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ABSTRACT

We consider a partially hyperbolic diffeomorphism of a compact smooth

manifold preserving a smooth measure. Assuming that the central distri-

bution is integrable to a foliation with compact smooth leaves we show

that this foliation fails to have the absolute continuity property provided

that the sum of Lyapunov exponents in the central direction is not zero

on a set of positive measure. We also establish a more general version of

this result for general foliations with compact leaves.

1. Introduction

Let f : M → M be a partially hyperbolic diffeomorphism of a compact smooth

Riemannian manifold M preserving a smooth measure µ (i.e., a measure that is

equivalent to the Riemannian volume on M). The tangent bundle TM can be

split into three df -invariant continuous subbundles

TM = Es ⊕ Ec ⊕ Eu
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such that df contracts uniformly over x ∈ M along the stable subspace Es(x),

it expands uniformly along the unstable subspace Eu(x), and it may act either

as non-uniform contraction or expansion with weaker rates along the central

subspace Ec(x). See Section 2 for definitions.

It is well-known that the distributions Es and Eu are (uniquely) integrable

to stable and unstable foliations Ws and Wu that possess the crucial absolute

continuity property (see the definition in the next section). On the other hand,

the central distribution may not be integrable and even if it is, the correspond-

ing foliation Wc may fail to satisfy the absolute continuity property in some

very strong way — the phenomenon known as “Fubini nightmare” (see [12, 15,

16]). Our goal is to show that the failure of absolute continuity is a generic

phenomenon in a sense. More precisely, we describe some general conditions

that guarantee non-absolute continuity of the central foliation.

The absolute continuity property can be understood in a variety of ways. The

most common and most strong interpretation of absolute continuity is obtained

through holonomy maps associated with the foliation. The others require that

the conditional measures generated by the Riemannian volume on leaves of the

foliation are equivalent to the leaf volume. This can also be stated in a weaker

or stronger sense leading to two other definitions of absolute continuity. We

shall discuss all these three interpretations in the next section.

This work was initiated when A. Wilkinson discovered and sent to the sec-

ond author a copy of a hand-written note [10] from R. Mañé to M. Shub in

which the case of one-dimensional central distributions was considered (indeed,

Mañé considered more general one-dimensional foliations whose leaves have fi-

nite length; see below). Our approach is an elaboration and generalization of

Mañé’s approach.

We say that a partially hyperbolic diffeomorphism preserving a Borel proba-

bility measure µ is center-dissipative if χc(x) 6= 0 for µ-almost every x ∈ M ,

where χc(x) denotes the sum of the Lyapunov exponents of f at the point x

along the central subspace Ec(x). Recall that µ is a smooth measure if it is

equivalent to the Riemannian volume in M .

Theorem 1.1: Let f be a C2 partially hyperbolic diffeomorphism of a compact

smooth Riemannian manifold M preserving a smooth measure µ. Assume that

(1) the central distribution Ec is integrable to a foliation Wc with smooth

compact leaves;

(2) f is center-dissipative on a set of full µ-measure.

Then the central foliation Wc is not absolutely continuous.
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We say that a partially hyperbolic diffeomorphism preserving a Borel proba-

bility measure µ has negative central exponents if for µ-almost every x ∈ M ,

all the Lyapunov exponents along the central distribution are negative. The def-

inition of having positive central exponents is analogous. Observe that in

the case of one-dimensional central distribution center-dissipativity is equivalent

to having negative (positive) central exponents.

As an immediate corollary of Theorem 1.1 we obtain the following result.

Theorem 1.2: Let f be a C2 partially hyperbolic diffeomorphism of a compact

smooth Riemannian manifold M preserving a smooth measure µ. Assume that

(1) the central distribution Ec is integrable to a foliation Wc with smooth

compact leaves;

(2) f has negative (positive) central exponents.

Then the central foliation Wc is not absolutely continuous. Moreover, if µ is

ergodic then the conditional measures induced by µ on leaves of Wc are atomic.

For a general center-dissipative diffeomorphism, the conditional measure on

central leaves, though not smooth, may not be atomic as the following example

illustrates.

Example: Let A be a hyperbolic automorphism of the torus T
2 and F the

direct product map of A and the identity map of the circle T
1. F is partially

hyperbolic and so is any of its perturbation. Shub and Wilkinson [16] showed

that arbitrarily close to F in the C1 topology there is a C2 volume-preserving

ergodic diffeomorphism G with negative central exponents. The central foliation

Wc
G consists of invariant circles and is not absolutely continuous: The condi-

tional measure generated by volume on almost every circle is atomic (indeed,

has only one atom). Consider now a C2 volume-preserving diffeomorphism H

that is the direct product of G and the identity map on T
1. It is partially

hyperbolic and its central foliation Wc
H consists of invariant tori. Clearly, H

is center-dissipative on a set of full volume and has one negative and one zero

Lyapunov exponents along the central direction. The central foliation Wc
H is

not absolutely continuous and the conditional measure generated by volume on

almost every torus is not atomic. In this example the invariant Lebesgue mea-

sure is not ergodic. However, if one considers the direct product of G and the

irrational rotation of T
1 the resulting map is ergodic (since G is weakly mixing),

the central foliation is not absolutely continuous, and the conditional measures

on central leaves are not atomic.
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Remark 1: The assumption that the leaves of the central foliation are com-

pact is important. Indeed, consider a hyperbolic automorphism A of the three-

dimensional torus T
3 with eigenvalues λ1, λ2, and λ3 such that 0 < |λ1| <

|λ2| < 1 < |λ3|. The tangent bundle is split TT
3 = E1,A ⊕ E2,A ⊕ E3,A, where

Ei,A is the eigensubspace corresponding to λi, i = 1, 2, 3. One can view A

as a partially hyperbolic diffeomorphism with E2,A as its central distribution.

Clearly, A is center-dissipative and the distribution E2,A is integrable to a fo-

liation, which is smooth (hence, absolutely continuous). If g is close to A in

the C1 topology then g is an Anosov diffeomorphism and the tangent bundle

is split TT
3 = E1,g ⊕ E2,g ⊕ E3,g so that g is partially hyperbolic. The cen-

tral distribution E2,g is integrable to a foliation W2,g with smooth non-compact

leaves. This foliation is, in general, not smooth (but Hölder continuous). It

is an open problem whether g can be perturbed (in the C1 or C2 topology) to

a diffeomorphism h for which the foliation W2,h is not absolutely continuous.

We believe that indeed a stronger conjecture holds true: For a “typical” g in a

small neighborhood of A the foliation W2,g is not absolutely continuous.

Theorem 1.1 is a particular case of a more general result, which we now

describe. It turns out that partial hyperbolicity, more precisely, the fact that f

is normally hyperbolic to the foliation Wc, is not important. Therefore, let us

consider a C2 diffeomorphism f of a compact smooth Riemannian manifold M

preserving a Borel probability measure µ and a foliation W of M with smooth

leaves, which is invariant under f . We say that f is W-dissipative if there

exists an invariant set A of positive µ-measure such that χW(x) 6= 0 for µ-

almost every x ∈ A, where χW(x) denotes the sum of the Lyapunov exponents

of f at the point x along the subspace TxW(x).

For x ∈ M we denote by Vol(W(x)) the volume of the leaf W(x). We say that

the foliation W has finite volume leaves almost everywhere if the set B of

those points x ∈ M , for which Vol(W(x)) < ∞, has full Riemannian volume.

An example of a foliation whose leaves have finite volume almost everywhere

is a foliation with smooth compact leaves. If W is such a foliation then for

every x ∈ M the function x → Vol(W(x)) is well-defined (finite) but may not

be bounded (see [7]). In this connection one can wonder if there is a foliation

of a compact manifold whose almost all (but not all) leaves are compact or if

there is a foliation which is invariant under a diffeomorphism f of M , normally

hyperbolic, and such that all leaves have finite volume but some (or all) are not

compact.1

1 We would like to thank C. Pugh who mentioned these problems to us.
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Theorem 1.3: Let f be a C2 diffeomorphism of a compact smooth Riemannian

manifold M preserving a smooth measure µ. Let also W be an f -invariant

foliation of M with smooth leaves. Assume that W has finite volume leaves

almost everywhere. If f is W-dissipative almost everywhere then the foliation

W is not absolutely continuous.

The center-dissipativity property is typical in a sense. More precisely, the

following two statements hold.

Theorem 1.4: Let f be a C2 partially hyperbolic diffeomorphism of a compact

smooth Riemannian manifold M preserving a smooth measure µ. Assume that

χc
f (x) < −α for some α > 0 and µ-almost every x ∈ M . Then any diffeomor-

phism g, which is sufficiently close to f in the C1 topology, is center-dissipative

on a set of positive µ-measure.

Theorem 1.5: Let f be a C2 partially hyperbolic diffeomorphism of a compact

smooth Riemannian manifold M preserving a smooth measure µ. Assume that

χc
f (x) = 0 for µ-almost every x ∈ M . Then for any ε > 0 there is a C2

diffeomorphism g such that dC1(f, g) ≤ ε and g is center-dissipative on a set of

positive measure.

We shall present a proof of Theorem 1.4 below. Theorem 1.5 is an easy

corollary of results by Baraviera and Bonatti [2].2 These results yield that

the “pathological” phenomenon described in Theorems 1.1 and 1.2 is typical

in a sense. More precisely, let f be a partially hyperbolic C2 diffeomorphism

preserving a smooth measure µ. Assume that the central distribution Ec
f is

integrable to a smooth foliation Wc
f with smooth compact leaves and that f

is center-bunched (see the definition in the next section). By Theorem 1.1, f

is not center-dissipative. A well-known example of such a diffeomorphism is a

skew product map f(x, y) = (Ax, ϕx(y)), where A is an Anosov diffeomorphism

of a compact smooth Riemannian manifold N and ϕx is a diffeomorphism of a

compact manifold K which depends smoothly on x ∈ N and satisfies

max
x∈N

‖dA|Es
A(x)‖ < min

x∈N
min
y∈K

‖dϕ−1
x (y)‖−1 ≤ max

x∈N
max
y∈K

‖dϕx(y)‖

< min
x∈N

‖dA−1|Eu
A(x)‖−1.

Using a result of Hirsch, Pugh and Shub [9] we conclude that there is a neigh-

borhood U1 ⊂ Diff1(M, µ) of f such that any g ∈ U1 is partially hyperbolic and

2 Although in [2] the authors consider volume-preserving transformation the proof
works well for any transformations preserving a smooth measure.
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its central distribution Ec
g is integrable to a foliation Wc

g with smooth compact

leaves.3 Since the property of center-bunching is C1 open by its definition, there

exists a neighborhood U2 ⊂ U1 such that any g ∈ U2 is center-bunched. By a re-

sult of Dolgopyat and Wilkinson [6], there is an open and dense set V ⊂ U2 such

that every g ∈ V has the accessibility property (indeed, it is stably accessible,

see the next section). By a theorem of Pugh and Shub [14] (see also [5]), each

g ∈ V is stably ergodic with respect to µ (i.e., every h sufficiently C1-close to g

is ergodic with respect to µ) and hence, χc
g(x) is constant µ-almost everywhere,

say χc
g(µ). In particular, whether g is center-dissipative amounts to χc

g(µ) 6= 0.

If g ∈ V and χc
g(µ) = 0, by Theorem 1.5, there is a C2 diffeomorphism h, which

is arbitrary C1-close to g, center-dissipative on a set of positive and hence, by

ergodicity, on a set of full µ-measure. The central distribution Ec
h of h is in-

tegrable to a foliation Wc
h with compact leaves and by Theorem 1.1, it is not

absolutely continuous. The same holds true for any sufficiently small C2 per-

turbation of h. This phenomenon was first discovered by Shub and Wilkinson

[16].

Acknowledgement: We are grateful to Charles Pugh whom we owe a lot for

his many valuable comments and suggestions to an early version of this paper.

This helped us to avoid some mistakes and to clarify the crucial concept of

absolute continuity. In fact, while working on his comments we came up with a

simpler proof of a stronger result. We also would like to thank Amie Wilkinson

for providing us with Mañé’s notes.

2. Preliminaries

1. Let M be a compact smooth Riemannian manifold, f : M → M a C2

diffeomorphism of M . It is said to be (uniformly) partially hyperbolic if

there are numbers λs < λc ≤ 1 ≤ λc < λu such that for every x ∈ M there

exists a dxf -invariant decomposition TxM = Es(x) ⊕ Ec(x) ⊕ Eu(x) for which

‖dxf(v)‖ ≤ λs‖v‖, v ∈ Es(x),

λc‖v‖ ≤ ‖dxf(v)‖ ≤ λc‖v‖, v ∈ Ec(x),

λu‖v‖ ≤ ‖dxf(v)‖, v ∈ Eu(x).

Es(x), Ec(x), and Eu(x) are called respectively, stable, central and unstable

subspaces.

3 The result of Hirsch, Pugh and Shub [9] requires the foliation Wc
f be smooth or

have a weaker property of being plaque expansive. It is an open problem whether
this requirement can be dropped if the leaves of the foliation are compact.
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2. A partition W of M is said to be a foliation with smooth leaves or

simply a foliation if there exist δ > 0 and k ∈ N such that for each x ∈ M :

(1) The element W(x) of the partition W containing x is a smooth

k-dimensional immersed manifold called the global leaf of the foliation at x;

the connected component of the intersection W(x)∩B(x, δ) (here B(x, δ) is the

ball in M centered at x of radius δ) that contains x is called the local leaf at

x and is denoted by V(y) (the number δ is called the size of V(y)).

(2) There exists a continuous map ϕx: B(x, δ) → C1(D, M), where D is the

unit ball in R
k, such that for every y ∈ B(x, δ) the local leaf V(y) is the image

of the map ϕx(y): D → M of class C1.

A continuous distribution E on TM is called integrable if there exists a

foliation W of M such that E(x) = TxW(x) for every x ∈ M . It is known that

the stable and unstable distributions Es(x) and Eu(x) are integrable to stable

and unstable foliations Ws and Wu, respectively. The central distribution

Ec, however, may not be integrable (see [12]).

3. Given a foliation W of M , consider the measurable partition ξ of the ball

B(x, r) into local leaves V(y). We denote by m Riemannian volume on M and

by mV(y) Riemannian volume on V(y).

The foliation W of M is said to be absolutely continuous (see [4, 12, 13])

if there exists r > 0 such that for every x ∈ M , any Borel subset X ⊂ B(x, r)

of positive volume and almost every y ∈ X we have

(2.1) mV(y)(X ∩ V(y)) > 0.

It is easy to see that the foliation W is absolutely continuous if and only if for

any Borel subset X ⊂ M of positive volume and almost every y ∈ X ,

(2.2) mW(y)(X ∩W(y)) > 0

(since M is compact it can be covered by finitely many balls of radius r ≤ δ

where δ is the number in the definition of the foliation). Furthermore, absolute

continuity of the foliation W is equivalent to the following property: for any

Borel subset X ⊂ M of positive volume there is y ∈ M such that (2.2) holds.

Indeed, the set Y = {y ∈ X : mW(y)(X ∩ W(y)) = 0} must have zero volume

(otherwise, one can find a Borel subset Z ⊂ Y of positive volume and hence,

a point z ∈ M for which mW(z)(Z ∩ W(z)) > 0; therefore, for some point

y ∈ Z ⊂ X we have mW(y)(X ∩W(y)) > 0, thus leading to a contradiction).

We stress that absolute continuity is a property of the foliation with respect

to volume and does not require the presence of any dynamics (or any invariant

measure).
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Remark 2: The “usual” definition of absolute continuity property is stronger

than the one given above (see, for example, [1, 3]). It imposes some requirements

on the Radon–Nikodym derivatives of the conditional measures generated by

volume on V(y) viewed as elements of the partition ξ. More precisely, let T be

a local transversal through x to local manifolds V(y), y ∈ B(x, r). Clearly, T

can be identified with the factor-space B(x, r)/ξ.

We say that the foliation W of M is absolutely continuous (in the strong

sense) if for almost every x ∈ M , any r > 0, and any Borel subset X ⊂ B(x, r)

of positive volume,

(2.3) m(X) =

∫

T

h(y)

∫

V(y)

IX(y, z)g(y, z)dmV(y)(z)dmT (y),

where IX is the characteristic function of the set X , h a Borel function in y ∈ T ,

g a Borel function in y ∈ T and z ∈ V(y), and mT the Riemannian volume on

T . In other words,

g(y, z) =
dm̃V(y)

dmV(y)
(z) and h(y) =

dm̃T

dmT

(y),

where m̃V(y) is the conditional measure generated by volume on V(y) as an

element of the partition ξ and m̃T is the factor-measure for the partition ξ

generated by volume.

Let us stress that, if f is a diffeomorphism of M and µ a smooth f -invariant

measure, then (2.3) holds for µ (instead of volume m) with appropriately chosen

densities h and g with respect to mV(y) and mT (y). The stable and unstable

foliations are known to be absolutely continuous (in the strong sense). Indeed,

they have an even stronger property. Namely, consider the family of local leaves

L(x) = {V(w): w ∈ B(x, r)}.

Choose two local transversal T1 and T2 to the family L(x), and define the

holonomy map π = π(x,W): T1 → T2 by setting

π(y) = V(w) ∩ T2,

for y ∈ V(w)∩T1, w ∈ B(x, r). The holonomy map π is a homeomorphism onto

its image. It is called absolutely continuous if mT2
is absolutely continuous

with respect to π∗mT1
. It is well-known (see, for example, [3]) that a foliation W

of M is absolutely continuous (in the strong sense) provided that for any family

L(x) and any two local transversal T1 and T2, the holonomy map is absolutely

continuous.
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The holonomy maps associated with families of stable and unstable local

manifolds are absolutely continuous and, in fact, the functions h and g are

continuous (and hence bounded).

4. The point x ∈ M is said to be Lyapunov regular (see [3]) if there exists

numbers χ1(x) > . . . > χs(x)(x) and a dxf -invariant decomposition TxM =

E1(x) ⊕ · · · ⊕ Es(x)(x) such that for each i = 1, . . . , s(x),

lim
n→±∞

1

n
log ‖dxfn(v)‖ = χi(x), v ∈ Ei(x) \ {0},

lim
n→±∞

1

n
log | Jac(dxfn)| =

s(x)
∑

i=1

χi(x) dim Ei(x),

where Jac stands for the Jacobian. We denote the set of regular points by Γ. By

the Multiplicative Ergodic theorem, Γ has full µ-measure. The numbers χi(x)

are called the Lyapunov exponents of f at x along the subspaces Ei(x).

Note that the functions x 7→ χi(x), r(x) and dimEi(x) are Borel measurable

and f -invariant.

Let x ∈ Γ and W be an f -invariant foliation of M whose leaves are smooth

submanifolds of M . We define the Lyapunov exponent along the foliation

by

χW(x) = lim
n→±∞

(1/n) log | Jac(dxfn|TxW(x))|.

Let A+ be the set of points for which χW(x) > 0. Suppose µ(A+) > 0. Then for

a sufficiently small λ > 0, sufficiently large integer ℓ, and every ε ∈ (0, λ/100)

there exists a Borel set A+
λ,ℓ,ε ⊂ A+ of positive µ-measure such that for every

x ∈ A+
λ,ℓ,ε and n ≥ 0,

(2.4) | Jac(dxfn|TxW(x))| ≥ ℓ−1eλne−εn.

See [3]. When the central distribution Ec is integrable to a foliation Wc with

smooth leaves, we denote χWc(x) simply by χc(x). Clearly,

χc(x) =
∑

i

χi(x) dim Ei(x),

where the sum is taken over all i for which the associated subspaces satisfy
⊕

i Ei(x) = Ec(x).

The measure µ is called hyperbolic if χi(x) 6= 0 for µ-almost every x ∈ M

and every i = 1, . . . , s(x). Let ρ > 0 be sufficiently small, and ℓ a sufficiently

large integer. For every ε ∈ (0, ρ/100) there exists a Borel set Λρ,ℓ,ε ⊂ M of pos-

itive µ-measure such that for x ∈ Λρ,ℓ,ε there exists a local smooth submanifold



182 M. HIRAYAMA AND Y. PESIN Isr. J. Math.

V−(x) of M with the following property: for y ∈ V−(x) and n ≥ 0,

(2.5) dfn(x)(f
n(x), fn(y)) ≤ ℓe−ρneεndx(x, y),

where dx denotes the induced Riemannian distance in V−(x). The local manifold

V−(x) is tangent to

E−(x) =
⊕

i;χi(x)<0

Ei(x).

For x ∈ Λρ,l,ε the size δ(x) of V−(x) is uniformly bounded from below, say by

δl. See [3, 11].

Let x ∈ Γ. Define the central Lyapunov exponent by

χc(x) = lim
n→+∞

(1/n) log ‖dxfn|Ec(x)‖.

Clearly, f has negative central exponents if and only if χc(x) < 0. If f has

negative central exponents then E−(x) = Es(x)⊕Ec(x) for almost every x ∈ M .

5. See [8]. A partially hyperbolic diffeomorphism f is called center-bunched

if

max{λs, λ
−1
u } < λc/λc.

A diffeomorphism f is said to have the accessibility property if any two

points p, q ∈ M are accessible, i.e., there are points zi ∈ M with z0 = p, zℓ = q

and such that zi lies on a stable or unstable local manifold through zi−1. We

say f is stably accessible if every g sufficiently C1-close to f is accessible.

3. Proof of Theorem 1.3

Let A− ⊂ M be the set of points for which χW(x) < 0 and A+ ⊂ M the set of

points for which χW(x) > 0. They both are f -invariant and either m(A−) > 0

or m(A+) > 0 or both (we use here the fact that the invariant measure µ is

smooth and hence, equivalent to volume). Without loss of generality we may

assume that m(A+) > 0. Fix a sufficiently large ℓ > 0 such that m(A+
λ,ℓ,ε) > 0.

Given V > 0, consider the set

YV = {y ∈ M : Vol(W(y)) ≤ V }.

Let x ∈ A+
λ,ℓ,ε be a density point of m. By the conditions of the theorem, one

can choose V > 0 such that the set

R = A+
λ,ℓ,ε ∩ B(x, r) ∩ YV

has positive volume.
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Assume on the contrary that the foliation W is absolutely continuous. Then

for almost every y ∈ R the set Ry = R ∩ W(y) has positive volume in W(y).

Using again the fact that the invariant measure µ is smooth and hence, equiv-

alent to volume we find that µ(R) > 0. Therefore, the trajectory of almost

every point y ∈ R returns to R infinitely often. Let y be such a point and {nk}

the sequence of successive returns to R. We may assume that mW(y)(Ry) > 0.

Observe also that fn(W(y)) = W(fn(y)) for every integer n.

Since fnk(y) ∈ R ⊂ YV , we have that for every k > 0,

mW(fnk(y))(f
nk(Ry)) ≤ Vol(W(fnk(y))) ≤ V.

On the other hand, by (2.4),

Vol(W(fnk(y))) ≥ mW(fnk (y))(f
nk(Ry))

=

∫

Ry

| Jac(dzf
nk |TzW(z))|dmW(y)(z)

≥ ℓ−1e(λ−ε)nkmW(y)(Ry) > V

if nk is sufficiently large. This yields a contradiction and completes the proof of

Theorem 1.3.

4. Proof of Theorem 1.2

The fact that the foliation Wc is not absolutely continuous follows from Theo-

rem 1.3. It remains to show that if µ is ergodic then the conditional measures

induced by µ on leaves of Wc are atomic. The argument below is a simple adap-

tation to our case of an argument by Ruelle and Wilkinson [15] and is presented

here for the sake of completeness.

Since the foliation Wc is invariant with respect to f , we obtain for µ-almost

every x ∈ M ,

(4.1) f∗µx = µf(x)

(recall that µx denotes conditional probability measure generated by µ on the

leaf Wc(x)). Due to ergodicity of the measure µ it suffices to show that

there exists a positive µ-measure set A ⊂ M such that for µ-almost every

x ∈ A, the conditional measure µx has an atom. Indeed, for x ∈ M set

d(x) = supy∈Wc(x) µx(y). Clearly, this function is Borel measurable, invari-

ant under f , and positive for µ-almost every x ∈ A. Since µ is ergodic we have

d(x) = d > 0 for µ-almost every x ∈ M . Let

S = {x ∈ M : µx(y) ≥ d for some y ∈ Wc(x)}.
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By (4.1), S is invariant under f , has measure at least d and hence, measure 1.

The desired result therefore would follow if we show that the conditional measure

µx has an atom.

Set Λℓ = Λρ,ℓ,ε. Fix a sufficiently large integer ℓ ≥ 1. Then there exists a set

A of positive µ-measure such that for every x ∈ A we obtain

µx(Wc(x) ∩ Λℓ) ≥ 1/2.

We shall show that for µ-almost every x ∈ A the measure µx has an atom.

It follows from the Poincaré recurrence theorem that there exists a Borel

measurable set R ⊂ A with µ(R) = µ(A) such that every point x ∈ R returns

infinitely often to R under iterations of f . This implies that the first return map

F = f τ : R → R is well-defined, where τ : R → N is the first return time to R.

Note that µ(R) = µ(F (R)) since the map F preserves the measure µR = 1
µ(R)µ.

Furthermore, since the foliation Wc is invariant under f , for x ∈ R, we have

f τ(x)(Wc(x)) = Wc(f τ(x)(x)) = Wc(F (x)).

This implies that for every x ∈ R the extension F (Wc(x)) = f τ(x)(Wc(x)) is

well-defined satisfying F (Wc(x)) = Wc(F (x)).

Let x ∈ A and for r ∈ (0, δl/10), consider a family Bx of N = N(x, r) ≥ 1

closed balls that cover Wc(x). Define

m(x) = inf

{ k
∑

i=1

diamx Bi

}

,

where the infimum is taken over all collections of closed balls Bi in Wc(x) such

that k ≤ N and

µx

( k
⋃

i=1

Bi

)

≥ 1/2

(here diamx B denotes the diameter of B with respect to the intrinsic distance

in Wc(x)). Let m = ess supx∈A m(x). We will show that m = 0.

Otherwise, there is an integer n0 such that for every n ≥ n0, we have

(4.2) ℓ∆Ne−ρneεn < m/2,

where ∆ = diamx W
c(x).

Let B(y1, r), . . . , B(yk(x), r) be those balls in Bx for which the intersection

B(yi, r) ∩ Λℓ is not empty. Since these balls cover Wc(x) ∩ Λℓ and

µx(Wc(x) ∩ Λℓ) ≥ 1/2,
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we have that

µx

( k(x)
⋃

i=1

B(yi, r)

)

≥ µx(Wc(x) ∩ Λℓ) ≥ 1/2.

By (4.1), fn
∗ µx = µfn(x) for every n ∈ Z and hence,

(4.3) µfn(x)

( k(x)
⋃

i=1

fn(B(yi, r))

)

≥ 1/2.

Since the balls B(yi, r) intersect Λℓ and have diameter less than δℓ/10, we obtain,

by (2.5), that

(4.4) diamfn(x) fn(B(yi, r)) ≤ ℓ∆e−ρneεn.

Fix n ≥ n0 and let y ∈ Fn(R). Then there is x ∈ R such that Fn(x) = y. It

follows from the definition of m, the F -invariance of the foliation Wc|R, and

inequalities (4.2), (4.3) and (4.4) that

m(y) = m(Fn(x)) ≤

k(x)
∑

i=1

diamF n(x) Fn(B(yi, r))

≤ ℓ∆k(x)e−ρτn(x)eετn(x)

≤ ℓ∆Ne−ρneεn < m/2.

This implies that

m = ess supx∈A m(x) = ess supx∈R m(x)

= ess supy∈F n(R) m(y) < m/2,

contradicting the assumption that m > 0.

We conclude that m = 0, and hence, m(x) = 0 for µ-almost every x ∈ A. This

implies that for every such x there is a sequence of closed balls B1(x), B2(x), . . .

with

lim
j→∞

diamx Bj(x) = 0

and µx(Bj(x)) ≥ 1/2N for all j ∈ N. Take zj ∈ Bj(x). Then any accumulation

point of the sequence {zj} is an atom for µx.
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5. Proof of Theorem 1.4

Let f ∈ U be a diffeomorphism for which χc
f (x) < −α for some small α > 0 and

for every x in a set Af of full µ-measure. It follows that for every x ∈ Af ,

lim
n→+∞

(1/n) log | Jac(dfn|Ec
f (x))| < −α.

Integrating over M we obtain

lim
n→∞

1

n

∫

M

log | Jac(dfn|Ec
f (x))|dµ(x) < −α.

In particular, there exists n0 > 0 such that

1

n0

∫

M

log | Jac(dfn0 |Ec
f (x))|dµ(x) < −

α

2
.

Without loss of generality we may assume that n0 = 1 so that

∫

M

log | Jac(df |Ec
f (x))|dµ(x) < −

α

2
.

Since the central distribution depends continuously on the perturbation, for a

diffeomorphism g, which is sufficiently close to f in the C1 topology, we have

∫

M

log | Jac(dg|Ec
g(x))|dµ(x) < −

α

4
.

It follows from the Birkhoff ergodic theorem that there exists a g-invariant

subset Ag with µ(Ag) > 0 such that for every x ∈ Ag

lim
n→+∞

1

n

n−1
∑

j=0

log | Jac(dg|Ec
g(g

j(x)))| ≤ −
α

4
.

Hence,

lim
n→+∞

1

n
log | Jac(dgn|Ec

g(x))| ≤ −
α

4

for every x ∈ Ag and the desired result follows.
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