1.1 was obtained using Lemma 3.2. �

Proof of Theorem 1.5. Given a (not necessarily ergodic) measure μ ∈ Mp,
by the ergodic decomposition, there exists a measure ν on the space Me

p such that

μ =

∫
τ dν(τ ) and hμ =

∫
hτdν(τ ).

It follows that for any ε > 0 there are measures τ1, . . . , τN ∈ Me
p and positive

coefficients α1, . . . , αN such that

(4) dMp

(
μ,

N∑
k=1

αkτk

)
< ε and

∣∣∣∣∣hμ −
N∑

k=1

αkhτk

∣∣∣∣∣ < ε.

Given a hyperbolic ergodic measure τ with hτ > 0, there exist a sequence of hyper-
bolic horseshoes Λn and a sequence of ergodic measures {νn}n∈N supported on Λn

such that νn → τ and hνn
→ hτ as n → ∞, see, for example, Corollary 15.6.2 in [2].

By (H2), one can ensure in the construction of these horseshoes that Λn ⊆ H(p)
and that νn are the measures of maximal entropy and hence, Markov measures.
Further, for every x ∈ Λn the dimension of the stable manifold through x is equal
to the index of p.

In the case when hτ = 0 the measure τ can be approximated by a hyperbolic
periodic measure supported on an orbit of a hyperbolic periodic point q ∈ H(p)
(see Lemma 3.2) with s(q) = s(p). There exists a horseshoe Λq ⊂ H(p) that
contains a periodic point q, and one can choose a Markov measure (which is not a

Licensed to Penn St Univ, University Park.  Prepared on Wed Aug  2 20:49:22 EDT 2023for download from IP 132.174.254.159.



PATH CONNECTEDNESS AND ENTROPY DENSITY 119

measure of maximal entropy in this case) supported on Λq that is arbitrary close to
the atomic invariant measure supported on the orbit of q, and has arbirary small
entropy (notice that the support of this Markov measure does not have to be close
to the orbit of q).

It follows from what was said above that to each ergodic measure τk we can
associate a hyperbolic horseshoe Λk ⊆ H(p) and a Markov measure νk supported
on Λk such that for every k = 1, . . . , N we have

(5) dMp
(τk, νk) <

ε

N
and |hτk − hνk

| < ε

N
.

Notice that all horseshoes Λk have the same index s(p) and that they are homo-
clinically related (this means that every periodic orbit in one of the horseshoes is
homoclinically related to any periodic orbit in the other horseshoe). This implies
that there exists a hyperbolic horseshoe Λ ⊂ H(p) that contains all Λk.

The Markov measure νk is constructed with respect to a Markov partition of
Λk that we denote by ξk. There exists a Markov partition ξ of Λ such that its

restriction on each Λk is a refinement of ξk. The measure
∑N

k=1 αkνk is a Markov
measure on Λ with respect to the partition ξ. Notice that Markov measures as
well as their entropies depend continuously on their stochastic matrices. Therefore,
given an arbitrarily (not necessarily ergodic) Markov measure, one can produce its
small perturbation which is an ergodic Markov measure whose entropy is close to
the entropy of the unperturbed one. This gives the required approximation of the

measure
∑N

k=1 αkνk, which by (4) and (5) is close to the initial measure μ and
whose entropy is close to hμ. �
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