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Abstract: We show that there exists a C∞ volume preserving topologically transitive
diffeomorphism of a compact smooth Riemannian manifold which is ergodic (indeed
is Bernoulli) on an open and dense subset G of not full volume and has zero Lyapunov
exponent on the complement of G.

1. Introduction

It is shown in [8,12,22,23] that on any manifold M and for any sufficiently large r one
has what can be viewed as a discrete version of the classical KAM theory phenomenon
in the volume preserving category – there are open sets of volume preserving Cr diffe-
omorphisms of M all of which possess positive volume sets of codimension-1 invariant
tori; on each such torus the diffeomorphism is C1 conjugate to a Diophantine transla-
tion; all of the Lyapunov exponents are zero on the invariant tori. It is expected that the
set of invariant tori is surrounded by “chaotic sea”, i.e., outside this set the Lyapunov
exponents are nonzero and the system has at most countably many ergodic components.
It has since been an open problem to find out to what extent this picture is true.

A first step towards understanding this picture is to establish “essential” coexistence
of completely chaotic and regular non-chaotic behavior for the class of volume preserv-
ing systems in the spirit of the results mentioned above. To this end in this paper we
prove the following result.

Main Theorem. Given α > 0, there exists a compact smooth Riemannian manifold
M of dimension 5 and a C∞ diffeomorphism P : M → M preserving the Riemannian
volume m such that

� H. H. was partially supported by NSF grant DMS-0503870; Ya. P. was partially supported by the NSF
grant DMS-1101165.
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(1) ‖P − Id ‖C1 ≤ α and P is homotopic to Id;
(2) P is ergodic on an open and dense subset G ⊂ M and m(G) < m(M); in particular,

P is topologically transitive on M; furthermore, P|G is a Bernoulli diffeomorphism;
(3) the Lyapunov exponents of P are nonzero for almost every x ∈ G;
(4) the complement Gc = M\G has positive volume, P|Gc = Id and the Lyapunov

exponents of P on Gc are all zero.

In our example the set Gc is the direct product of a 3-dimensional smooth compact
manifold and a Cantor set of positive volume in a two dimensional torus and thus has
codimension two. By modifying our construction one can obtain a C∞ diffeomorphism
P of a compact smooth Riemannian manifold of dimension 4, which is close to the iden-
tity map and has nonzero Lyapunov exponents on an open and dense set G of positive but
not full volume and zero exponents on its complement. The latter is the direct product
of a 3-dimensional smooth compact manifold and a circle and thus has codimension one
and P has countably many ergodic components (see [6]).

Coexistence of elliptic islands and “chaotic sea” is one of the most interesting phe-
nomena in dynamical systems but very few results are known in this direction. We shall
briefly describe some results on the topic and we refer the reader to the survey article
[7] where more information and references can be found.

Przytycki [19] and Liverani [16] studied a one-parameter family fa , −ε ≤ a ≤ ε, of
area preserving diffeomorphisms for which the map f0 lies on the boundary of the set
of Anosov diffeomorphisms. This example demonstrates a route from uniform hyperb-
olicity (corresponding to −ε ≤ a < 0) to non-uniform hyperbolicity (corresponding to
a = 0) and then to coexistence of regular and chaotic behavior, i.e., the appearance of an
elliptic island (for 0 < a ≤ ε). It should be stressed that unlike the constructions in the
above mentioned papers, in our construction the set of points with nonzero Lyapunov
exponents is everywhere dense in the manifold.

An example of a billiard dynamical system – the so-called “mushroom billiards”
– with coexistence of “elliptic islands” and “chaotic sea” was constructed by Bunim-
ovich in [3]. However, this case differs substantially from the smooth case due to the
presence of singularities.

In [11], Fayad obtained a weaker version of our theorem: only some but not all Lyapu-
nov exponents for P are zero on Gc. Ensuring that all Lyapunov exponents are zero is
a substantially more difficult problem and we use completely different techniques than
in [11] to make it happen. The matter is that if all Lyapunov exponents in Gc are zero,
then a typical trajectory that originates in G will spend a long time in the vicinity of Gc

where contraction and expansion rates are very small. This should be compensated by
even longer periods of time that the trajectory should spend away from Gc thus gaining
sufficient contraction and expansion and ensuring nonzero Lyapunov exponents.

Let us briefly outline our construction. It starts with a C∞ volume preserving diffeo-
morphism T of a compact smooth 5-dimensional manifold M. The map T is close to and
homotopic to the identity and indeed is the identity on an invariant compact subset of
positive volume. On its complement G the map T is partially hyperbolic with one-dimen-
sional strongly stable, one-dimensional strongly unstable subspaces and 3-dimensional
center subspace along which dT acts as an isometry and hence has zero Lyapunov
exponents. These subspaces are integrable to three transverse one-dimensional strongly
stable, one-dimensional strongly unstable and 3-dimensional central invariant foliations
of G. Since this set is open, partial hyperbolicity appears in its weaker pointwise form
(see Sect. 2 for the definition of pointwise partial hyperbolicity).
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Pointwise partially hyperbolic maps on compact manifolds were introduced in [5].
They have properties that are pretty much similar to those of uniformly partially hyper-
bolic systems: 1) strongly stable and unstable subspaces are integrable to continuous
strongly stable and unstable foliations that are uniformly transverse to each other; 2)
Lyapunov exponents along stable (unstable) subspaces are negative (positive); 3) any
sufficiently small perturbation of a pointwise partially hyperbolic map is also pointwise
partially hyperbolic. These properties fail to be true if one considers, as we do, pointwise
partially hyperbolic maps on open subsets thus providing one of the major obstacles for
our construction. To overcome this problem we only consider small perturbations of T
that are gentle, i.e., they coincide with T outside a neighborhood of the Cantor set Gc.
For those perturbations the above three properties hold. However, the final map P is
not a gentle perturbation of T and additional arguments are needed to establish these
properties for P .

Our next step is to perturb T gently to a C∞ volume preserving diffeomorphism
Q, which is concentrated in an open set, which is “far away” from the Cantor set. We
arrange this perturbation in such a way that the average Lyapunov exponents of Q in
the central direction are positive for points in G while the Lyapunov exponents on the
complement Gc of G are all zero. Our construction of the map Q is built upon some
ideas from [2,9,10,14,21] but requires substantial modifications and new arguments
due to nonuniform hyperbolicity of the map T . Note that the restriction Q|G is not
ergodic.

Finally, we perturb Q to a C∞ volume preserving diffeomorphism P , which is
pointwise partially hyperbolic on G and, similarly, to the maps T and Q, possesses
three transverse continuous one-dimensional strongly stable, one-dimensional strongly
unstable and 3-dimensional central invariant foliations. In doing so we first construct a
sequence of small perturbations Pn of Q such that each Pn coincides with T outside
some open invariant subset Un ⊂ G (hence, Pn is a gentle perturbation of T ) and has
the accessibility property on Un via its strongly stable and unstable foliations (i.e., any
two points in Un can be connected by a path that consists of pieces of strongly stable
and unstable manifolds). The sets Un are nested and exhaust G and the sequence Pn
converges to the desired map P . In constructing the maps Pn we use some techniques
developed in [9,14].

At the core of our argument lies the idea that accessibility will be achieved if we show
that for a certain point z every point in its local central manifold V c(z) is accessible from
z. To this end we define a function from a cube in R

3 to V c(z) such that every point
in the image of the function is accessible from z. We shall show that this function is
continuous, which guarantees that it is onto V c(z0), and hence every point in V c(z) is
accessible from z.

Although the map P is not a gentle perturbation of T (it coincides with T on the
Cantor set only) we shall prove that P has the three properties described above. Fur-
thermore, we show that P has the accessibility property on G via its strongly stable and
unstable foliations and that the average Lyapunov exponents of P|G in the central direc-
tion remain positive and in fact, central Lyapunov exponents are positive on a subset of
positive volume. We then show that P|G is ergodic and indeed, is a Bernoulli diffeo-
morphism. To achieve this we extend the argument in [4] to the case of maps that are
pointwise partially hyperbolic on open sets. This implies that P has four positive and
one negative Lyapunov exponents on G while the Lyapunov exponents on the Cantor set
Gc are all zero.

In Sect. 2 we provide some background information and introduce some basic nota-
tions. In Sect. 3 we describe our construction of the map P and prove our result subject to
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two propositions. In the remaining sections we present the proofs of these propositions
and other supporting statements.

2. Preliminaries

See [1,17] for more details.
Let f be a diffeomorphism of a compact smooth Riemannian manifold M and� ⊂ M

an f -invariant compact subset. The map f is said to be uniformly partially hyperbolic
on � if for every x ∈ � the tangent space at x admits an invariant splitting

TxM = Es(x) ⊕ Ec(x) ⊕ Eu(x) (2.1)

into strongly stable Es(x) = Es
f (x), central Ec(x) = Ec

f (x), and strongly unstable
Eu(x) = Eu

f (x) subspaces. More precisely, there are numbers 0 < λ < λ′ ≤ 1 ≤ μ′ <
μ such that for every x ∈ �,

‖d f v‖ ≤ λ‖v‖, v ∈ Es(x),
λ′‖v‖ ≤ ‖d f v‖ ≤ μ′‖v‖, v ∈ Ec(x),
μ ‖v‖ ≤ ‖d f v‖, v ∈ Eu(x).

Given x ∈ �, one can construct a strongly stable local manifold V s(x) = V s
f (x) and

a strongly unstable local manifold V u(x) = V u
f (x) at x . These local manifolds have

uniform size, i.e., there are numbers r > 0 and D > 0 such that for every x ∈ � there
are smooth functions ϕi : Bi (r) → TxM, i = s or u (here Bi (r) ⊂ Ei (x) is the ball
centered at zero of radius r ) such that

ϕ(0) = 0, dϕ(0) = 0, max{‖dϕ(a)‖ : a ∈ Bi (r)} ≤ A,

and

V i (x) = expx {(a, ϕ(a)) : a ∈ Bi (r)}.
We define the strongly stable and strongly unstable global manifolds at x by

W u(x) = W u
f (x) =

⋃

n≥0

f n(V u( f −n(x))),

W s(x) = W s
f (x) =

⋃

n≥0

f −n(V s( f n(x))).

We denote by B(x, r) the ball centered at the point x of radius r . Further, we adopt the
following notation: for a smooth submanifold V ⊂ M and a point x ∈ V we denote by
BV (x, r) the ball in V centered at x of radius r (with respect to the intrinsic Riemannian
metric). We also set

Bs(x, r) = Bs
f (x, r) = BV s (x)(x, r),

Bu(x, r) = Bu
f (x, r) = BV u(x)(x, r).

In this paper we need a weaker property than uniform partial hyperbolicity. Let S ⊂ M
be an f -invariant open subset. We say that f is pointwise partially hyperbolic on S if



Coexistence of Zero and Nonzero Lyapunov Exponents 335

for every x ∈ S the tangent space at x admits an invariant splitting (2.1) and there are
continuous positive functions λ(x) < λ′(x) ≤ 1 ≤ μ′(x) < μ(x), x ∈ S such that

‖d f v‖ ≤ λ(x)‖v‖, v ∈ Es(x),
λ′(x)‖v‖ ≤ ‖d f v‖ ≤ μ′(x)‖v‖, v ∈ Ec(x),
μ(x)‖v‖ ≤ ‖d f v‖, v ∈ Eu(x).

We call a partition P of S a (δ, q)-foliation with smooth leaves or simply a foliation with
smooth leaves if there exist continuous functions δ = δ(x) > 0, q = q(x) > 0, and an
integer k > 0 such that for each x ∈ S:

(1) There exists a smooth immersed k-dimensional manifold W (x) containing x for
which P(x) = W (x), where P(x) is the element of the partition P containing x .
The manifold W (x) is called the global leaf of the foliation at x ; the connected
component of the intersection W (x)∩ B(x, δ(x)) that contains x is called the local
leaf at x and is denoted by V (x).

(2) There exists a continuous map φx : B(x, q(x)) → C1(D,M) (where D is the
unit ball) such that V (y) is the image of the map φx (y) : D → M for each
y ∈ B(x, q(x)); the number q(x) is called the size of V (x).

We say that a foliation with smooth leaves is absolutely continuous if for almost every
x ∈ S and almost every y ∈ B(x, q(x)) the conditional measure generated on V (y)
by volume m (with respect to the partition of B(x, q(x)) by local leaves) is absolutely
continuous with respect to the leaf volume mV (y) on V (y).

The strongly stable and unstable global manifolds of a uniformly partially hyper-
bolic diffeomorphism form two (δ, q)-foliations of � with smooth leaves where δ and
q are constants. These foliations are absolutely continuous and transverse at every point
z ∈ �.

Let W1 and W2 be two foliations of S with smooth leaves. Assume that these folia-
tions are transverse at every point z ∈ S. Let also S1 ⊂ S be an open subset. We say that
the pair W1 and W2 has the accessibility property on S1 if any two points z, z′ ∈ S1 are
accessible. This means that

(1) There exists a collection of points z1, . . . , zn ∈ S such that x = z1, y = zn and
zk ∈ Vi (zk−1) for i = 1 or 2 and k = 2, . . . , n.

(2) The points zk−1 and zk can be connected by a smooth curve γk ⊂ Vi (zk−1) in S
for i = 1 or 2 and k = 2, . . . , n. 1

The collection of such points zk and curves γk is called the leaf-wise path connecting x
and y. In particular, if W1 and W2 are the strongly stable and unstable foliations, then we
say that f has the accessibility property and the leaf-wise path is called the (u, s) f -path
or simply (u, s)-path.

It may not be true in general that a diffeomorphism, which is pointwise partially
hyperbolic on an open set S, has strongly stable and unstable local manifolds at every
point in S. However, this is the case for all pointwise partially hyperbolic diffeomor-
phisms that we construct and in fact, their global strongly stable and unstable manifolds
form two transverse foliations with smooth leaves.

More precisely, given a diffeomorphism f that is pointwise partially hyperbolic on
an open set S, we call its small perturbation g in the C1 topology gentle if there exists an
open set U ⊂ S such that Ū ⊂ S, U is invariant under both f and g and f |Uc = g|Uc.

1 We stress that Vi (zk−1) is the local leaf of Wi at zi . In particular, the length of the curve γk (the leg of
the path) does not exceed δ(zk−1).
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Theorem 2.1. Assume that the strongly stable and unstable subspaces Es
f and Eu

f for f
are integrable to continuous strongly stable and unstable foliations W s

f and W u
f respec-

tively with smooth leaves and that these foliations are transverse. Then for any gentle
perturbation g of f that is sufficiently close to f in the C1 topology the strongly stable
and unstable subspaces Es

g and Eu
g for g are integrable to continuous strongly stable

and unstable foliations W s
g and W u

g respectively with smooth leaves and these foliations
are transverse.

The proof of this theorem is based on two simple observations that: (1) a gentle per-
turbation changes the map f on an invariant subset on which f is uniformly partially
hyperbolic and (2) the theorem is true for uniformly partially hyperbolic systems.

Furthermore, we call a diffeomorphism f that is pointwise partially hyperbolic on
an open set S dynamically coherent if the subbundles Ecu = Ec ⊕ Eu , Ec, and Ecs =
Ec ⊕ Es are integrable to continuous foliations with smooth leaves W cu , W c and W cs ,
called respectively the center-unstable, center and center-stable foliations. Furthermore,
the foliations W c and W u are subfoliations of W cu , while W c and W s are subfoliations
of W cs .

The following result is an extension of the classical result in [13,20]. It shows that
dynamical coherence is a robust property within the class of gentle perturbations.

Theorem 2.2. Suppose that f is a diffeomorphism that is pointwise partially hyper-
bolic on an open set S. Assume that f possesses transverse strongly stable and unstable
foliations with smooth leaves. Assume also that the center distribution is integrable to
a smooth center foliation W c. Then f is dynamically coherent. Moreover, any diffeo-
morphism that is close to f in the C1 topology and is a gentle perturbation of f is
dynamically coherent.

Since both subbundle Ecu and Ecs vary continuously with the map, so does Ec and
the corresponding center foliation W c.

We denote by

λ(x, v) = lim sup
n→∞

1

n
log ‖d f nv‖

the Lyapunov exponent of a nonzero vector v at x ∈ M and by λi (x) = λi (x, f ),
i = 1, . . . , dim M, the values of the Lyapunov exponents at x . Note that the functions
λi (x, f ) are invariant. We assume that these values are ordered so that

λ1(x, f ) ≥ · · · ≥ λdim M(x, f ).

We also denote by

Lk( f ) :=
∫

M

k∑

i=1

λi (x, f ) dm(z), (2.2)

where m is the Riemannian volume. We call this number the kth average Lyapunov
exponent of f .

Consider a volume preserving C2 diffeomorphism f of a compact smooth manifold
M that is pointwise partially hyperbolic on an open set S. We say that f has positive
central exponents if there is an invariant set A ⊂ S of positive volume such that for
every x ∈ A and every v ∈ Ec(x) the Lyapunov exponent λ(x, v) > 0. The following
result plays an important role in the proof of our Main Theorem.
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Theorem 2.3. Assume that the following conditions hold:

(1) f has strongly stable and unstable (δ, q)-foliations W s and W u, where δ = δ(x)
and q = q(x) are continuous functions on S;

(2) the foliations W s and W u are absolutely continuous;
(3) f has the accessibility property via the foliations W s and W u; more precisely, any

two points z1, z2 ∈ S can be connected in S via a W s and W u foliations;
(4) f has positive Lyapunov exponents in the strongly unstable directions and negative

Lyapunov exponents in the strongly stable directions almost everywhere;
(5) f has positive central exponents.

Then f has positive central exponents at almost every point x ∈ S, f |S is ergodic and
indeed, is a Bernoulli diffeomorphism.

Proof. In the case when f is uniformly partially hyperbolic on the whole manifold M,
has positive central exponents and the accessibility property, this theorem was proved
in [4]. We shall show how to extend the argument presented there to our case.

Note that f is a C2 volume preserving diffeomorphism, with nonzero Lyapunov
exponents on a set A of positive volume. Hence, it has at most countably many ergodic
components of positive volume in A. Each such component contains the set

A(x) =
⋃

y∈V +(x)

V s(y),

where x is a density point of A and V +(x) is a center-unstable local manifold at x . Since
the strongly stable foliation W s is continuous, the set A(x) is open in A and hence the
set A itself is open (mod 0). We shall show that the accessibility property of f in S and
absolute continuity of strongly stable and unstable foliations imply that the trajectory
of almost every point in S is dense. Clearly, this yields that A = S (mod 0) and that
f |S is ergodic. Since for each n the map f n satisfies the condition of the theorem, we
conclude that f n|S is ergodic implying that f |S is a Bernoulli diffeomorphism.

To this end, it suffices to show that if U is an open set then the orbit of almost every
point enters U . To see this let us call a point good if it has a neighborhood in which the
orbit of almost every point enters U . We wish to show that an arbitrary point p is good.
Since f is accessible, there is a (u, s)-path [z0, . . . , zk] with z0 ∈ U and zk = p. We
shall show by induction on j that each point z j is good. This is obvious for j = 0. Now
suppose that z j is good. Then z j has a neighborhood N such that Orb(x) ∩ U �= ∅ for
almost every x ∈ N . Let B be the subset of N consisting of points with this property that
are also both forward and backward recurrent. It follows from the Poincaré recurrence
theorem that B has full volume in N . If x ∈ B, any point y ∈ W s(x) ∪ W u(x) has the
property that Orb(y) ∩ U �= ∅. The absolute continuity of the foliations W s and W u

means that the set
⋃

x∈B

W s(x) ∪ W u(x)

has full volume in the set
⋃

x∈N

W s(x) ∪ W u(x).

The latter is a neighborhood of z j+1. Hence z j+1 is good. ��
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3. Construction of the map P: Proof of Main Theorem

We describe a construction of the map P splitting it into several steps.

3.1. Step 1. A special flow T t . Let A be an Anosov automorphism of the torus X = T
2.

We denote by ηA the constant expanding rate of A along the unstable direction.
Consider the special flow T t over A with a constant roof function. The flow acts on

the the manifold

N = {(x, t) : x ∈ X, t ∈ [0, 1]}/ ∼,

where “∼” is the identification (x, 1) = (Ax, 0). We may choose the metric on N in
such a way that the expansion rate of T t along the one-dimensional strongly unstable
direction is tηA at every point (x, t) ∈ N. For each t �= 0 the map T t is uniformly par-
tially hyperbolic with one-dimensional strongly stable Es

T t , one-dimensional strongly
unstable Eu

T t and one-dimensional center Ec
T t subbundles (the latter is the direction

of the flow). These subbundles are integrable to smooth strongly stable W s
T t , strongly

unstable W u
T t and center W c

T t foliations of N.

3.2. Step 2. The original map T . Set Y = T
2 and M = N × Y . We endow M with the

product metric and denote by m its Riemannian volume. We also denote the fiber

Ny = N × {y}. (3.1)

For our construction we choose:

(A1) A Cantor set C ⊂ Y of positive area whose complement G = Y\C is an open
connected subset.

(A2) An open square G0 such that G0 ⊂ G.
(A3) A C∞ function κ : Y → R satisfying: (1) κ(y) = 0 if y ∈ C and κ(y) > 0 if

y ∈ G; (2) | grad κ| < 1/4, and (3) κ(y) = κ0 for y ∈ U1, where κ0 is a constant
and U1 is a neighborhood of G0 whose choice is specified in Subsect. 5.1.

The set G in the Main Theorem is given by G = N × G and is open, dense and of
positive but not full volume. We let Gc be the complement of G.

We define a map T : M → M by

T ((x, t), y) = (T κ(y)(x, t), y),

where (x, t) ∈ N and y ∈ Y . The proof of the following proposition is immediate.

Proposition 3.1. The map T is a C∞ volume preserving diffeomorphism of M with the
following properties:

(1) Given δT > 0, one can choose the function κ such that ‖T −Id ‖C1 ≤ δT . Moreover,
T is homotopic to Id.

(2) T preserves the fibers Ny .
(3) T is uniformly partially hyperbolic on any invariant subset N × A where A ⊂

G is compact. Moreover, T is dynamically coherent with the central foliation
W c

T = W c
T t × Y .
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(4) T is pointwise partially hyperbolic on G with one-dimensional strongly stable
Es

T (z), one-dimensional strongly unstable Eu
T (z) and 3-dimensional center Ec

T (z)
subspaces. The subspaces Es

T (z) and Eu
T (z) are integrable to strongly stable and

unstable foliations W s
T (z) and W u

T (z) with smooth leaves. These foliations are uni-
formly transverse and their local leaves have uniform size. In addition, these folia-
tions are absolutely continuous.

(5) T |Gc = Id and dTz = Id for any z ∈ Gc. In particular, the Lyapunov exponents of
T |Gc are all zero.

(6) For every z ∈ G the Lyapunov exponents of T are as follows:

λ1(z, T ) = λu(z, T ) > 0 = λ2(z, T ) = λ3(z, T ) = λ4(z, T )

> λ5(z, T ) = λs(z, T ),

where λu(z, T ) and λs(z, T ) correspond to the directions Eu
T t and Es

T t respectively
and λ2(z, T ), λ3(z, T ) and λ4(z, T ) correspond to the direction of the flow and the
Y -direction respectively. Moreover,

L1(T ) = L2(T ) = L3(T ) = L4(T ) > 0 and L5(T ) = 0,

where each i th average Lyapunov exponents Li (·) is given by (2.2).

3.3. Step 3. The perturbation Q. We perturb the map T to a map Q such that it has one
negative and four positive average Lyapunov exponents but is not necessarily ergodic.
We then perturb Q to a map P which is ergodic on G and has all the desired properties.

Given z ∈ M, we choose a local coordinate system (s, u, t, a, b) such that

Fs(z) := ∂/∂s = Es
T (z), Fu(z) := ∂/∂u = Eu

T (z), Ft (z) := ∂/∂t (3.2)

are the strongly stable, strongly unstable and central (flow) directions of T respectively,
and

Fb(z) := ∂/∂b, Fa(z) := ∂/∂a (3.3)

are tangent to Y . We shall assume that in these coordinates the square G0 has the form

G0 = BFa (a0, α0) × BFb(b0, α0) (3.4)

for some (a0, b0) ∈ Y and α0 > 0.
The following statement describes some properties of the map Q; its proof is given

in Sect. 4.

Proposition 3.2. Given δQ > 0, one can construct a C∞ volume preserving diffeomor-
phism Q : M → M which satisfies:

(1) ‖Q − T ‖C1 ≤ δQ and Q is homotopic to Id;
(2) Q = T on the set N × (Y\G0); in particular, Q preserves Ny-fibers if y /∈ G0 and

is a gentle perturbation of T ;
(3) Q is a gentle perturbation of T and satisfies Statements (3)–(5) of Proposition 3.1;
(4) for every z ∈ G we have

Eutab
Q (z) = Eutab

T (z), det(d Q|Eutab
Q (z)) = det(dT |Eutab

T (z)).

(5) L1(Q) < L2(Q) < L3(Q) < L4(Q) = L4(T ) and L5(Q) = 0 where Li (·) is
given by (2.2).
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3.4. Step 4. The final perturbation P. Our next step is to perturb the map Q to a map
P that is pointwise partially hyperbolic on the open set G. We shall ensure that P has
two transverse strongly stable and unstable foliations W s

P and W u
P of G and satisfies the

accessibility property on this set via these foliations. We shall also show that P can be
constructed in such a way that the Lyapunov exponents of P on Gc are all zero and that∫
M λi (z, P) dm > 0 for i = 1, 2, 3, 4.

In order to construct the map P we choose two sequences of open subsets Un, Ũn ⊂
G, n = 1, 2, . . . such that

(A4) G0 ⊂ Ũ1.
(A5) Ũn ⊂ Ũ n ⊂ Un ⊂ U n ⊂ Ũn+1 ⊂ G and

⋃
n≥1 Un = G.

(A6) Ũn and Un are connected sets for any n ≥ 1.

We set

Un = N × Un, Ũn = N × Ũn . (3.5)

We will construct a sequence of diffeomorphisms {Pn}, whose limit is the desired map
P . The following statement is proven in Sect. 5.

Proposition 3.3. Given a number δP > 0, one can find two sequences of positive num-
bers {δn} and {θn} with δn ≤ δP/2n and δn ≤ d(C,Un)

2 as well as a sequence of C∞
volume preserving diffeomorphisms Pn : M → M such that for n ≥ 1:

(1) ||Pn − Pn−1||Cn < δn and Pn is homotopic to Id;
(2) Pn(Un) = Un, Pn = T on M\Un, and Pn = Pn−1 on Un−2; in particular, Pn is a

gentle perturbation of T ;
(3) Pn is a gentle perturbation of T and satisfies Statements (3)–(5) of Proposition 3.1;
(4) for every z ∈ M we have

Eutab
Pn

(z) = Eutab
Q (z), det(d Pn|Eutab

Pn
(z)) = det(d Q|Eutab

Q (z));

(5) for all z ∈ U j , j = 1, . . . , n and i = u, s, c,

� (Ei
Pn−1

(z), Ei
Pn
(z)) ≤ θ j/2n− j ;

(6) if the number δQ > 0 (see Proposition 3.2) is sufficiently small, then each map
Pn is stably accessible in the following sense: let P� be a C2 volume preserving
diffeomorphism of M that is a gentle perturbation of T ; assume that for all z ∈ Un
and i = u, s, c

� (Ei
P� (z), Ei

Pn
(z)) ≤ θn;

then any two points z1, z2 ∈ Ũn are accessible via a (u, s)P� -path in G; in particular,
Pn has the accessibility property on Ũn.

Statement (1) and (2) of this proposition implies that the limit P = limn→∞ Pn
exists. We shall show that the map P has all the desired properties.
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3.5. Step 5. Proof of the main Theorem. By Proposition 3.3 (1), we have for any k ≥ 1
and any n > k,

||Pn − Pn−1||Ck ≤ ||Pn − Pn−1||Cn < δP/2n .

It follows that Pn converges to P in the Ck topology. Since k is arbitrary, P is a C∞
diffeomorphism. Clearly, P preserves volume and ‖P − Id ‖ ≤ δ if δT , δQ and δP are
small enough. In addition, since P = Pn+1 on Un , by Proposition 3.3 (1), P is homotopic
to Id on Un for any n. The first statement of the Main Theorem follows.

By Proposition 3.3, each diffeomorphism Pn is pointwise partially hyperbolic on
U and uniformly partially hyperbolic on Un . By Theorem A.1 in the Appendix, if the
sequence δn decreases sufficiently fast, the limit diffeomorphism P is pointwise partially
hyperbolic on U.

We now claim that the one-dimensional strongly stable Es
P and unstable Eu

P sub-
bundles are integrable to invariant strongly stable W s

P and unstable W u
P foliations with

smooth leaves, which are transverse and absolutely continuous. Recall that the “start-up"
map T has strongly stable and unstable local manifolds V s

T (z) and V u
T (z) respectively

at each z ∈ U. Moreover, these local manifolds are of uniform size, say larger than a
certain number 4r > 0.

By Proposition 3.3(3), Pn|Uc
n = T |Uc

n , and thus V ω
Pn
(z) = V ω

T (z) for all z ∈ G\Un ,

ω = s, u. On the other hand, each Pn is a perturbation of Pn−1 on the compact set Un on
which both Pn and Pn−1 are uniformly partially hyperbolic if δn is sufficiently small. Fur-
thermore, if rn is the size of V ω

Pn
(z) for z ∈ Un , one can arrange that rn/rn−1 ≥ 2−1/2n

,
and thus by induction we obtain that the size of local manifolds for Pn|Un is bigger than
r . Therefore, given z ∈ G, we obtain that the size of V ω

Pn
(z) has a lower bound r > 0,

which is independent of z and n.
We can describe the local strongly stable manifold for Pn at a point z ∈ G in the

following way:

V s
Pn
(z) = expz{(v, ψ s

Pn
(v)) : v ∈ Bs(0, rn)},

where Bs(0, rn) ⊂ Es
Pn
(z) is the ball centered at origin of radius rn and ψ s

Pn
:

Bs(0, rn) → Ecu
Pn
(z) is a C1 map satisfying:

(1) ψ s
Pn

(0) = 0 and dψ s
Pn
(0) = 0.

(2) If the numbers δn and θn decay sufficiently fast then there are r > 0 and � > 0
such that rn ≥ r and ‖ψ s

Pn
‖C1+α ≤ � for all n ≥ 0.

This implies that z ∈ V s
Pn
(z) and Tz V s

Pn
(z) = Es

Pn
(z). Furthermore,

(1) Pn(V s
Pn
(z)) ⊂ V s

Pn
(Pn(z)).

(2) d(Pn(z), Pn(y)) ≤ λ̃(z)d(z, y) for each y ∈ V s
Pn
(z) and some continuous function

λ̃(z) on G for which 0 < λ(z) ≤ λ̃(z) < λ′(z) (where λ′(z) is the function in the
definition of pointwise partial hyperbolicity).

The sequence of functions ψ s
Pn
(v), ‖v‖ ≤ r is compact in the C1 topology and hence,

there is a subsequence ψ s
Pnk

that converges to a C1 function ψ satisfying ψ(0) = 0,

dψ(0) = 0 and ‖ψ‖C1 ≤ �. Setting

V (z) = expz{(v, ψ(v)) : v ∈ Bs(0, r)}, (3.6)
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we have that

(1) z ∈ V (z) and Tz V (z) = Es
P (z);

(2) P(V (z)) ⊂ V (P(z));
(3) d(P(z), P(y)) ≤ λ̃(z)d(z, y) for each y ∈ V (z).

This implies that if mk is any subsequence for whichψ s
Pmk

converges in the C1 topology to

a function ψ̃ , then ψ̃ = ψ . Thus the formula (3.6) determines uniquely a local strongly
stable manifold through z and the formula W (z) = ∪n≥0 P−n(V (Pn(z)) defines the
global strongly stable manifold through z. These manifolds form a continuous strongly
stable foliation with smooth leaves for P . In a similar fashion we can obtain strongly
unstable local manifolds and construct a strongly unstable foliation with smooth leaves
for P . These two foliations are transverse at every point z ∈ G.

We shall now show that the Lyapunov exponent λs
P (z) in the direction Es

P (z) is
negative at almost every point z ∈ G. Indeed, let Z ⊂ G be the set of points at which
λs

P (z) = 0. If m(Z) > 0 then

0 =
∫

Z
λs

P(z) dm =
∫

Z
lim

n→∞
1

n
log

n−1∏

i=0

λP (Pi (z))

= lim
n→∞

1

n

∫

Z

n−1∑

i=0

log λP (Pi (z)) dm(z)

=
∫

Z
log λP (z) dm(z) < 0

(recall that λP (z) is the contraction coefficient along Es
P (z)). This contradiction proves

our claim. Similarly, one can prove that the Lyapunov exponent λu
P (z) in the direction

Eu
P (z) is positive at almost every point z ∈ G.
Since P is nonuniformly partially hyperbolic on G, by Theorem 8.6.1 in[1], we obtain

that its strongly stable and unstable foliations are absolutely continuous.
Our next step is to show that the map P has the accessibility property on G via its

invariant foliations W s
P and W u

P . Indeed, by Proposition 3.3 (6), for any n > k and any
z ∈ Uk , i = s, u, c,

� (Ei
Pn
(z), Ei

Pk
(z)) ≤ θk

(
1 − 1

2n−k

)
< θk .

Taking the limit as n → ∞ yields for i = s, u, c and any z ∈ Uk ,

� (Ei
P (z), Ei

Pk
(z)) ≤ θk . (3.7)

Hence, by Proposition 3.3 (6), the map P has the accessibility property on Ũk . Since k
is arbitrary, we obtain that the map P has the accessibility property on G.

To prove that the map P has nonzero central Lyapunov exponents almost everywhere
we let c = L4(Q) − L3(Q) > 0. By semicontinuity of Li with respect to the map, we
may take δP in Proposition 3.3 so small that L3(P) < L3(Q) + c/2. Note that by
Proposition 3.3 (4), for all n ≥ 1,

L4(Pn) =
∫

G
log | det(d Pn|Eutab

Pn
(z))| dm

=
∫

G
log | det(d Q|Eutab

Q (z))| dm = L4(Q).
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Since Pn converges to P in the C1 topology, by Proposition 3.3 (4), we have that
L4(Pn) → L4(P) as n → ∞ and hence L4(P) = L4(Q). It follows that L4(P) −
L3(P) ≥ c/2 > 0. Therefore,

∫

G
λ4(z, P)dm(z) ≥ c/2 > 0.

It follows that there is a subset A ⊂ G of positive volume such that λ4(z) > 0 for
every z ∈ A. Hence, λ2(z) ≥ λ3(z) ≥ λ4(z) > 0. Thus the map P has positive central
exponents at every point in a set of positive volume. Since P is volume preserving, the
total sum of the Lyapunov exponents is zero at every point. Therefore, λ5(z, P) < 0
at every point in A. Since P has the accessibility property and its strongly stable and
unstable foliations are absolutely continuous, by Theorem 2.3, we obtain that P has
positive central exponents at almost every point in G, P|G is ergodic and indeed, is a
Bernoulli diffeomorphism.

It follows from Proposition 3.3 (3) and the fact that δn ≤ d(C,Un)
2, that P = Id

on the set N × C and that d Pz = Id for all z ∈ N × C . In other words, all Lyapunov
exponents at every point in the set N × C are zero. Since this set has positive volume
this completes the proof of the Main Theorem.

4. Construction of the Map Q: Proof of Proposition 3.2

We use an approach which is similar to the one in [14] and obtain Q as a result of three
consecutive perturbations. First, we perturb the map T to a diffeomorphism S via a gentle
perturbation hS so that S = hS ◦ T preserves the fibers Ny , y ∈ G and has two positive
average Lyapunov exponents in the Eut

T subbundle, i.e, L1(S) < L2(S) (see Lemma 4.1).
Next, we perturb S to a diffeomorphism R via a gentle perturbation h R so that R = h R ◦S
has three positive average Lyapunov exponents, i.e., L1(R) < L2(R) < L3(R) (see
Lemma 4.2). Finally, we obtain the desired map Q as a perturbation of R via a gentle
perturbation hQ so that Q = hQ ◦ R satisfies

L1(Q) < L2(Q) < L3(Q) < L4(Q)

(see Lemma 4.6), or equivalently,
∫
M λ4(z, Q) dm(z) > 0.

Given δ > 0 and k = S, R, Q, the perturbations hk are concentrated on pairwise
disjoint small open subsets �k ⊂ G0 such that ‖hk − Id ‖C1 ≤ δ and hk = Id outside
�k . It follows that Q = T outside �S

⋃
�R

⋃
�Q .

To effect our construction we choose periodic points q, pt , pa and pb of the Anosov
automorphism A, which are close to each other and whose orbits are pairwise disjoint.
Let V s

A(q), V u
A(q), V s

A(pi ) and V u
A(pi ), i = t, a, b be stable and unstable local mani-

folds at these periodic points. We may assume that each intersection V u
A(q) ∩ V s

A(pi )

and V u
A(pi ) ∩ V s

A(q) consists of exactly one point, which we denote by [q, pi ] and
[pi , q] respectively. Consider the closed quadrilateral path with the collection of points
q, [q, pi ], pi , [pi , q] and q, and let

γ (q) = V u
A(q) ∪ V s

A(q), γ (pi ) = V u
A (pi ) ∪ V s

A(pi ).
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Given positive numbers ν and σ whose choice will be specified later (see (4.4)), we set
for i = t, a, b,

�i (ν) =
( ⋃

t∈[0,τ (pi )]
BN

(
T t (pi , 0), ν

)) × G,

�̂i (σ ) =
( ⋃

(x,t)∈(γ (q)×[0,τ (q)])∪(γ (pi )×[0,τ (pi )])
BN

(
(x, t), σ

)) × G, (4.1)

�(ν, σ ) =
( ⋃

i=t,a,b

�i (ν)
)

∪
( ⋃

i=t,a,b

�̂i (σ )
)
,

where τ(q) and τ(pi ) are the periods of q and pi and BN((x, t)), r) is the ball in N of
radius r centered at the point (x, t). Finally, we set

�0(ν, σ ) = �(ν, σ ) ∩ G0 (4.2)

(recall that G0 is defined in (A2) and is in the form of (3.4)).
Given δQ > 0, choose the number θ > 0 according to Sublemma 4.5 below and an

integer k0 > 0 such that

π/2k0 < θ. (4.3)

Now choose positive numbers ν and σ to ensure that the volume of the set �0(ν, σ )

is so small that

20k0m(�0(ν, σ )) < 1. (4.4)

4.1. Construction of the map S. We obtain the map S as a small perturbation of the map
T via a perturbation hS , which is a small rotation in the Eut

T subbundle at every point
of a small subset of G0 = N × G0. This approach is an elaboration of the approach
developed in [9,21] for some uniformly partially hyperbolic systems.

To this end we observe that by the construction of the map T for every z ∈ G0 the
expansion rate in the Eu

T -direction at z, |dT |Eu
T |, is a constant. We denote this constant

by η. Choose a C∞ function ψ = ψ(r) : R
+ → R

+ such that

(1) ψ(r) = ψ0 > 0 if r ∈ [0, 0.9];
(2) ψ(r) > 0 if r ∈ [0, 1) and ψ(r) = 0 if r ≥ 1;
(3) ‖ψ‖C1 ≤ 1.

Given N0 ≥ 20k0, choose a point (x0, t0) ∈ N and a number ε1 > 0 such that

BN((x0, t0), 2ε1) ∩ ProjN(�0) = ∅,
f −kκ0(BN((x0, t0), 2ε1)) ∩ BN((x0, t0), 2ε1) = ∅, k = 1, . . . , N0,

where ProjN is the projection onto N, i.e., ProjN(x, t, y) = (x, t) and κ0 is defined by
(A3) (see Subsect. 3.2). Set

�S = BN((x0, t0), ε1) × G0. (4.5)

Our choice of ε1 guarantees that �S ∩ �0 = ∅ and for k = 1, . . . , N0,

T −k(�S) ∩ �S = ∅. (4.6)
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To define the desired map hS we switch from the coordinate system (s, u, t, a, b) (see
(3.2) and (3.3)) in �S to the cylindrical coordinate system (r, θ, s, a, b) originated at
z0 = (x0, t0, a0, b0), where u = r cos θ and t = r sin θ .

Given τ > 0, define the map hS = hS,τ on �S as a small rotation in the (u, t)-sub-
space. More precisely, we set

hS(r, θ, s, a, b) =
(

r, θ + τα2
0ε

2
1ψ

( r

ε1

)
ψ

( |s|
ε1

)
ψ

( |b|
α0

)
ψ

( |a|
α0

)
, s, a, b

)
(4.7)

(here α0 is defined in (3.4)). We extend the map hS = hS,τ to the whole manifold M by
letting it be the identity outside of �S . It is easy to see that hS is a C∞ volume preserving
diffeomorphism satisfying:

(1) ‖hS,τ − Id ‖C1 → 0 as τ → 0;
(2) dhS preserves Eut

T bundle;
(3) det(dhS|Eut

T (z)) = 1 for any z ∈ M.

We define the map S = Sτ = T ◦ hS,τ and we set

α1 = 0.9α0, G1 = BFa (a0, α1) × BFb (b0, α1). (4.8)

The following statement describes some properties of the map S.

Lemma 4.1. Given δQ > 0, there exist τ > 0 such that the map S = Sτ is a C∞
diffeomorphism with the following properties:

(1) ‖S − T ‖C1 ≤ δQ and S is homotopic to Id;
(2) S = T on the sets N × (Y\G0) and �0; in particular, S is a gentle perturbation of

T ;
(3) S satisfies Statements (3)–(5) of Proposition 3.1;
(4) for every z ∈ M,

Eut
S (z) = Eut

T (z), det(d S|Eut
S (z)) = det(dT |Eut

T (z));
(5) for any y1, y2 ∈ G1,

ProjN(S(x, t, y1)) = ProjN(S(x, t, y2));
(6) L1(S) < L1(T ) and hence,

L1(S) < L2(S) = L3(S) = L4(S) = L4(T ), L5(S) = 0;
(7) there exist a number λS and a set �S = ProjN(�S) × G1 such that

m(�S) ≥ 20k0m(�S ∩ �S) > 0,

and for any z ∈ �S the map S has two positive Lyapunov exponents λ1(z, S) >

λ2(z, S) ≥ λS along the Eut
S = Eut

T subbundle.

Proof. Statements (1)–(5) follow easily from the construction of the map hS . In partic-
ular, S is dynamically coherent in view of Theorem 2.2. It remains to prove Statements
(6) and (7).
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We prove that there exists τ0 > 0 such that for any τ ∈ (0, τ0],
L1(Sτ |G0) < L1(T |G0). (4.9)

Since on the complement of G0 we have S = T , this implies that L1(S) < L1(T ).
We outline the proof of (4.9) referring the reader to the proof of Proposition 5.1 in

[9] for details (see also [1]). Since Eu
Sτ
(z) is one-dimensional, it is easy to see that

L1(Sτ |G0) =
∫

G0

λ1(z, Sτ ) dm(z) =
∫

G0

log |d Sτ (z)|Eu
Sτ
(z)| dm(z).

Since the perturbation hS = hS,τ preserves the Eut
T subbundle, we can write

dhS,τ |Eut
T (z) =

(
A(τ, z) B(τ, z)
C(τ, z) D(τ, z)

)
,

where

A = A(τ, z) = 1 − τr ρ̃r sin θ cos θ − τ 2ρ̃2

2
− τ 2r ρ̃ρ̃r cos2 θ + O(τ 3),

B = B(τ, z) = −τ ρ̃ − τr ρ̃r sin2 θ − τ 2r ρ̃ρ̃r sin θ cos θ + O(τ 3),

C = C(τ, z) = τ ρ̃ + τr ρ̃r cos2 θ − τ 2r ρ̃ρ̃r sin θ cos θ + O(τ 3),

D = D(τ, z) = 1 + τr ρ̃r sin θ cos θ − τ 2ρ̃2

2
− τ 2r ρ̃ρ̃r sin2 θ + O(τ 3),

and

ρ̃(r, s, a, b) = α2
0ε

2
1ψ

( r

ε1

)
ψ

( |s|
ε1

)
ψ

( |b|
α0

)
ψ

( |a|
α0

)
.

Recall that the expanding rate η = ηA of dT along Eu
z (T ) is constant for all z ∈ G0. By

the choice of the coordinate systems, we can write

dT |Eut
T (z) =

(
η 0
0 1

)
.

Since d Sτ = dT ◦ dhS,τ , we have

d Sτ (z)|Eut
Sτ
(z) =

(
ηA(τ, z) ηB(τ, z)
C(τ, z) D(τ, z)

)
.

Denote by eτ (z) the unique number such that the vector vτ (z) = (1, eτ (z))∗ ∈
Eu

Sτ
(z), where ∗ denote the transpose of the vector. Repeating the arguments in the proof

of Lemma B.7 in [9], one can show that

L1(Sτ |G0)=
∫

G0

log η dm(z) −
∫

G0

log[D(τ, z) − ηB(τ, z)eτ (Sτ0(z))] dm(z).

Using this formula and applying the same arguments as in the proof of Lemmas B.8 and
B.9 in [9] one can show that

d L1(Sτ |G0)

dτ

∣∣∣
τ=0

=
∫

G0

D′
τdm(z) = 0
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and

d2 L1(Sτ |G0)

dτ 2

∣∣∣
τ=0

=
∫

G0

[
(D′

τ )
2 − D′′

ττ + 2ηB ′
τ

∂eτ (z)

∂τ
(Sτ (z))

]

τ=0
dm(z) < 0.

It follows that there exists τ0 > 0 such that (4.9) hold for any τ ∈ (0, τ0]. Therefore,
L1(Sτ ) < L1(T ).

Note that for any y ∈ Y the fibers Ny are Sτ -invariant and that the subbun-
dles Eutab

T , Euta
T and Eut

T are preserved by the perturbation hS . Furthermore, since
det(dhS,τ |Eut

T (z)) = 1, we have for i = ut, uta, utab,

det(d Sτ |Ei
T ) = det(dT |Ei

T ).

Hence, the three smallest Lyapunov exponents remain unchanged and so does the sum
of the two largest ones. This implies that Li (Sτ ) = Li (T ) for i = 3, 4, 5 and hence,

L1(Sτ ) < L2(Sτ ) = L3(Sτ ) = L4(Sτ ) = L4(T )

and L5(Sτ ) = 0. This proves Statement (6) of the lemma.
To prove Statement (7) we first notice that for any y ∈ G1, the arguments similar to

the above ones yield

d L1(Sτ |Ny)

dτ

∣∣∣
τ=0

= 0,
d2L1(Sτ |Ny)

dτ 2

∣∣∣
τ=0

< 0.

It follows that if τ0 > 0 is small enough, then L1(Sτ |Ny) < L1(T |Ny) for any τ ∈
(0, τ0]. Let us fix such a τ . There is a subset of Ny on which Sτ has two positive
Lyapunov exponents λ1(z, Sτ ) > λ2(z, Sτ ) > 0. Given λS > 0, consider the level set
�S(y) = {z ∈ Ny : λ2(z, Sτ ) ≥ λS}. If λS is sufficiently small this set has positive vol-
ume. Set�S = �S(y)×G1, where the set G1 is defined by (4.8). Clearly,�S is invariant
under Sτ . Since N0 ≥ 20k0, we obtain by (4.4) that 20k0m(�S ∩�S) ≤ m(�S). Further-
more, by Statement (5) and definition of�S , for any z ∈ �S we have that λ2(z, Sτ ) ≥ λS
and the lemma follows. ��

4.2. Construction of the map R. We shall obtain the map R as a small perturbation of
the map S by a diffeomorphism hS , i.e., R = h R ◦ S. We use some ideas from [2,10] and
construct h R as a composition of rotations in the Fta-subspace along pieces of orbits so
that the total rotation is π/2. This allows us to interchange the Ft - and Fa-directions
making the Lyapunov exponents along these directions to be close to each other.

Let us briefly outline the construction. It starts with a choice of the Rokhlin-Halmos
tower for S within an invariant set �′ of positive volume where at every point the map
S has two positive Lyapunov exponents along the Eut

T -subspace. The tower of height
7K + k0 consists of disjoint subsets called floors, where K > 0 is a given number and
k0 is given by (4.3). We then consider a subtower � ⊂ �′ of height 2K + k0. The num-
ber K should be sufficiently large to ensure that the k0 floors in the middle of � are
disjoint from �S and �0 and consist of “good” points z in the sense that every vector
v ∈ Eut

T -subspace expands by about eiλ times under d Si and contracts by about e−iλ

under d S−i for any i ≥ K/2. We then approximate these k0 floors by finitely many sets
of a special type – in our global coordinate system these sets are cylinders. We obtain
the perturbation h R as a composition of finitely many maps where each of these maps



348 H. Hu, Y. Pesin, A. Talitskaya

rotates the core of the corresponding cylinder by the angle π/2k0 in the Fta-subspace
at each level so that the total rotation is π/2.

Now consider a “good” orbit, which starts at a point z on the bottom of the subtower
�, and a vector v ∈ Euta(z). If v is close to the Eut -subspace, then the length of the
ut-component of d RK v = d SK v becomes at least about eKλ times longer than the
length of v. Since d S does not contract vectors in the Euta-subspace very much during
the remaining k0 + K steps, the length of the ut-component stays about the same. If v

is close to the Ea
T -subspace, the length of the a-component of v does not change under

the map d RK = d SK . During the next k0 iterations the vector d RK v is rotated by
π/2 degree into the Et -subspace. During the next K iterations the length of the vector
becomes at least about eKλ times longer. It follows that every vector in Euta(z) expands
by about eKλ times under d R2K +k0 . Thus we obtain a set on which R has three positive
Lyapunov exponents.

To effect this construction let λ = λS and � = �S be as in Statement (7) of
Lemma 4.1. Given K > 0, let

�′ = �′(K ) = {z ∈ � : log ‖d Sk(z, v)‖ − kλ ≥ −0.1kλ,

log ‖d S−k(z, v)‖ + kλ ≤ 0.1kλ

for all v ∈ Eut
S (z), ‖v‖ = 1 and all |k| ≥ 0.5K }, (4.10)

and let also

� = �(K ) =
k0−1⋂

i=0

S−i (�′(K )), (4.11)

where k0 > 0 is given by (4.3). Note that m(�′(K )) → m(�) as K → ∞ and hence,
m(�(K )) → m(�) as K → ∞. Therefore, given a number δQ > 0, we can choose K
so large that

Kλ ≥ max{5k0λ, 10 log 2, −10k0 log(1 − δQ)}, (4.12)

λm(�) + 40 log(1 − δQ)m(�\�) > 0, (4.13)

20m(�\�) ≤ m(�). (4.14)

Note that if z ∈ �(K ) then for n ≥ 0.5K and v ∈ Eut
S (z),

‖d Sn(z, v)‖ ≥ e0.9nλ‖v‖.
Set

�∗ = �\
k0−1⋃

i=0

S−i (�0 ∪ �S) (4.15)

(recall that �0 and �S are given by (4.2) and (4.5) respectively). By Lemma 4.1 (7),

m(�S ∩ �) ≤ m(�)/20k0. (4.16)

Furthermore, by choosing the numbers ν and σ in (4.1) appropriately, we may assume
that

m(�0 ∩ �) ≤ m(�)/20k0. (4.17)
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Combining (4.14), (4.15), (4.17) and (4.16), we find that

m(�∗) ≥ ((1 − 0.05) − 0.05 − 0.05)m(�) ≥ 0.8m(�).

By the Rokhlin-Halmos Lemma (see [15]), given K > 0, one can choose a measurable
set �′ ⊂ � such that Si (�′) ∩ �′ = ∅ for any −K ≤ i ≤ 6K + k0 − 1, i �= 0 and

m
(6K +k0−1⋃

i=−K

Si (�′)
)

≥ 0.9m(�). (4.18)

Set

�0 = {S j (z) : z ∈ �′, 0 ≤ j ≤ 5K − 1, S j (z) ∈ �∗, Si (z) /∈ �∗ for i < j}.
In other words, �0 is the set of first entries to �∗ of trajectories {Si (z)}5K−1

i=0 with z ∈ �′.
By Lemma 4.1 (5), both sets � and � are of the form

� = ProjN(�) × G1, � = ProjN(�) × G1,

and hence so is the set �0, i.e., �0 = ProjN(�0) × G1. Let

�i = Si (�0), � =
K +k0−1⋃

i=−K

�i . (4.19)

Clearly, the sets {�i } are pairwise disjoint for i = −K , . . . , K + k0 −1. We approximate
the set �0 by finitely many disjoint sets �0 j of the form

�0 j = BFu (u j , r ′
j ) × BFs (s j , r ′′

j ) × BFta ((t j , a j ), r j ) × BFb(b0, α1),

where

z j = (u j , s j , t j , a j , b j ) ∈ M, r ′
j ≥ r j , r ′′

j ≥ r jη
k0 , j = 1, . . . , J.

For i = −K , . . . , K + k0 − 1, let

�i j = Si (�0 j ), �i =
J⋃

j=1

�i j .

We can choose the sets �0 j in such a way that

�i j ∩ �kl = ∅
for (i, j) �= (k, l), −K ≤ i, k ≤ K + k0, 1 ≤ j, l ≤ J and that

�i j ∩ (�0 ∪ �S) = ∅
for 0 ≤ i ≤ k0 −1, 0 ≤ j ≤ J . It follows that for i = 1, . . . , k0, the set �i is an approx-
imation of �i and �i ∩ (�0 ∪ �S) = ∅. We may assume that for each i = 0, . . . , k0,

m(�i��i ) ≤ 0.05 max{m(�i ),m(�i )}. (4.20)
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Note that each set �i j is a cylinder in the form described in Sublemma 4.5 below. Apply-
ing this sublemma with � = �i j , we obtain a map ρi j and a subcylinder �′

i j ⊂ �i j

such that ‖ρi j − Id ‖ ≤ δQ and

m(�′
i j )/m(�i j ) ≥ 3/4. (4.21)

Furthermore, restricted to �′
i j , the map ρi j is the rotation by the angle π/2k0 along

the Ft × Fa-subspace and is the identity outside �i j . In fact, by the construction of
the sets �′

i j (see Sublemma 4.5 below), we can assume that S(�′
i j ) = �′

i+1, j for i =
0, . . . , k0 − 1. Let

�R =
k0−1⋃

i=0

�i , �′
i =

J⋃

j=1

�′
i j . (4.22)

Hence, by (4.21) and by definition of �i and �′
i , we have

m(�′
i )/m(�i ) ≥ 3/4. (4.23)

Then define h R = ρi j on �i j , and h R = Id otherwise. Clearly, h R is a C∞
volume preserving diffeomorphism. Moreover, dh R preserves the Euta

T bundle and
det(dh R |Euta

T (z)) = 1 for any z ∈ M. We define the map R = h R ◦ S. Some of
the properties of R are described in the following lemma.

Lemma 4.2. The following statements hold:

(1) ‖R − T ‖C1 ≤ δQ and R is homotopic to Id;
(2) R = T on the sets N × (Y\G0) and �0; in particular, R is a gentle perturbation

of T ;
(3) R satisfies Statements (3)–(5) of Proposition 3.1;
(4) for any (a, b) ∈ G0, the set N × Ib, where Ib = {(a′, b) : a′ ∈ BFa (a0, α0)}, is

R-invariant and for y /∈ G0 the set Ny is R-invariant;
(5) for every z ∈ M,

Euta
R (z) = Euta

S (z) = Euta
T (z),

det(d R|Euta
R (z)) = det(d S|Euta

S (z)) = det(dT |Euta
T (z));

(6) for α2 = 0.9α1, y′ = (a, b′), y2 = (a, b′′) ∈ BFa (a0, α1) × BFb (b0, α2)

we have ProjN×BFa (a0,α1)
R(x, t, a, b′) = ProjN×BFa (a0,α1)

R(x, t, a, b′′), where
ProjN×BFa (a0,α1)

is the projection onto the set N × BFa (a0, α1) given by
ProjN×BFa (a0,α1)

(x, t, a, b) = (x, t, a);
(7) L2(R) < L3(R) and hence,

L1(R) < L2(R) < L3(R) = L4(R) = L4(T ), L5(R) = 0;

(8) there exist a number λR > 0 and a subset �R = (ProjN×BFa (a0,α1)
�R) ×

BFb (b0, α2) of positive volume such that m(�R) ≥ 20k0m(�R ∩�i ) for i = R, S,
and at any z ∈ �R, R has three positive Lyapunov exponents λ1(z, R), λ2(z, R),
λ3(z, R) ≥ λR along the Euta

R = Euta
T subbundle.
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Proof. Statements (1)–(6) follow immediately from the construction of h R . In particular,
the fact that α2 = 0.9α1 follows from Statement (4) of Sublemma 4.5.

Now we prove Statements (7) and (8).
Set �∗

0 = �′
0 ∩ �, where �′

0 is given by (4.22), and � is given by (4.11) (we shall
see later that �∗

0 is not empty and indeed has positive volume). Then set

U1 = R−K �∗
0, U2 = �0\�∗

0,

U3 = Rk0((�0 ∩ �)\�∗
0), U4 = Rk0(�0\�).

Let U = U1 ∪ U2 ∪ U3 ∪ U4 and R̄ = Rβ : U → U be the first return map, where
β = β(z) is the first return time of the point z ∈ U to U under R. By Poincaré’s Recur-
rence Theorem, the map R̄ is defined for almost every z ∈ U . In the proof below, for
any z ∈ U , we shall assume that v ∈ Euta

R (z) = Euta
S (z).

Let ∧k(Euta
S (z)) denote the exterior power of Euta

S (z) and

∧k(d R|Euta
S (z)) : ∧k(Euta

S (z)) → ∧k(Euta
S (R(z)))

be the exterior power of d R|Euta
S (z). It is easy to see that if there exists c ≥ 1 such that

‖d Rv‖ ≥ c‖v‖ for any v ∈ Euta
S (z), then

‖∧3(d R|Euta
S (z))‖

‖∧2(d R|Euta
S (z))‖ ≥ c. (4.24)

First we consider the case when z ∈ U1. Then β(z) ≥ 2K + k0. By Sublemma 4.3 below
and (4.12),

log ‖d R̄zv‖ ≥ 0.9Kλ − 0.5 log 2 + log ‖v‖ ≥ 0.85Kλ + log ‖v‖.
Hence,

log ‖∧3(d R|Euta
S (z))‖ − log ‖∧2(d R|Euta

S (z))‖ ≥ 0.85Kλ.

Note that by definition, �0 ⊂ �∗. Since �i j ∩ (�0 ∪ �S) = ∅ for 0 ≤ i ≤ k0 − 1 and
0 ≤ j ≤ J , we have that �′

0 ∩ � = �′
0 ∩ �∗ ⊃ �0 ∩ �0. Hence, by (4.23) and (4.20),

m(U1) = m(�∗
0) = m(�′

0 ∩ �) ≥ m(�′
0 ∩ �0) = m(�′

0) − m(�′
0\�0)

≥ m(�′
0) − m(�0\�0) ≥ 3

4
m(�0) − 0.05m(�0) = 0.7m(�0).

It follows that
∫

U1

(
log ‖∧3(d R̄|Euta

S (z))‖ − log ‖∧2(d R̄|Euta
S (z))‖) dm(z)

≥ 0.85Kλ · 0.7m(�0). (4.25)

Now we consider the case when z ∈ U2. Note that ‖d R − dT ‖C1 ≤ δQ and Euta
R (z) =

Euta
R (z) for all z. Then R̄|U2 = Rk0 |U2 and

log ‖d R̄zv‖ ≥ k0 log(1 − δQ) + log ‖v‖.
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In addition, by definition of �∗
0 and (4.23),

m(U2) = m(�0\�∗
0) ≤ m(�0\�′

0) ≤ 1

4
m(�0).

We conclude that
∫

U2

(log ‖∧3(d R̄|Euta
S (z)) − log ‖∧2(d R̄|Euta

S (z))‖) dm(z)

≥ k0 log(1 − δQ) · 0.25m(�0). (4.26)

If z ∈ U3, then z ∈ Rk0(�) ⊂ �′, where �′ is defined in (4.10), and β(z) > K . Hence,
Rk(z) = Sk(z) for 0 ≤ k ≤ β(z) and

d R̄|Eut
S (z) = d Sβ(z)|Eut

S (z).

Therefore if v ∈ Eut
S (z), then ‖d R̄zv‖ ≥ 0.9Kλ‖v‖, and if v ∈ Ea

S(z), then ‖d R̄v‖ =
‖d Sβ(z)v‖ = ‖v‖. It follows that ‖d R̄zv‖ ≥ ‖v‖ for any v ∈ Euta

S (z). Hence, by (4.24)
with c = 1, we have

∫

U3

(
log ‖∧3(d R̄|Euta

S (z))‖ − log ‖∧2(d R̄|Euta
S (z)‖) dm(z) ≥ 0. (4.27)

Finally, let us consider the case z ∈ U4. Let β ′(z) be the smallest positive integer such
that Rβ ′(z)(z) ∈ � for some 0 ≤ β ′(z) ≤ β(z) and let β ′(z) = β(z) if there is no such
integer. Denote by

U ′
4 = U4 ∩ {z : β(z) − β ′(z) ≥ 0.5K }, U ′′

4 = U4 ∩ {z : β(z) − β ′(z) < 0.5K }.
Since β(z) ≥ K for z ∈ U ′′

4 , we have β(z) ≤ 2β ′(z). Note that by (4.10), if n ≥ 0.5K
then ‖d Sn

z v‖ ≥ ‖v‖ for any z ∈ � and v ∈ Euta
S (z). Also note that R = S on �\�R . If

z ∈ U ′
4 then

‖d R̄zv‖ = ‖d Rβ(z)
z v‖ = ‖d Sβ(z)−β ′(z)

Rβ′(z)(z) (d Rβ ′(z)
z v)‖ ≥ ‖d Rβ ′(z)

z v)‖.

Hence, by Statement (6) of the lemma,

log ‖d R̄zv‖ ≥ log ‖Rβ ′(z)
z (v)‖ ≥ β ′(z) log(1 − δQ) + log ‖v‖.

If z ∈ U ′′
4 then

log ‖d R̄zv‖ ≥ β(z) log(1 − δQ) + log ‖v‖ ≥ 2β ′(z) log(1 − δQ) + log ‖v‖.
It follows that

∫

U4

(
log ‖∧3(d R̄|Euta

S (z))‖ − log ‖∧2(d R̄|Euta
S (z)‖) dm(z)

≥ 2 log(1 − δQ)

∫

U4

β ′(z) dm(z).
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Furthermore, if z ∈ U4, then z, R(z), . . . , Rβ ′(z)−1(z) ∈ �\�. Hence, we obtain∫
U4

β ′(z) dm(z) ≤ m(�\�), and therefore

∫

U4

(
log ‖∧3(d R̄|Euta

S (z))‖ − log ‖∧2(d R̄|Euta
S (z)‖) dm(z)

≥ 2 log(1 − δQ)m(�\�). (4.28)

Note that the sets RK (U1), R−k0(U3) and R−k0(U4) form a partition of �0 and hence,
by (4.25)–(4.28), we have

∫

U

(
log ‖∧3(d R̄|Euta

S (z))‖ − log ‖∧2(d R̄|Euta
S (z))‖) dm(z)

≥ 0.595λK m(�0) + 0.25k0 log(1 − δQ)m(�0) + 2 log(1 − δQ)m(�\�). (4.29)

Using (4.12), and then Sublemma 4.4 and (4.13), we conclude that the right-hand side
of (4.29) is greater than

0.57λK m(�0) + 2 log(1 − δQ)m(�\�)

≥ 0.0627λm(�) − 0.05λm(�) ≥ 0.0127λm(�) > 0.

Hence,
∫

U
log ‖∧3(d R̄|Euta

S (z))‖ dm(z) >

∫

U
log ‖∧2(d R̄|Euta

S (z))‖ dm(z).

Denote �′ = ∪∞
i=−∞ Ri (U ). Clearly we have

∫

U
log ‖∧3(d R̄|Euta

S (z))‖ dm(z) =
∫

�′
log ‖∧3(d R|Euta

S (z))‖ dm(z)

=
∫

�′
(λ1(z, R) + λ2(z, R) + λ3(z, R)) dm(z)

and
∫

U
log ‖∧2(d R̄|Euta

S (z))‖ dm(z) =
∫

�′
log ‖∧2(d R|Euta

S (z))‖ dm(z)

=
∫

�′
(λ1(z, R) + λ2(z, R)) dm(z).

It follows that L3(R|�′) > L2(R|�′), where Li is defined by (2.2). Since R = S
outside �′, we obtain that L3(R) > L2(R). Furthermore, there is an R-invariant subset
of �′ on which R has three positive Lyapunov exponents. Note that the subbundles
Eutab

T and Euta
T are preserved by d S and d R and that det(d S|Ei

T ) = det(dT |Ei
T ) for

i = uta, utab. Hence, the two smallest Lyapunov exponents remain unchanged, and so
does the sum of the three largest ones. This implies that Li (Sτ ) = Li (T ) for i = 4, 5
and hence,

L1(R) < L2(R) < L3(R) = L4(R) = L4(S) = L4(T ) and L5(R) = 0.

Statement (7) of the lemma follows.
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To prove Statement (8) observe that the above argument applies to the sets

Ũ = U
⋂

N × BFa (a0, α1) × BFb(b0, α2)

and

�̃′ = �′ ⋂ N × BFa (a0, α1) × BFb (b0, α2).

Denote by λ1(z, R), λ2(z, R) and λ3(z, R) the positive Lyapunov exponents of z ∈ �′.
Given λR > 0, consider the level set

�R = {z ∈ �̃′ : λ1(z, R), λ2(z, R), λ3(z, R) ≥ λR}.
If λR is sufficiently small, this set has positive volume. Note that by (4.12), we have
K ≥ 5k0. Furthermore, by definition of sets �′, �0 and �R , we have that every piece
of an orbit visiting all sets Si (�′) with −K ≤ i ≤ 6K + k0 − 1 consecutively meets
�R exactly k0 times. Moreover, �R is contained in the union of these Si (�′). Since R
preserves volume, we have that

m(�R) ≥ (7K + k0)m(�R ∩ �R) > 20k0m(�R ∩ �R).

Since N0 > 20k0, we obtain by (4.6), that m(�R) ≥ 20k0m(�R ∩�S). This completes
the proof of the lemma. ��

4.3. Sublemmas. We shall prove now the technical sublemmas used in the previous
subsection.

Sublemma 4.3. Let z ∈ R−K (�∗
0). Then for any v ∈ Euta

S (z),

‖d R̄z(v)‖ ≥
√

2

2
‖v‖e0.9Kλ.

Proof. Note that h R = Id on ∪−1
i=−K �i , and hence, RK (z) = SK (z). Since dhS pre-

serves the subbundle Eut (S), we have Eut
S (z) = Eut

T (z). Write v = vut + va , where
vut ∈ Eut

T (z) and va ∈ Ea
T (z).

We first consider the case ‖va‖ ≤
√

2
2 ‖v‖. Note that ‖vut‖ ≥

√
2

2 ‖v‖. Since d SK vut ∈
Eut

S (SK (z)) and SK (z) ∈ �, using (4.10) and (4.11), we find that

‖vut‖ = ‖d S−K (d SK vut )‖ ≤ ‖d SK vut‖e−0.9Kλ.

Hence,

‖d RK v‖ = ‖d SK v‖ ≥ ‖d SK vut‖ ≥ ‖vut‖e0.9Kλ ≥
√

2

2
‖v‖e0.9Kλ.

Note that at RK (z), . . . , RK +k0−1(z) the map dh R is a rotation and that d S|Euta
S (Ri (z)) =

dT |Euta
T (Ri (z)) is non-contracting for i = K , . . . , K + k0 − 1. Therefore, d Rk0 |Euta

S
(RK (z)) is non-contracting. Further, since

{Ri (z)}βi=K +k0
∩ �R = ∅
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and RK +k0(z) ∈ �′, we have that the map

d Rβ−(K +k0)|Eut
S (RK +k0(z)) = d Sβ−(K +k0)|Eut

S (RK +k0(z))

is expanding and the map

d Rβ−(K +k0)|Euta
S (RK +k0(z))

is non-contracting. It follows that

‖d R̄v‖ = ‖d Rβ−(K +k0)

RK +k0 (z)
(d RK +k0

z v)‖ = ‖d Sβ−(K +k0)

RK +k0 (z)
(d RK +k0

z v)‖

≥ ‖d RK +k0
z v‖ ≥ ‖d RK

z v‖ = ‖d SK
z v‖ ≥

√
2

2
‖v‖e0.9Kλ.

We now consider the case ‖va‖ ≥
√

2
2 ‖v‖. Note that d SK va ∈ Ea

S(SK (z)). By con-

struction of h R , we see that d Rk0
SK (z)

rotates the vector in Eta
S (SK (z)) = Eta

T (SK (z)) by
π/2. It means that

d RK +k0va = d Rk0(d SK va) ∈ Eut
S (RK +k0(z)).

Using the fact that RK +k0(z) ∈ � we obtain

‖d R̄va‖ = ‖d Rβ−(K +k0)

RK +k0 (z)
(RK +k0(z)va‖ ≥ ‖d RK (d RK +k0va)‖

≥ ‖d RK +k0va‖e0.9Kλ ≥ ‖va‖e0.9Kλ ≥
√

2

2
‖v‖e0.9Kλ.

This implies the desired result. ��
Sublemma 4.4. m(�0) ≥ 0.12K −1m(�) and hence, m(�0) ≥ 0.11K −1m(�).

Proof. Denote by

�̂′ =
5K−1⋃

i=0

Si (�′), �
′ =

6K +k0−1⋃

i=−K

Si (�′)

(recall that �′ is given by the Rokhlin-Halmos Lemma in Subsect. 4.2). Since K ≥ 5k0,
we have that

m(�̂′)
m(�

′
)

= 5K

7K + k0
≥ 5K

7K + 0.2K
≥ 50

72
.

By (4.18),

m(�̂′) ≥ (50/72) · 0.9m(�) = 0.625m(�).

For z ∈ �′ denote by O(z) = {Qi (z) : i = 0, . . . , 5K + k0 − 1} the piece of the orbit
from 0 to 5K − 1 that start at z. Let

�̂′
1 = {O(z) : z ∈ �′, O(z) ∩ � �= ∅}, �̂′

2 = {O(z) : z ∈ �′, O(z) ∩ � = ∅}.
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Clearly {�̂′
1, �̂

′
2} forms a partition of �̂′ and �̂′

2 ⊂ �\�. Therefore by (4.14),

m(�̂′
1) = m(�̂′) − m(�̂′

2) ≥ m(�̂′) − m(�\�)

≥ 0.625m(�) − 0.025m(�) = 0.6m(�).

Note that �0 consists of exactly one point from each orbit O(z) in �̂1. It follows that

m(�0) ≥ m(�̂1)

5K
≥ 0.6m(�)

5K
≥ 0.12K −1m(�).

By (4.20),

m(�0) ≥ m(�0) − m(�0\�0) ≥ 0.95m(�0) ≥ 0.11K −1m(�).

This is the desired result. ��
Sublemma 4.5. For any δ > 0, there is θ0 > 0 such that for any θ ∈ [0, θ0], any positive
numbers s, s′, s′′, s′′′ satisfying s′, s′′, s′′′ ≥ s and any cylinder � ⊂ R

5 of the form

� = �s,s′,s′′,s′′′ = B1(z1, s′) × B2(z2, s′′) × B34((z3, z4), s) × B5(z5, s′′′),
there exists a set �′ ⊂ � of the form

�′ = �′
s0,s′

0,s
′′
0 ,s

′′′
0

= B1(z1, s′
0) × B2(z2, s′′

0 ) × B34((z3, z4), s0) × B5(z5, s′′′
0 )

and a C∞ map ρ : R
5 → R

5 with the following properties:

(1) ρ = rθ on �′, where rθ is the rotation

rθ (z1, z2, z3, z4, z5) = (z1, z2, z3 cos θ − z4 sin θ, z3 sin θ + z4 cos θ, z5);
(2) ρ = Id outside �;
(3) m(�′)/m(�) ≥ 3/4;
(4) s0/s, s′

0/s′, s′′
0 /s′′, s′′′

0 /s′′′ > 9/10,
(5) ‖ρ − Id ‖C1 ≤ δ.

Proof. Due to the particular form of our cylinders there is a number κ ∈ (0, 1/10) such
that for any r > 0 and r ′, r ′′, r ′′′ > r , we have that

m(�r(1−κ),r ′(1−κ),r ′′(1−κ),r ′′′(1−κ))

m(�rr ′r ′′r ′′′)
≥ 3/4.

Consider a family of C∞ functions ζr = ζr (s) : R
+ → R

+, for r ≥ 1 such that

(a) ζ1(s) = 1 if s ∈ [0, 1 − κ] and ζ1(s) = 0 if s ≥ 1;
(b) ζr (s) = 1 if s ∈ [0, r − 1) and ζr (s) = ζ1(s − r + 1) if s ≥ r − 1.

Define the map ρ by ρ(z) = rθ(τ,s,s′,s′′,s′′′)(z), where

θ(τ, s, s′, s′′, s′′′) = τζs′/s(z1/s′)ζs′′/s(z2/s′′)ζ1

(
√

z2
3 + z2

4

s

)
ζs′′′/s(z5/s′′′),

and r(s,s′,s′′,s′′′) is given in Condition (1) of the sublemma. By construction, ρ satisfies
Statements 1 and 2. Statement 3 and 4 follows from the choice of the number κ and the
definition of ζ1 and ζr . To obtain Statement 5, we first note that if τ = 0 then ρ = Id
and that the C1 norm of ρ changes smoothly with τ . It is also easy to check that the C1

norm of the rotation is independent of the choice of the size s if s′ = s′′ = s′′′ = s, and
the C1 norm does not increase if we increase s′, s′′ and s′′′. ��
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4.4. Construction of the map Q. We shall obtain the map Q as a small perturbation of
the map R by a diffeomorphism hQ , i.e., Q = hQ ◦ R. The construction of hQ is similar
to the construction of the map h R : it is a composition of rotations in the Fba-subspace
along pieces of orbits so that the total rotation is π/2.

Let λ = λR and � = �R be as in Lemma 4.2 (8). Note that for any z ∈ � the map
R has three positive Lyapunov exponents λ1(z, R), λ2(z, R), and λ3(z, R) ≥ λ along
the Euta

R = Euta
T subbundle. Consider the set

�′ = �′(K ) = {z ∈ � : log ‖d Rk
z v‖ − kλ ≥ −0.1kλ,

log ‖d R−k
z v‖ + kλ ≤ 0.1kλ,

for all v ∈ Euta(z, R), ‖v‖ = 1, and all |k| ≥ 0.5K },
and define the set � and the number K > 0 similar to (4.11)-(4.14). Set

�∗ = �\
k0−1⋃

i=0

R−i (�0 ∪ �S ∪ �R).

Similar to (4.17), we may assume

m(�0 ∩ �) ≤ m(�)/20k0.

Hence, by the choice of K , and Lemma 4.2 (4), we have

m(�∗) ≥ ((1 − 0.05) − 0.05 − 0.05 − 0.05)m(�) = 0.8m(�).

We then construct the set �′, �0 in a way similar to the previous subsection and set
�i = Ri (�) for −K ≤ i ≤ K + k0 − 1. Finally, we approximate �0 by the sets of the
form

�0 j = BFu (u, t ′j ) × BFs (s, t ′′j ) × BFt (t, t ′′j ) × BFab((a j , b j ), r j ),

where r ′
j , r ′′′

j ≥ r j , r ′′
j ≥ r jη

k0 and set for i = −K , · · · , K + k0 − 1,

�i j = Ri (�0 j ), �i =
J⋃

j=1

�i j .

Define �Q = ⋃k0−1
i=0 �i . Applying Sublemma 4.5 to each set �i j we obtain a map ρi j

and then set hQ = ρi j on each �i j and hQ = Id otherwise. Finally, define Q = hQ ◦ R.

Lemma 4.6. The map Q satisfies all the properties stated in Proposition 3.2. In partic-
ular, L1(Q) < L2(Q) < L3(Q) < L4(Q) = L4(T ).

Proof. Statements (1)–(4) of Proposition 3.2 follow from the construction of the map
Q. The proof that L3(Q) < L4(Q) is the same as in the proof of Lemma 4.2.

Note that the subbundle Eutab
T is preserved by both Q and T and that both maps T and

Q are volume preserving. Hence the smallest Lyapunov exponents remain unchanged,
and so does the sum of the four largest ones. It follows that Q has four positive Lyapunov
exponents along the Eutab

R = Eutab
T subbundle on a set of positive volume. ��
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5. Construction of the Maps Pn: Proof of Proposition 3.3

Recall that the map Q is pointwise partially hyperbolic with one-dimensional strongly
stable, one-dimensional strongly unstable and 3-dimensional central subbundles. The
strongly stable and unstable subbundles are integrable to (one-dimensional) transverse
strongly stable and unstable foliations. The central subbundle corresponds to the flow
direction and two directions, Fa and Fb, in the Y -space and is integrable to a smooth
central foliation. However Q does not have the accessibility property: for (a, b) /∈ G0
the accessibility class of every point z = (u, s, t, a, b) is the 2-torus (X, t, a, b).

For each n, we construct the map Pn to be a sufficiently small gentle perturbation
of Q and such that Pn has the accessibility property on an invariant open set Un , and is
stably accessible on an open set Ũn (see (3.5)). These sets are nested and exhaust the
set G, and the sequence of maps Pn converges to a map P that is accessible on G. In our
construction we use methods similar to those in [9] and [14], and we obtain each Pn as
a result of three gentle perturbations ht , ha and hb that ensure accessibility in the flow
direction and two directions in Y respectively.

5.1. Construction of sets Un. In our construction we will heavily exploit the fact that the
2-torus Y has a global coordinate system. This will enable us to define the sets Un in an
explicit and specific way, which will serve our goal. At this point we regard the 2-torus Y
as the square [0, 8]×[0, 8] whose opposite sides are identified. For each n ≥ 1, consider
the partition of Y into squares

Ẑ (n)
i j =

[ i

2n
,

i + 1

2n

]
×

[ j

2n
,

j + 1

2n

]
, i, j = 0, 1, . . . , 2n+3 − 1.

Without loss of generality we shall assume that the square G0, constructed in Subsect. 3.2,
is contained in some Ẑ (1)

i0 j0
so that

d(G0, ∂ Ẑ (1)
i0 j0

) ≥ 1/24 and d(C, Ẑ (1)
i0 j0

) > 2

(here C is the Cantor set constructed in (A1), see Subsect. 3.2).
Consider the open squares

Z (n)
i j =

( i

2n
− 1

2n+2 ,
i + 1

2n
+

1

2n+2

)
×

( j

2n
− 1

2n+2 ,
j + 1

2n
− 1

2n+2

)
,

Z̃ (n)
i j =

( i

2n
− 1

2n+5
,

i + 1

2n
+

1

2n+5

)
×

( j

2n
− 1

2n+5
,

j + 1

2n
− 1

2n+5

)
.

Clearly, these squares have the same center as Ẑ (n)
i j and Ẑ (n)

i j ⊂ Z̃ (n)
i j ⊂ Z (n)

i j .
For n ≥ 1 consider the set

Yn = {y ∈ Y : d(y,C) ≥ 1/2n−2}.
Since G0 ⊂ Y1, we let Y ′

n be the connected component of Yn that contains G0. Finally,
consider the sets

Û1 = Ẑ (1)
i0 j0

, U1 = Z (1)
i0 j0

and Ũ1 = Z̃ (1)
i0 j0

,
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Fig. 1. Sets Un and Un+1

and for n > 1,

Ûn =
⋃

Ẑ (n)
i j ∩Y ′

n �=∅
Ẑ (n)

i j , Un =
⋃

Ẑ (n)
i j ∩Y ′

n �=∅
Z (n)

i j , Ũn =
⋃

Ẑ (n)
i j ∩Y ′

n �=∅
Z̃ (n)

i j .

It is clear that the sets Un and Ũn satisfy Conditions (A4)–(A6) in Subsect. 3.4.
Let Ẑn = {Ẑ (n)

i j : Ẑ (n)
i j ⊂ Ûn\Ûn−1} and Zn = {Z (n)

i j : Ẑ (n)
i j ∈ Ẑn}. Relabeling

elements of Zn we shall denote them by Z (n)
1 , . . . , Z (n)

kn
, and we shall use the notations

Ẑ (n)
� and Z̃ (n)

� for the corresponding squares contained in Z (n)
� . Thus we have (see Fig. 1)

Un = Un−1 ∪ ( ⋃

Z (n)
i j ∈Zn

Z (n)
i j

) = Un−1 ∪ ( kn⋃

�=1

Z (n)
�

)
.

Clearly, Ẑ (n)
� ∩ Ẑ (m)

j = ∅ if (n, �) �= (m, j) and hence, the collection of sets {Ẑ (n)
� :

n = 1, 2, . . . , � = 1, . . . , kn} forms a countable partition of G up to a set of zero volume
while the collection of sets {Z (n)

� : n = 1, 2, . . . , � = 1, . . . , kn} forms a cover of G of
multiplicity at most 4.

Note that the requirement d(G0, ∂ Ẑ (1)
1 ) ≥ 1/24 yields that G0 ∩ Z (n)

� = ∅ for any
n > 1 and � = 1, . . . , kn .

Lemma 5.1. There is a labeling of the squares {Z (n)
� } by integers from 1 to 8 such that

for any y ∈ G, the labels of the squares Z (n)
� containing y are all different. In particular,

Z (1)
1 can be labelled by 1.
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Proof. For each odd number n > 0, we use 1, 2, 3, 4 to label the squares {Z (n)
i j } ∈ Zn

in such a way that Z (n)
i j and Z (n)

kl have the same label if i ≡ k(mod 2) and j ≡ l(mod 2).

An alternative way of describing this process is that we first label the 4 squares Ẑ (n)
i j

inside of some Ẑ (n−1)
kl by the numbers 1 to 4, and then translate the square Ẑ (n−1)

kl to

all other such squares. We then let Z (n)
i j have the same labeling as Ẑ (n)

i j . Clearly, for any

y ∈ G, the label of the squares Z (n)
i j with Z (n)

i j � y are all different. Hence, we obtain a
labeling on Zn by restriction.

For even n > 0, we use numbers 5 to 8 to label the squares {Z (n)
i j } in a similar way.

Since any squares Z (n)
i j ∈ Zn and Z (n+2)

kl ∈ Zn+2 are disjoint, we obtain the desired
labeling. ��

5.2. Construction of maps Pn. Let q j , j = 1, . . . , 8 be eight distinct periodic points of
the Anosov automorphism A. There is ε0 > 0 such that BX (Alq j , ε0)∩ BX (Alq j ′ , ε0) =
∅ whenever j �= j ′ and l = −1, 0, 1. For each q j we choose three distinct periodic
points pt

j , pa
j , pb

j ∈ BX (q j , ε0/3) for A. We shall assume that q1 = q and pi
1 = pi for

i = t, a, b, where q and pi are chosen as in the beginning of Sect. 3.4.
Denote by [q j , pi

j ] = V u(q j )∩ V s(pi
j ), i = t, a, b (where V s and V u are the stable

and unstable local manifolds respectively). For i = a, b, t and j = 1, . . . , 8 consider
the closed quadrilateral (u, s)A-path γ i

j with the collection of points q j , [q j , pi
j ], pi

j ,

[pi
j , q j ], and q j . In the case n = 1, we take γ i

1 , i = a, b, t as introduced in the beginning
of Sect. 4.

Recall that η = ηA is the expanding rate of A along its unstable direction. Clearly,
η−1 is the contracting rate along the stable direction of A. Recall also that κ is the func-
tion in (A2) such that κ = κ0 on U1 and | grad κ| < 1/4. We have that the expanding
rate of T |Ny along W u

T is ηκ(y) (here Ny is given by (3.1)).

For n ≥ 1 let us choose a rectangle Z (n)
� ∈ Zn and assume that it is labelled by a

number j . Consider the case n > 1 and let

η− = η−(n, �) = min{ηκ(y) : y ∈ Z (n)
� }

and

αi
u = αi

u( j) = d(pi
j , [pi

j , q j ]), αi
s = αi

s( j) = d(pi
j , [q j , pi

j ]),
ᾰi

u = ᾰu(n, �) = αi
u( j)/η−(n, �), ᾰi

s = ᾰs(n, �) = αi
s( j)/η−(n, �),

(5.1)

where we write ᾰs(n, �) instead of ᾰs( j, n, �) since j is determined by n and � (see
Fig. 2).

Next for i = t, a, b and j = 1, . . . , 8 we set

�i
j = BFu (pi

j , α
i
u) × BFs (pi

j , α
i
s), �̆i

j = BFu (pi
j , ᾰ

i
u) × BFs (pi

j , ᾰ
i
s).

We shall assume that the points pi
j are chosen in such a way that all three rectangles

�i
j , i = t, a, b, are pairwise disjoint. Hence, all the 24 rectangles �i

j , i = t, a, b,
j = 1, . . . , 8 are pairwise disjoint.
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Fig. 2. Quadrilaterals

Finally, we let

εt = εt (n, �) = min{κ(y)/2 : y ∈ Z (n)
� }, ε̆t = ε̆t (n, �) = 5εt (n, �)/6. (5.2)

In the case n = 1, we have Z (1)
1 = U1. Choose li

u and li
s such that

A−li
u ([pi

1, q1]) ∈ BX (pi
1, ν/2), Ali

s ([q1, pi
1]) ∈ BX (pi

1, ν/2),

where ν > 0 is given by (4.1). Then we set

αi
u = αi

u(1) = d(pi
j , A−li

u ([pt
j , q j ])), αi

s = αi
s(1) = d(pi

j , Ali
s ([q j , pt

j ]))
with other quantities and sets to be defined in a similar way.

To effect our construction of the maps Pn , in addition to the squares Ẑ (n)
i j , Z̃ (n)

i j and

Z (n)
i j constructed in the previous subsection, we need to consider for n ≥ 1 the following

squares:

Z̆ (n)
i j =

( i

2n
− 1

2n+3 ,
i + 1

2n
+

1

2n+3

)
×

( j

2n
− 1

2n+3 ,
j + 1

2n
− 1

2n+3

)
,

Z̄ (n)
i j =

( i

2n
− 1

2n+4 ,
i + 1

2n
+

1

2n+4

)
×

( j

2n
− 1

2n+4 ,
j + 1

2n
− 1

2n+4

)
.

as well as the following intervals:

Ĭn = J̆n =
(

− 5

2n+3 ,
5

2n+3

)
, Īn = J̄n = (−9/2n+4, 9/2n+4),

În =
(

− 1

2n+1 ,
1

2n+1

)
, Ĩn =

(
− 17

2n+5
,

17

2n+5

)
, In =

(
− 3

2n+2 ,
3

2n+2

)



362 H. Hu, Y. Pesin, A. Talitskaya

and

K̆ =
(

−1

8
, 1 +

1

8

)
, K̄ = (−1/16, 1 + 1/16),

K̂ = (0, 1) , K̃ = (−1/32, 1 + 1/32) , K = (−1/4, 1 + 1/4) .

We have that

Ẑ (n)
i j ⊂ Z̃ (n)

i j ⊂ Z̄ (n)
i j ⊂ Z̆ (n)

i j ⊂ Z (n)
i j

with similar relations for In and Jn .
Fix n ≥ 1 and choose C∞ functions φi and ψ i on R for i = a, b, t satisfying:

• φi (r) = const. for r ∈ (−ᾰi
u, ᾰ

i
u) and ψ i (r) = const for r ∈ (−ᾰi

s, ᾰ
i
s);

• φi (r) = 0 for |r | ≥ αi
u , and ψ i (r) = 0 for |r | ≥ αi

s ;

• ∫ ±αi
u

0 φi (τ )dτ = 0, and ψ i (x) > 0 for any |x | < αi
s ;

• ‖φi (·)‖Cn < 1 and ‖ψ i (·)‖Cn < 1.

Further, choose C∞ functions ξt and ξY supported on K and In respectively such that:

• ξt (r) = const. for r ∈ K̆ , and ξY (r) = const. for r ∈ Ĭn ;
• ξt (r) > 0 for r ∈ K and ξY (r) > 0 for r ∈ In ;
• ξt (r) = 0 for r /∈ K and ξY (r) = 0 for r /∈ In ;
• ‖ξt‖Cn , ‖ξY ‖Cn < 1.

Finally, choose C∞ functions ζt and ζY supported on (−εt , εt ) and In respectively such
that:

• ζt (r) = const. for r ∈ (−ε̆t , ε̆t ) and ζY (r) = const. for r ∈ Ĭn ;
• ζt (r) > 0 for r ∈ (εt , εt ) and ζY (r) > 0 for r ∈ In ;
• ζt (r) = 0 for r /∈ (εt , εt ) and ζY (r) = 0 for r /∈ In ;
• ‖ζ‖Cn < 1.

Let (a0, b0) = (a0(n, �), b0(n, �)) be the center of the square Z (n)
� .

In this section we shall use the coordinate system z = (u, s, t, a, b) = (x, t, a, b)
introduced in (3.2) and (3.3) with the origin at (pa

j , 1/2, a0, b0). In this coordinate system
the interval K is in the symmetric form (−3/4, 3/4). Define

�a = �a
n,� = {z = (x, r, â, b̂) : x ∈ �a

j , |r | ≤ εt , (â, b̂) ∈ Z (n)
� }

(recall that j labels the square Z (n)
� ) and for each β > 0 a vector field Xa = Xa

β,n,� by

Xa(z) = βζY (b̂)ζt (r)ψ
a(s)

(
−ξ ′

Y (â)
∫ u

0
φa(τ )dτ, 0, 0, ξY (â)φ

a(u), 0
)
, (5.3)

(here ξ ′
Y denotes the derivative of ξY ). The choice of εt guarantees that T (�a)∩�a = ∅.

It is clear that Xa is constant on the set

�̆a = {z = (x, r, â, b̂) : x ∈ �̆a
j , |r | ≤ ε̆t , (â, b̂) ∈ Z̆ (n)}.

We define the map ha
n,� = ha

β,n,� on �a to be the time-1 map of the flow generated by
Xa , and we set ha

n,� = Id on the complement of �a . It is easy to see that the vector field
Xa is divergence free, the differential dha

n,� preserves Eua
T , and det(dha

n,�|Eua
T (z)) = 1.
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Then we use the same coordinate system as above but with the origin at
(pb

j , 1/2, a0, b0). Define

�b = �b
n,� = {z = (x, r, â, b̂) : x ∈ �b

j , |r | ≤ εt , (â, b̂) ∈ Z (n)
� },

and for each β > 0 a vector field Xb = Xb
β,n,� by

Xb(z) = βζY (â)ζt (r)ψ
b(s)

(
−ξ ′

Y (b̂)
∫ u

0
φb(τ )dτ, 0, 0, 0, ξY (b̂)φ

b(u)
)
. (5.4)

Let hb
n,� = hb

β,n,� on �b be the time-1 map of the flow generated by Xb and let hb
n,� = Id

on the complement of �b. It is clear that Xb is divergence free, dhb
n,� preserves Eub

T ,

and det(dhb
n,�|Eub

T (z)) = 1.
Now we use the coordinate system but with the origin at (pt

j , 1/2, a0, b0). Define

�t = �t
n,� = {z = (x, r, y) : x ∈ �t

j , r ∈ K , y ∈ Z (n)
� }

and for each β > 0 a vector field Xt = Xt
β,n,� by

Xt (z) = βζY (a)ζY (b)ψ
t (s)

(
−ξ ′

t (r)
∫ u

0
φt (τ )dτ, 0, ξt (r)φ

t (u), 0, 0
)
. (5.5)

We define the map ht
n,� = ht

β,n,� on �t to be the time-1 map of the flow generated by
Xt , and we set ht

n,� = Id on the complement of �t . Obviously, Xt is divergence free,
dht

n,� preserves Eut
T and det(dht

n,�|Eut
T (z)) = 1.

Our construction guarantees that all {Qi
n,�} are pairwise disjoint. For n = 1, 2, . . .

define hn = hβ,n by

hβ,n = hb
β,n,kn

◦ ha
β,n,kn

◦ ht
β,n,kn

◦ · · · ◦ hb
β,n,1 ◦ ha

β,n,1 ◦ ht
β,n,1.

Then we let P1 = hβ1,1,1 ◦ Q and define Pn inductively by setting Pn = hβn ,n ◦ Pn−1
for some suitable choice of {βn} which will be determined inductively later.

5.3. Properties of maps Pn: Proof of Proposition 3.3. Statements (2) and (4) of Propo-
sition 3.3 and the fact that the map Pn is homotopic to the identity follow directly from
the construction.

Note that the unperturbed map T is uniformly partially hyperbolic on each set Un
with smooth 3-dimensional central foliation and is dynamically coherent. Note also that
for each n > 0, by choosing βn in (5.3)–(5.5) sufficiently small, we can ensure that
‖hn − Id ‖Cn is arbitrarily small. Hence, we can choose a positive sequence {δ′

n} such
that δ′

n ≤ δ′
1/2n−1 and if hn and Pn satisfy

‖Pn − Pn−1‖Cn ≤ δ′
n and ‖hn − Id ‖Cn ≤ δ′

n, (5.6)

then Statement (3) of the proposition holds. In particular, Pn is pointwise partially hyper-
bolic on an open set G; it is uniformly partially hyperbolic on Un with 3-dimensional
central foliation and is dynamically coherent. It remains to show how to choose sequences
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of positive numbers δn and θn such that Pn also satisfies Statements (5) and (6) of the
proposition.

We denote by W c
Pn
(z) the center manifold of Pn at the point z ∈ M. Suppose a

square Z (n)
� is labelled by a number j . Let q j be the periodic point chosen as in the

previous subsection and z0 = z0(n, �) = (q j , 1/2, a0(n, �), b0(n, �)). We denote by

W c
Pn
(z0, K , Z (n)

� ) the connected component of W c
Pn
(z0)∩ (X × K × Z (n)

� ) that contains

z0. We shall also use similar notations W c
Pn
(z0, K̆ , Z̆ (n)

� ), etc. Note that for all � and n,

W c
Pn
(z0, K , Z (n)

� ) = W c
Q(z0, K , Z (n)

� ) = W c
T (z0, K , Z (n)

� ).

Recall that γ i
j is the quadrilateral (u, s)A-path with the collection of points q j , [q j , pi

j ],
pi

j , [pi
j , q j ], and q j (for i = a, b, t and j = 1, . . . , 8) introduced in the beginning of

Subsect. 5.2. In particular, γ i
1 = γ i is given in the beginning of Sect. 4.

For any n ≥ 1, � = 1, . . . , kn , and j = 1, . . . , 8 such that the label of Zn
� is j , we

consider a quadrilateral (u, s)Pn -path γ̂ a
j with the initial point z1 such that

ProjX γ̂ a
j = γ a

j . More precisely, γ̂ a
j = {z1, . . . , z5} where

z2 = V u
Pn
(z1) ∩ V sc

Pn
(pa

j , 1/2, a0, b0),

z3 = V s
Pn
(z2) ∩ V uc

Pn
(pa

j , 1/2, a0, b0),

z4 = V u
Pn
(z3) ∩ V sc

Pn
(z1),

z5 = V s
Pn
(z4) ∩ V uc

Pn
(z1).

(5.7)

This path defines a map ! = !a = !a
n,�,Pn

, given by !(z1) = z5. Note that z4 ∈
V sc

Pn
(z1) and z5 ∈ V s

Pn
(z4). Hence, z5 ∈ V sc

Pn
(z1). Since also z5 ∈ V uc

Pn
(z1), we obtain

that z5 ∈ V c
Pn
(z1). This implies that ! maps W c

Pn
(z0, K , Zn

� ) into itself.
We contract the (u, s)Pn -path γ̂ a

j to a line segment. Namely, let σ : [0, 1] → V u
Pn
(z1)

be a parametrization by the arc length of the part of the curve V s
Pn
(z1) from z1 to z2 so that

σ(0) = z1 and σ(1) = z2. For each τ ∈ [0, 1], the new path γ̂ a
j (τ ) = {z1(τ ), . . . , z5(τ )}

is such that z1(τ ) = z1, z2(τ ) = σ(τ) and zi (τ ) for i = 3, 4, 5 are obtained in the way
similar to (5.7). Thus we obtain a map !τ = !a

τ,n,�,Pn
, given by !τ(z1) = z5. It maps

W c
Pn
(z0, K , Zn

� ) into W c
Pn
(z0) and depends continuously on τ ∈ [0, 1].

Clearly, γ̂ a
j (1) = γ̂ a

j and hence, !a
1,n,�,Pn

= !a
n,�,Pn

. Furthermore, the path γ̂ a
j (0)

degenerates to a path on V s
Pn
(z1) that starts from z1 = z2, goes to z3 = z4 and then

returns to z5 = z1. Hence, !0 = Id.
We stress that !a

n,�,Pn
depends only on ha

n,�, since γ̂ a
j consists of strongly stable and

unstable leaves of (q j , 1/2, y) and (pa
j , 1/2, y) with y ∈ Z (n)

� that are not perturbed by
any other perturbations ha

n′,�′ if (n′, �′) �= (n, �). On the other hand, if τ ∈ (0, 1), then
!a

τ,n,�,Pn
may depend on other perturbations ha

n′,�′ .

By using the paths γ b
j and γ t

j respectively, we can define the maps!b
τ = !b

τ,n,�,Pn
and

!t
τ = !t

τ,n,�,Pn
for τ ∈ [0, 1] in a similar way. Furthermore, for any gentle perturbation

P� of Pn we can also construct the maps !a
n,�,P� and !a

τ,n,�,P� from W c
P� (z0, K , Zn

� ) to
itself. Clearly, they have properties similar to those of the maps !a

n,�,Pn
and !a

τ,n,�,Pn
.

Note that V u
P� , V s

P� and V c
P� depend continuously on the perturbation P� as long as P� is a
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gentle perturbation of T with P� = T outside some fixed Un and with � (Ei
P� (z), Ei

T (z))

sufficiently small for all z ∈ Un and i = u, s, c. It follows that !i
n,�,P� and !i

τ,n,�,P� , for

i = u, s, c depend continuously on P� as well. Since the lengths of all the quadrilateral
paths used in the construction of the maps !i and !i

τ are uniformly bounded from above,
the continuity is uniform with respect to z.

Given j = 1, . . . 8 and a point z = (x, t, y), we can find a (u, s)T -path γT (z) con-
necting z to the point z′ = (q j , t, y) whose length does not exceed 2d(x, q j ) (indeed,
such a path can be constructed by using at most three points z, z1 and z′). This generates
a map "T = "T, j from G to {q j } × K × G given by "T (z) = z′.

Furthermore, given a gentle perturbation P� of T and a point z ∈ Z (n)
� , we can find

a (u, s)P� -path γP� (z), which is close to γT (z) and connect z to a point z′ = z′(P�) ∈
W c

P� (z0(n, �), K , Z (n)
� ), and we can then define "P�(z) = z′(P�). Again the path can

be chosen to consist of at most three points z, z1 = z1(P�) and z′ = z′(P�), and both
z1(P�) and z′(P�) depend continuously on P�. Hence, "P� depends continuously on P�

as long as P� is a gentle perturbation of T with P� = T outside some fixed Un and with
� (Ei

P� (z), Ei
T (z)) sufficiently small for all z ∈ Un and i = u, s, c. We stress that the

lengths of all the paths used in the construction of the map" are uniformly bounded from
above for all z and all gentle perturbations P�. In particular, the continuity is uniform
with respect to z.

Given a set � ⊂ M and a gentle perturbation P� of T , let

AP� (�) = {z ∈ M : there is y ∈ � such that

y is accessible to z via a (u, s)P� -path}. (5.8)

For n ≥ 1 denote by εn = min{1/2n+5, ε̆t (n, �), � = 1, . . . , kn}, where ε̆t (n, �) is given
by (5.2).

We shall now show how to choose the sequence {δn}. Recall that U1 = Z (1)
i0 j0

= Z (1)
1

and Ũ1 = Z̃ (1)
1 . We can choose a number θ0 > 0 such that for any gentle perturbation

P� of T with � (Ei
P� (z), Ei

T (z)) ≤ 2θ0(z) for i = s, c, u and z ∈ U1 the maps "P� and

!i
τ,1,1,P� are well defined. We also assume that the number δQ in Proposition 3.2 is so

small that the map P0 = Q satisfies � (Ei
P0
(z), Ei

T (z)) ≤ θ0 and d(!i
τ,1,1,P0

(z), z) ≤
ε1/4 for z ∈ G0, τ ∈ [0, 1] and i = s, c, u.

Now we choose a number θ1 such that 0 < θ ′
1 ≤ θ0/2 and if � (Ei

P� (z), Ei
P0
(z)) ≤ 2θ ′

1

for i = s, c, u and z ∈ N × Z (1)
1 , then

d("P� (z),"P0(z)) ≤ 1/28, z ∈ N × Z (1)
1 . (5.9)

Finally, we may assume that the number δ′
1 in (5.6) is chosen so small that if ‖P1− P0‖ ≤

δ′
1, then � (Ei

P1
(z), Ei

P0
(z)) ≤ θ ′

1 for i = s, c, u and z ∈ N × Z (1)
1 .

Now we set δ1 = min{δ′
1, δ

′′
1 } and θ1 = min{θ ′

1, θ
′′
1 }, where the numbers δ′′

1
and θ ′′

1 are given by Lemma 5.2 below. For any gentle perturbation P� of P1 with
� (Ei

P� (z), Ei
P1
(z)) ≤ θ ′

1 for i = s, c, u and z ∈ N× Z (1)
1 , we have � (Ei

P� (z), Ei
P0
(z)) ≤

2θ ′
1, and therefore (5.9) holds. Since d(!i

τ,1,1,P0
(z), z) ≤ ε1/4, we can apply Lemma 5.2

to obtain that d(!i
τ,2,�,P1

(z), z) ≤ ε2/4 for all z ∈ W c
P1
(z0(2, �), K , Z (2)

� ), i = u, s, c,
τ ∈ [0, 1] and � = 1, . . . , k2. Moreover,

AP� (z0) ⊃ W c(z0(1, 1), K̄ , Z̄ (1)
1 ).
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Since the distance between the boundaries ∂ Z̄ (1)
1 and ∂ Z̃ (1)

1 is 1/26, (5.9) implies that

"P� (N × Z̃ (1)
1 ) ⊂ W c

P� (z0(1, 1), K̄ , Z̄ (1)
1 ).

By definition, z and "P� (z) are (u, s)P� -accessible and hence, we have that

AP� (z0(1, 1)) ⊃ N × Z̃ (1)
1 .

In particular, for P� = P1, the inclusion holds and so does (5.9).
Proceeding inductively, we assume that for j = 1, . . . , n − 1, the maps Pj , and the

numbers δ j and θ j are chosen such that (5.6) and Statements (5) and (6) of the proposition
hold. Moreover, we assume that for all i = u, s, c, τ ∈ [0, 1], � = 1, . . . , k j+1,

d("Pj (z),"Pj−1(z)) ≤ 1/2 j+7 for all z ∈ N × Z ( j)
� , (5.10)

d(!i
τ, j+1,�,Pj

(z), z) ≤ ε j+1/4 for all z ∈ W c
Pj
(z0( j + 1, �), K , Z ( j+1)

� ). (5.11)

Now we choose 0 < θ ′
n ≤ θn−1/2 in such a way that for any gentle perturbation P� of

Pn−1, if � (Ei
P� (z), Ei

Pn−1
(z)) ≤ 2θ ′

n for i = u, s, c, z ∈ N × Z (n)
� , and � = 1, . . . , kn,

then
d("P� (z),"Pn−1(z)) ≤ 1/2n+7 (5.12)

for all z ∈ N × Z (n−1)
� and � = 1, . . . , kn . Reducing δ′

n in (5.6) further if necessary, we
may assume that if ‖Pn − Pn−1‖ ≤ δ′

n then � (Ei
Pn
(z), Ei

Pn−1
(z)) ≤ θ ′

n for i = u, s, c
and z ∈ Un . Then we take δn = min{δ′

n, δ
′′
n } and θn = min{θ ′

n, θ
′′
n }, where θ ′′

n and δ′′
n are

given in Lemma 5.2.
Since 0 < θn ≤ θn−1/2, Statement (5) of the proposition holds.
Let P� be a gentle perturbation of Pn such that � (Ei

P� (z), Ei
Pn
(z)) ≤ θn for i = u, s, c

and z ∈ Un . Then � (Ei
P� (z), Ei

Pn−1
(z)) ≤ 2θ ′

n ≤ θn−1 for z ∈ Un . By Statement (6), we

get that P� has the accessibility property on Ũn−1.
Since Pn−2 = T on N × Z (n)

� , applying (5.10) with j = n − 1, we find that

d("Pn−1(z),"T (z)) ≤ 1/2n+6 for all z ∈ N × Z (n−1)
� and � = 1, . . . , kn−1. There-

fore by (5.12), we obtain that

d("P� (z),"T (z)) ≤ 1/2n+6 + 1/2n+7 < 1/2n+5.

Applying (5.11) with j = n − 1, we conclude that the requirement of Lemma 5.2 below
holds. Therefore by the lemma and the fact that d(∂ Z̃ (n)

� , ∂ Z̄ (n)
� ) = 1/2n+5, we obtain

following the same line of arguments as in the case n = 1 that

AP� (z0(n, �)) ⊃ N × Z̃ (n)
�

for all � = 1, . . . , kn . In other words, P� has the accessibility property on N × Z̃ (n)
� for

� = 1, . . . , kn . By the construction,

Ũn =
(
Ũn−1

) ⋃( kn⋃

l=1

N × Z̃ (n)
�

)
.
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Note that any intersection Z̃ (n)
� ∩ Z̃ (n)

�′ or Z̃ (n)
� ∩ Z̃ (n−1)

�′ , if not empty, contains a rectangle

of width 1/2n+4. Hence, the intersection of any two sets among Ũn−1 and N × Z̃ (n)
� ,

� = 1, . . . , kn , contains a nonempy open set whenever they intersect. Since Ũn is con-
nected, we obtain accessiblity of P� on Ũn .

Applying the above result with P� = Pn , we obtain that Pn has the accessiblity prop-
erty on Ũn . Moreover, (5.12) for P� = Pn gives (5.10), and (5.13) below gives (5.11)
for j = n.

5.4. A technical lemma. We prove here some of our main technical statements.

Lemma 5.2. Suppose for some n > 0, d(!i
τ,n,�,Pn−1

(z), z) ≤ εn/4 for all i = u, s, c,

τ ∈ [0, 1], z ∈ W c
Pn−1

(z0(n, �), K , Z (n)
� ), � = 1, . . . , kn. Then there are δ′′

n > 0 and
θ ′′

n > 0 such that if Pn satisfies ‖Pn − Pn−1‖ ≤ δ′′
n , then we have

d(!i
τ,n+1,�,Pn

(z), z) ≤ εn+1/4 as z ∈ W c
Pn
(z0(n + 1, �), K , Z (n+1)

� ), (5.13)

for all i = u, s, c, τ ∈ [0, 1], � = 1, . . . , kn+1; and for any gentle perturbation P� of
Pn with

� (Ei
P� (z), Ei

Pn
(z)) ≤ θ ′′

n for all z ∈ N × Z (n)
� , i = u, s, c,

we have

AP� (z0(n, �)) ⊃ W c
P� (z0(n, �), K̄ , Z̄ (n)

� ) for all � = 1, . . . , kn . (5.14)

In particular, (5.14) holds with P� = Pn.

Proof. Take θ ′′
n ≤ θn−1/2 such that for any gentle perturbation P� of Pn−1, if

� (Ei
P� , Ei

Pn−1
) ≤ 2θ ′′

n on N × Z (n)
� , i = u, s, c,

then (5.13) holds with Pn = P�, and

d(!i
τ,n,�,P� (z), z) ≤ εn/2 as z ∈ W c

P� (z0(n, �), K , Z (n)
� ), (5.15)

for all i = u, s, c, τ ∈ [0, 1], and � = 1, . . . , kn . Equation (5.15) is possible because of
the assumption of the lemma, while (5.13) is possible because on N × Z (n+1)

� , Pn−1 =
T, and therefore d(!i

τ,n+1,�,Pn−1
(z), z) = 0. Then we take δ′′

n ≤ δn−1/2 such that if

‖Pn − Pn−1‖ ≤ δ′′
n , then � (Ei

Pn
, Ei

Pn−1
) ≤ θ ′′

n on N × Z (n)
� for i = u, s, c. Hence,

(5.15) is satisfied with P� = Pn .
Now we only need to prove (5.14) for one square Z (n)

� .

Define a continuous function # = #
(1)
Pn

: R → W c
Pn
(z0) by using ! = !a

n,�,Pn

and !τ = !a
τ,n,�,Pn

such that the image of # consists of points accessible to z0 =
(q j , 1/2, a0, b0). Namely,

(1) #(0) = z0;
(2) For a positive integer n if #(n − 1) = (q j ,

1
2 , a, b0) for some a ∈ In , then we let

#(n) = !(#(n − 1));
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(3) For a negative integer −n if #(−n + 1) = (q j ,
1
2 , a, b0) for some a ∈ In , then

we let #(−n) = !−1(#(−n + 1)); in other words, #(−n) is the terminal point
of the quadrilateral (u, s)Pn -path γ̂ a

j with the initial point #(−n + 1) such that
πX γ̂ a

j = γ a
j with the direction reversed;

(4) For any real number n + τ , where n ∈ Z and τ ∈ [0, 1) if #(n) = (q j ,
1
2 , a, b0),

then we let #(n + τ) = !τ(#(n)).

In fact, if we denote by �r� the greatest integer that is less than or equal to r , then we
have

#
(1)
Pn

(r) = !a
r−�r� ◦ (!a)�r�(z0).

Since, limτ→1 !a
τ = !a and limτ→0 !a

τ = Id, we have that #
(1)
Pn

is a continuous
function of r . Furthermore,

#
(1)
Pn

(R) ⊂ APn (z0(n, �)).

By Lemma 5.3 below,

#
(1)
Pn

(Z) ⊂ {(q j , 1/2, a, b0) : a ∈ In, } ⊂ W c
Pn
(z0, K , Z (n)

� ).

Hence, by (5.15) with P� = Pn ,

#
(1)
Pn

(R) ⊂ {(q j , t, a, b) : |t − 1/2| < εn/2, a ∈ In(εn/2), |b − b0| ≤ εn/2},
where In(εn) denotes the εn-neighborhood of In in R. It is also clear that

lim
n→±∞#

(1)
Pn

(±n) = (q j , 1/2, a0 ∓ 3

2n+2 , b0),

where the two points on the right-hand side is on the boundary of Z (n)
� . Hence, we can

choose an integer N = N a
n,� > 0 such that #

(1)
Pn

(±N ) /∈ π−1
Y Z̆ (n)

� . In other words,

#
(1)
Pn

([−N , N ]) forms a continuous curve near the line segment {(q j , 1/2, a, b0) : a ∈
In} and crosses Z̆ (n)

� in Fa direction.
Now we use the maps ! = !b

n,�,Pn
and !τ = !b

τ,n,�,Pn
to define a function # =

#
(2)
Pn

: R
2 → W c

Pn
(z0) such that the image of # consists of the points accessible to z0.

Namely, given r ∈ R, let

1. #(r, 0) = #
(1)
Pn

(r);
2. For a positive integer n if #(r, n − 1) is defined, we let #(r, n) = !(#(r, n − 1));
3. For a negative integer −n if #(r,−n + 1) is defined, we let #(r,−n) =

!−1(#(r,−n + 1));
4. For any real number n + τ , where n ∈ Z and τ ∈ [0, 1) if #(r, n) is defined, we let

#(r, n + τ) = !τ(#(r, n)).

In other words,

#
(2)
Pn

(r, r ′) = !b
r ′−�r ′� ◦ (!b)�r ′�(#(1)

Pn
(r))
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or equivalently,

#
(2)
Pn

(r, r ′) = !b
r ′−�r ′� ◦ (!b)�r ′� ◦ !a

r−�r� ◦ (!a)�r�(z0).

It is clear that #
(2)
Pn

is continuous, and #(R2) ⊂ A(q j , 1/2, a0, b0). Furthermore, for
r ∈ R,

#(r,Z) ⊂ {#(1)
Pn

(r) + (0, 0, 0, 0, b) : πFb#
(1)
Pn

(r) + b ∈ Jn}.
Hence, by (5.15) with P� = Pn ,

#(r,R) ⊂ {(q j , t, a, b) : |t − 1/2| ≤ εn, (a, b) ∈ Z (n)
� (εn)},

where Z (n)
� (εn) denotes the εn-neighborhood of Z (n)

� in Y . This means that #(R2) is

contained in the εn-neighborhood of the set {q j } × {1/2} × Z (n)
� .

Similarly, for every r ∈ R there exists N (r) = N b
n,�(r) such that the set

#(r, [−N (r), N (r)]) forms a continuous curve near Jn(r) and crosses Z̆ (n)
� . By conti-

nuity, we can take N = N b
n,� such that #(r, [−N , N ]) crosses Z̆ (n)

� for all r ∈ [−N , N ].
Moreover, we may assume that N a

n,� = N b
n,�, since otherwise we may use the larger one

instead. By continuity, we obtain that the four curves

#(−N , [−N , N ]), #(N , [−N , N ]), #([−N , N ],−N ), #([−N , N ], N )

form a closed curve. The projection of the curves under ProjY is outside Z̆ (n)
� . Hence,

by Sublemma 5.4, we get that ProjY {#(r, r ′) : r, r ′ ∈ [−N , N ]} covers Z̆ (n)
� .

Finally, we use the maps ! = !t
n,�,Pn

and !τ = !t
τ,n,�,Pn

to define a function

# = #
(3)
Pn

: R
3 → W c

Pn
(z0) such that the image of # consists of the points accessible

to z0. See Figs. 3 and 4. Namely, given r, r ′ ∈ R, let

(1) #(r, r ′, 0) = #
(2)
Pn

(r, r ′);
(2) For a positive integer n if #(r, r ′, n − 1) is defined, we let #(r, r ′, n) =

!(#(r, r ′, n − 1));
(3) For a negative integer −n if #(r, r ′,−n + 1) is defined, we let #(r, r ′,−n) =

!−1(#(r, r ′,−n + 1));
(4) For any real number n + τ , where n ∈ Z and τ ∈ [0, 1) if #(r, r ′, n) is defined, we

let #(r, r ′, n + τ) = !τ(#(r, r ′, n)).

We have

#
(3)
Pn

(r, r ′, r ′′) = !t
r ′′−�r ′′� ◦ (!t )�r ′′� ◦ !b

r ′−�r ′� ◦ (!b)�r ′� ◦ !a
r−�r� ◦ (!a)�r�(z0).

The function #
(3)
Pn

is continuous and #(R3) ⊂ A(z0).
We also have that there exists N > 0 such that # maps the surfaces of the

cube [−N , N ] × [−N , N ] × [−N , N ] into outside the corresponding surfaces of
W c

Pn
(z0, K̆ , Z̆ (n)

� ) and inside the corresponding surfaces of the 2εn-neighborhood of

W c
Pn
(z0, K , Z (n)

� ). By Sublemma 5.4, {#(r, r ′, r ′′) : r, r ′, r ′′ ∈ [−N , N ]} covers

W c
Pn
(z0, K̆ , Z̆ (n)

� ), and we obtain that

A(z0) ⊃ W c
Pn
(z0, K̆ , Z̆ (n)

� ).
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Fig. 3. The action of the function #(3) on the central direction of z0

Fig. 4. The function #

We may reduce δ′′
n again if necessary such that any gentle perturbation P� of Pn satisfy-

ing ‖P� − Pn‖ ≤ δ′′
n is so close to the unperturbed map Pn that the map !i

P� = !i
n,�,P�

and !i
τ,P� = !i

τ,n,�,P� are well defined for i = u, s, c and τ ∈ [0, 1], and close to

!i
Pn

= !i
n,�,Pn

and !i
τ,Pn

= !i
τ,n,�,Pn

respectively. Then we define #
(3)
P� : R

3 →
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W c
P� (z0, K , Z (n)

� ) by

#
(3)
P� (r, r ′, r ′′) = !t

{r ′′},P� ◦ (!t
P� )

�r ′′� ◦ !b
{r ′},P� ◦ (!b

P� )
�r ′� ◦ !a

{r},P� ◦ (!a
P� )

�r�(z0),

where {r} = r − �r� denotes the fractional part of r . If θ ′′
n is small enough and

� (Ei
Pn
(z), Ei

P� (z)) ≤ θ ′′
n for i = u, s, c and all z ∈ N × Z (n)

� , then !i
P� and !i

τ,P�

are sufficiently close to !i
Pn

and !i
τ,Pn

respectively for i = a, b, t . Thus we can obtain
that

d(#(3)
P� (r, r ′, r ′′),#(3)

Pn
(r, r ′, r ′′)) ≤ 1/2n+4,

which is the distance between ∂ Z̆ (n)
k and ∂ Z̄ (n)

k , for r, r ′, r ′′ ∈ [−N , N ]. In other words,

#
(3)
P� (r, r ′, r ′′) maps the surface of the cube [−N , N ] × [−N , N ] × [−N , N ] to the

surfaces that are close to and outside the corresponding surfaces of W c
P� (z0, K̄ , Z̄ (n)

� ).
Hence, by Sublemma 5.4, the set

{#(3)
P� (r, r ′, r ′′) : r, r ′, r ′′ ∈ [−N , N ]}

covers W c
P� (z0, K̄ , Z̄ (n)

� ) implying that

AP� (z0(n, �)) ⊃ W c
P� (z0(n, �), K̄ , Z̄ (n)

� ).

The desired result follows. ��
Sublemma 5.3. For each n > 0, there exists δ′′

n > 0 such that if ‖hn − Id ‖Cn ≤ δ′′
n > 0,

then for any a ∈ In,

(1) !a((q j , 1/2, a, b0)) = (q j , 1/2, a′, b0) with a′ < a;
(2) b ∈ Jn, t ∈ (1/2 − εt , 1/2 + εt ), !b((q, t, a, b)) = (q, t, a, b′) with b′ < b;
(3) b ∈ Jn, t ∈ K , !t ((q, t, a, b)) = (q, t ′, a, b) with t ′ < t .

Proof. The proof is similar to that of Lemma B.4 in [9].
We prove the first statement. Consider the coordinate system in �a with the origin at

(pa
j , 1/2, a0, b0) which therefore has local coordinates (0, 0, 0, 0, 0). We may assume

that the local coordinates of the points q j , [q, pa
j ] and [pa

j , q] are (u0, s0), (0, s0) and
(u0, 0) respectively, where u0 = αa

u and s0 = αa
s are given by (5.1).

We first consider the case n > 1 and note that the path γ̂ a
j is contained in the closure

of �a
n,� (see Subsect. 5.2) for n > 1 and � = 1, . . . kn . We have that Pn|�a

n,� = ha
n,� ◦ T .

Furthermore, since ha
n,� = Id on the curve V u

T (q j , t, y) for t ∈ K and y ∈ Z (n)
� , we have

that V u
Pn
(q j , t, y) = V u

T (q j , t, y). It follows that if (u0, s0, 0, a1, 0) are the local coordi-
nates of the point z1 = (q j , 1/2, a1, b0), then (0, s0, 0, a2, 0) are the local coordinates
of the point z2 = ([q j , pa

j ], 1/2, a2, b0) with a2 = a1.
Recall that by (5.3), the a-component of the vector field Xa(z) is equal to

βφa(u)ψa(s)ζt (t)ζY (b)ξY (a) and that φa(u), ψa(s), ζt (t) and ζY (b) are constants for
|u| ≤ ᾰa

u , |s| ≤ ᾰa
s , |t | ≤ ε̆t and b ∈ J̆n respectively. Recall also that the map ha

preserves the s-, t- and b-coordinates. Therefore, if |u| ≤ ᾰa
u , |s| ≤ ᾰa

s , |t | ≤ ε̆t , a ∈ In ,
and b ∈ J̆n , then

ha(u, s, t, a, b) = (u′, s, t, a + c(a, t), b), (5.16)
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where u′ is close to u provided β is sufficiently small, and c(a, t) > 0 if |t | ≤ εt and
c(a, t) = 0 otherwise. Moreover, if |t | ≤ ε̆t , then c(a, t) = c(a) is independent of
t . Also, if u = 0 then u′ = 0 since in this case

∫ u
0 φa(r)dr = 0, and therefore the

u-component of Xa is zero. Since αa
s /ηκ(a, b) ≤ ᾰa

s , we have that for |s| ≤ αa
s and

b ∈ J̆n ,

Pn(0, s, t, a, b) = ha(
T (0, s, t, a, b)

)

= (0, s/ηκ(a, b), t + κ(a, b), a + c(a, t), b).

Note that Pn = T near the orbit of (pa
j , t, y) and outside �a . Hence, under the iterations

of Pn all points of the set {(0, s, t, a, b) : |s| ≤ αa
s } have fixed u- and b-coordinates

and the same t- and a-coordinates. Therefore, this set belongs to V s(pa
j , t, a, b). Since

z2 ∈ V s(z3), the fact that(0, s0, 0, a2, 0) are the local coordinates of the point z2 yields
that (0, 0, 0, a3, 0) are the local coordinates of the point z3 = (pa

j , 1/2, a3, b0) with
a3 = a2.

By similar arguments, we can show that if |u| ≤ ᾰa
u , a ∈ In and b ∈ J̆n , then

P−1
n (u, 0, t, a, b) = T −1((ha)−1(u, 0, t, a, b)

)

= (u′′/ηκ(a, b), 0, t − κ(a′, b), a′, b), (5.17)

for some u′′ close to u, where by (5.16), a′ satisfies a′ + c(a′, t) = a. If we choose
δ′′

n > 0 small enough, then ‖ha
n − Id ‖ ≤ δ′′

n implies that u′′ is sufficiently close to u
and therefore |u′′|/ηκ(a, b) ≤ ᾰa

u . Hence, under the iterations of P−1
n all points of the

set {(u, 0, t, a′, b) : |u| ≤ ᾰa
u } have fixed s- and b-coordinates and the same t- and

a-coordinates. Therefore, this set belongs to V u(pa
j , t, a, b). On the other hand, by the

definition of ha and the choice of αa
u , we have ha = Id if |u| ≥ αa

u . Therefore, since
u0 = αa

u ,

P−1
n (u0, 0, t, a′, b) = T −1(u0, 0, t, a′, b)

= (u0/ηκ(a, b), 0, t − κ(a′, b), a′, b). (5.18)

Comparing (5.18) with (5.17) we obtain that the point with local coordinates
(u0, 0, t, a′, b) is on the strongly unstable local manifold of the point with local
coordinates (0, 0, t, a, b), where a′ + c(a′, t) = a and c(a′, t) > 0. So if z4 =
([pa

j , q j ], t, a4, b0) ∈ V u(z3), then z4 has local coordinates (u0, 0, 0, a4, b0) with
a4 < a3.

Since the path on V s(q j ) is unperturbed, the fact that z4 ∈ V s(z5) yields that the
point z5 = (q j , 1/2, a5, b0) has local coordinates (u0, s0, 0, a5, b0) with a5 = a4. This
implies that in the case n > 1 we have a1 = a2 = a3 > a4 = a5.

In the case n = 1 similar arguments can be used with the following modification. To
obtain the a-coordinate of the points on V s(pa

j , 1/2, a, b0) and V u(pa
j , 1/2, a, b0), we

need to consider P�u

1 = ha ◦ T �u
and P�s

1 = ha ◦ T �s
respectively, (recall that near the

paths γ a
1 and on the set �a , the map T is unperturbed, and hence Q = T ,) and therefore

get a1 = a2 ≥ a3 > a4 = a5. The assumption κ = κ0 on U1 guarantees that on these
local manifolds the t-coordinates are the same. This implies Statement (1).

In the above arguments, we can actually replace b0 by any b ∈ Jn and the number
1/2 by any t ∈ (1/2 − εn, 1/2 + εn) and can still obtain the same results. Therefore,
Statement (2) can be proved by switching the roles of a and b.
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Statement (3) can be proved in the same way. In particular, since ht preserves a- and
b-coordinates and the strongly stable and unstable local manifolds for T at (q j , t, y)
and (pt

j , t, y) are unperturbed except by ht , the arguments can be carried over on the

submanifold Ny (see (3.1)) for each y ∈ Z (n)
� . ��

Sublemma 5.4. Let # : I n → I n be a homeomorphism of the n-dimensional cube I n

and ∂i I n be the faces of I n, i = 1, . . . , 2n. Assume that #(∂i I n) ⊂ B(∂i I n, ε)\I n for
i = 1, . . . , 2n, where B(·, ε) is the ε-neighborhood of the set. Then I n ⊂ #(I n).

Proof. This is a variation of a general topology theorem, which says that in the setting
if #(∂i I n) ⊂ B(∂i I n, ε) for i = 1, . . . , 2n, then I n\B(∂i I n, ε) ⊂ #(I n). ��

Appendix A

Let M be a compact smooth Riemannian manifold and S ⊂ M an open subset. Let also h
be a C1 diffeomorphism that is pointwise partially hyperbolic on S. Further, let Un ⊂ S,
n ≥ 1 be a sequence of open subsets such that:

(1) Un ⊂ Un ⊂ Un+1 and
⋃

Un = S;
(2) each Un is h-invariant;
(3) h|Un is uniformly partially hyperbolic.

The goal of this Appendix is to prove the following statement. Suppose there is a sequence
of diffeomorphisms hn such that h0 = h, hn = hn−1 on M\Un . Clearly, Un is hn-invari-
ant, and hn = h on M\Un .

Theorem A.1. Let hn be a sequence of diffeomorphisms for which h0 = h and hn =
hn−1 on M\Un, so that Un is hn-invariant and hn = h on M\Un. Then there exists a
sequence of positive numbers εn such that if ‖hn − hn−1‖C1 ≤ εn, then

(1) each map hn is uniformly partially hyperbolic on Un and hence pointwise partially
hyperbolic on S;

(2) the limit H = limn→∞ hn exists and is a C1 pointwise partially hyperbolic diffeo-
morphism of S.

We need the following technical statements.

Lemma A.2. Given a sequence of positive numbers {an}n≥1 satisfying

∞∑

n=1

an ≤ 1

4
,

we have
∞∏

n=1

(1 + an) ≤ 1 + 2
∞∑

n=1

an and
∞∏

n=1

(1 − an) ≥ 1 − 2
∑

an .

Lemma A.3. Set

Mn = sup
x∈M

‖dx hn‖ and mn = inf
x∈M

m(dx hn).

If εn < m0/2n+4, then Mn ≤ 2M0 and mn ≥ 0.5m0.
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Proof. Note that |Mn − Mn−1| ≤ εn and |mn −mn−1| ≤ εn . Applying Lemma A.2, one
can show by induction that

1 − 1

2n+2 ≤ Mn

Mn−1
, and

mn

mn−1
≤ 1 +

1

2n+2 .

The desired result follows. ��
Given two diffeomorphisms f and g with invariant distributions E f and Eg on S

respectively, let

� f,g,E f ,Eg (x) = max

{∣∣∣∣
‖dx g|Eg(x)‖
‖dx f |E f (x)‖ − 1

∣∣∣∣ ,
∣∣∣∣

m(dx g|Eg(x))

m(dx f |E f (x))
− 1

∣∣∣∣

}
,

ε f,g(x) = ‖dx g − dx f ‖, θE f ,Eg (x) = � (E f (x), Eg(x)).

(A.19)

Lemma A.4. Assume that

sup
x∈M

‖dx f ‖ ≤ M := 2M0, inf
x∈M

m(dx f ) ≥ m := 0.5m0.

Then for any x ∈ S,

� f,g,E f ,Eg (x) ≤ 1

m
[ε f,g(x) + C MθE f ,Eg (x)],

where C > 0 is a constant which depends only on the Riemannian metric of M.

Proof. We have that
∣∣‖dx g|Eg(x)‖ − ‖dx f |E f (x)‖

∣∣ ≤ ∣∣‖dx g|Eg(x)‖ − ‖dx f |Eg(x)‖
∣∣

+
∣∣‖dx f |Eg(x)‖ − ‖dx f |E f (x)‖

∣∣
≤ ‖dx g − dx f ‖ + ‖dx f ‖dist(Eg(x), E f (x))

≤ ‖dx g − dx f ‖ + C‖dx f ‖� (Eg(x), E f (x)),

for some constant C > 0 depending only on the Riemannian metric of M. Dividing both
sides of the inequality by ‖dx f |E f (x)‖ and noting that ‖dx f |E f (x)‖ ≥ m(dx f ), we
obtain that

∣∣∣∣
‖dx g|Eg(x)‖
‖dx f |E f (x)‖ − 1

∣∣∣∣ ≤ ‖dx g − dx f ‖
m(dx f )

+ C
‖dx f ‖

m(dx f )
� (Eg(x), E f (x))

≤ 1

m
[ε f,g(x) + C MθE f ,Eg (x)].

Similarly, one can show that
∣∣∣ m(dx g|Eg(x))

m(dx f |E f (x))
− 1

∣∣∣ has the same upper bound. ��

Lemma A.5. Suppose that f is uniformly partially hyperbolic on a compact invariant
subset � ⊂ S. Pick numbers 0 < λ < λ̃ ≤ 1 ≤ μ̃ < μ such that

λ ≥ λ( f,�) = sup
x∈�

‖dx f s‖, λ̃ ≤ λ̃( f,�) = inf
x∈�

m(dx f c),

μ̃ ≥ μ̃( f,�) = sup
x∈�

‖dx f c‖, μ ≤ μ( f,�) = inf
x∈�

m(dx f u).
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Given � > 0, there is ε = ε(�, λ, λ̃, μ̃, μ) < m�
2 such that if ‖g − f ‖C1 < ε and

g = f on S\�, then g|� is also uniformly partially hyperbolic and

�ω
f,g(x) := � f,g,Eω

f ,E
ω
g
(x) ≤ �, ω = s, c, u, x ∈ �. (A.20)

In particular,

1 − � ≤ λ(g,�)

λ( f,�)
,

λ̃(g,�)

λ̃( f,�)
,

μ̃(g,�)

μ̃( f,�)
,

μ(g,�)

μ( f,�)
≤ 1 + �.

Proof. Note that the set of uniformly partially hyperbolic diffeomorphisms is C1-open,
and the invariant distributions Eω

g depend continuously on g, ω = s, c, u (see [18]).

More precisely, there is ε < m�
2 depending on �,λ, λ̃, μ̃, μ such that if ‖g − f ‖C1 < ε

and g = f on S\�, then g|� is uniformly partially hyperbolic with

sup
x∈�

� (Eω
g (x), Eω

f (x)) <
m�

2C M
. (A.21)

Then by Lemma A.4, it is immediate that �ω
f,g(x)λ�. ��

We shall now specify how to choose the sequence of numbers εn in the theorem. First
choose four sequences of numbers 0 < λn < λ̃n ≤ 1 ≤ μ̃n < μn such that

(1) λn ≥ λ(h,Un), λ̃n ≤ λ̃(h,Un), μ̃n ≥ μ̃(h,Un), μn ≤ μ(h,Un);
(2) λn, μ̃n are strictly increasing while λ̃n, μn are strictly decreasing.

For all x ∈ S, let

γ (x) = min

{
min{1,m(dx hc)}

‖dx hs‖ ,
m(dx hu)

max{1, ‖dx hc‖}
}
,

and choose a strictly decreasing sequence of numbers γn such that

0 < γn ≤ inf
x∈Un

γ (x) − 1

8
. (A.22)

Now choose a sequence of positive numbers �n such that

max{ λ̃n+1

λ̃n
,

μn+1

μn
} ≤ 1 − �n < 1 + �n ≤ min{λn+1

λn
,

μ̃n+1

μ̃n
}; (A.23)

�n <
1

2n+2 ,

∞∑

k=n

�k < γn . (A.24)

Finally, choose

εn <
1

2
min{ m0

2n+4 , ε(�n, λn, λ̃n, μ̃n, μn)},

where ε(�, λ, λ̃, μ̃, μ) is given by Lemma A.5.
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Proof of Theorem A.1. First we shall show that for every n > 0 the map hn is uniformly
partially hyperbolic on Un . It is clearly true for h0 and we shall use induction assuming
that hk |Uk for k = 1, . . . , n are uniformly partially hyperbolic. By Lemma A.5 we
obtain that

1 − �k ≤ λ(hk,Uk)

λ(hk−1,Uk)
,

λ̃(hk,Uk)

λ̃(hk−1,Uk)
,

μ̃(hk,Uk)

μ̃(hk−1,Uk)
,

μ(hk,Uk)

μ(hk−1,Uk)
≤ 1 + �k .

Note that

λ(hk,Uk+1) ≤ max{λ(h,Uk+1), λ(hk,Uk)}
≤ max{λk+1, λ(hk,Uk)}
≤ max{λk+1, λ(hk−1,Uk)(1 + �k)}.

The fact that λ(h0,U1) ≤ λ1 and the choice of �n in (A.23) guarantee that

λ′
n := λ(hn,Un+1) ≤ λn+1.

Similarly, we have

λ̃′
n := λ̃(hn,Un+1) ≥ λ̃n+1, μ̃′

n := μ̃(hn,Un+1) ≤ μ̃n+1,

μ′
n := μ(hn,Un+1) ≥ μn+1.

It follows that

εn ≤ ε(�n, λn, λ̃n, μ̃n, μn) ≤ ε(�n, λ
′
n, λ̃

′
n, μ̃

′
n, μ

′
n).

Since ‖hn+1 − hn‖C1 ≤ εn , by Lemma A.5 we obtain that hn+1|Un+1 is uniformly
partially hyperbolic.

Next we shall show that H = limn→∞ hn exists and is indeed pointwise partially
hyperbolic on S. Since εn < m0/2n+4, the sequence of maps hn is a Cauchy sequence
and hence it converges in the C1 topology. Moreover, as shown in (A.21), given x ∈ Uk
and n > k, we have

� (Eω
hn
(x), Eω

hn−1
(x)) <

m�n

2C M
≤ m

2n+3C M
, ω = s, c, u.

Hence, the sequence of subspaces Eω
hn
(x) is a Cauchy sequence, and thus there is a limit

Eω
H (x) = lim

n→∞ Eω
hn
(x).

Fix n > 0. We now wish to estimate �ω
H,h(x) for x ∈ Un\Un−1 (see (A.19) and (A.20)).

We have

�ω
hk ,hk−1

(x)

{= 0, k < n,
≤ �k, k ≥ n.

Note that

‖dx hω
l ‖

‖dx hω‖ =
l∏

k=1

‖dx hω
k ‖

‖dx hω
k−1‖

,
m(dx hω

l )

m(dx hω)
=

l∏

k=1

m(dx hω
k )

m(dx hω
k−1)

,
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and by (A.24),
∑

�k < 1/4. It follows from Lemma A.2 that

�ω
hl ,h(x) ≤

l∏

k=1

(1 + �ω
hk ,hk−1

(x)) − 1 ≤
∞∏

k=n

(1 + �k) − 1 ≤ 2
∞∑

k=n

�k .

Letting l → ∞, we find that

�ω
H,h(x) ≤ 2

∞∑

k=n

�k, ω = s, c, u.

Therefore by (A.22),

‖dx Hs‖
min{1,m(dx Hc)} ≤ 1 + 2

∑∞
k=n �k

1 − 2
∑∞

k=n �k

‖dx hs‖
min{1,m(dx hc)}

< (1 + 8γn)
‖dx hs‖

min{1,m(dx hc)}
≤ γ (x)

‖dx hs‖
min{1,m(dx hc)} < 1.

Similarly, one can show m(dx Hu) > max{1, ‖dx Hc‖}. It follows that H is pointwise
partially hyperbolic on S. ��
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