Commun. Math. Phys. 193, 675-711 (1998) Communications in

Mathematical
Physics
© Springer-Verlag 1998

Equilibrium Measures for Coupled Map Lattices:
Existence, Uniqueness and Finite-Dimensional
Approximations

Miaohua Jiang*, Yakov B. Pesirt

1 Center for Dynamical Systems and Nonlinear Studies, Georgia Institute of Technology, Atlanta, GA 30332,
USA
2 Department of Mathematics, The Pennsylvania State University, University Park, PA 16802, USA

Received: 9 May 1997 / Accepted: 24 September 1997

Abstract: We consider coupled map lattices of hyperbolic type, i.e., chains of weakly
interacting hyperbolic sets (attractors) over multi-dimensional lattices. We describe the
thermodynamic formalism of the underlying spin lattice system and then prove exis-
tence, unigueness, mixing properties, and exponential decay of correlations of equilib-
rium measures for a class oftlller continuous potential functions with a sufficiently
small Holder constant. We also study finite-dimensional approximations of equilibrium
measures in terms of lattice systerfisgpproximations) and lattice spin systerfis{
approximations). We apply our results to establish existence, uniqueness, and mixing
property of SRB-measures as well as obtain the entropy formula.

Introduction

Coupled map lattices form a special class of infinite-dimensional dynamical systems.
They were introduced by K. Kaneko [Ka] in 1983 as simple models with essential fea-
tures of spatio-temporal chaos. These systems are built as weak interactions of identical
local finite-dimensional subsystems at lattice points. Such systems are proven to be use-
ful in studying qualitative properties of spatially extended dynamical systems. They can
easily be simulated on a computer, and many remarkable results about coupled map
lattices were obtained by researchers working in different areas of physics, biology,
mathematics, and engineering.

Bunimovich and Sinai initiated the rigorous mathematical study of coupled map
lattices in [BuSi]. They constructed special Sinai-Bowen—Ruelle (SRB)-measures for
weakly coupled expanding circle maps (under some additional assumptions that the
interaction is of finite range and preserves the unique fixed point of the map). SRB-
measures are invariant under both space and time translations and have strong ergodic
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properties including mixing, positive entropy, and exponential decay of correlations.
From the physical point of view this is interpreted as evidence of spatio-temporal chaos.
In [BK1-BK3], Bricmont and Kupiainen extended the results of Bunimovich and Sinai

to general expanding circle maps. In [KK], Keller andikle studied the case when the
local subsystems are piecewise smooth interval maps. A detailed survey can be found
in [Bu].

The first attempt to analyze coupled map lattices with multidimensional local sub-
systems of hyperbolic type was made by Pesin and Sinai in [PS]. They constructed
conditional distributions for the SRB-measure on unstable local manifolds assuming
that the local subsystem possesses a hyperbolic attractor. In [J1, J2], Jiang considered
the case when a local subsystem possesses a hyperbolic set and obtained some patrtial
results on the existence and uniqueness of Gibbs distributions. In this paper we ex-
tend these results and establish the existence and uniqueness of Gibbs distributions for
arbitrary chain of weakly interacting hyperbolic sets.

Our main tool of study is the thermodynamic formalism which is applied to the
lattice spin system of statistical mechanics associated with a given coupled map lattice.
We point out that the lattice spin systems corresponding to coupled map lattices are of
a special type and have not been studied in the framework of the “classical” statistical
mechanics until recently. The study of Gibbs distributions for these special lattice spin
systems required new and advanced technique which was developed in [JM] and [BK2,
BK3].

In[JM], the authors considered two-dimensional lattice spin systems. Using polymer
expansions of partition functions they found an explicit formula for Gibbs states in
terms of the potentials. They proved existence and uniqueness of Gibbs states for the
special class of potentials arising from the corresponding coupled map lattices (which
are generated bydider continuous functions with sufficiently smalblder constant).

They also established continuity of Gibbs states over such potentials. In [BK2, BK3],
the authors considered general multidimensional lattice spin systems. Using expansions
of the correlation functions they also established existence and uniqueness of the Gibbs
states as well as the mixing property for the same type of potentials. In this paper we
include a detailed discussion of lattice spin systems and their relation to coupled map
lattices. The appendix contains a concise description of polymer expansions. This makes
the paper relatively self-contained and thus more accessible for specialists in dynamical
systems who are not very familiar with this highly specialized area of statistical physics.

The paper is divided into five sections. In the first three sections we generalize results
of [J1] on the topological structure of coupled map lattices of hyperbolic type. Our main
result is that these systems are structurally stable (Theorem 1.1). This result allows us
to obtain a complete description of topological properties of coupled map lattices of
hyperbolic type as well as construct their symbolic representations.

When the interaction is short ranged and thus the coupling is exponentially weak, the
conjugacy map allows one to use Markov partitions for the uncoupled map lattice to build
Markov partitions for the coupled map lattice. This leads to a symbolic representation
of the lattice system as a lattice spin system of statistical mechanics. In [JM] (see also
[BK3]) the authors established uniqueness of Gibbs states and exponential decay of
correlations for these lattice spin systems. We use their results (as well as results in
[BK3]) to establish uniqueness and the exponential mixing property of equilibrium
measures. Our main result is Theorem 3.6.

In Sect. 4 we construct “natural” finite-dimensional approximations of equilib-
rium measures. There are two different types of approximations. One results from
Z-approximations by finite volumes in the lattice while the other is obtained #éh
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approximations by finite volumes in the lattice spin systems. Our main results are stated
in Theorems 4.2 and 4.3.

In Sect. 5 we apply our results to establish the existence, uniqueness, and mix-
ing property of SRB-measures for chains of weakly interacting hyperbolic attractors.
We show that these measures are Gibbs statesdlatel continuous functions and we
describe them in terms of their finite-dimensional approximations using lattice spin sys-
tems (see Theorem 5.1). One direct consequence of our construction of SRB-measures
is a formula for theZ*'-measure theoretic entropy (see Remark (5) in Sect. 5; see
[J3] for the detailed proof). This generalizes the well-known formula for the entropy of
SRB-measures in the finite-dimensional case.

1. Coupled Map Lattices

1.1. Definition of coupled map latticetet M be a smooth compact Riemannian man-
ifold and f a C™-map of M, r > 1. Let alsoZ?, d > 1 be thed-dimensional integer
lattice. SetM = ®;cz¢ M;, wherel; are copies of\/. The spaceM admits the struc-
ture of an infinite-dimensional Banach manifold with the Finsler metric induced by the
Riemannian metric o/, i.e.,

[0 = sup ||vi].- (11

iezd
The distance inM induced by the Finsler metric is given as follows:

p(l_‘vg) = Supd(xiayi)7 (12)
iczd

wherex = (z;) andy = (y;) are two points inM andd is the Riemannian distance
onM.

We define thalirect productmap onM by F' = ®iezdfi’ wheref; are copies off .

Consider a mag: on M which isC"-close to the identity mapi. Setd = F o G.
The mapG is said to be ainteractionbetween pointsspace sitesof the latticeZ? and
the map® is said to be gerturbationof F'. Iterates of the magp generate &-action
on M calledtime translations

We also consider the group action of the latfiteon M by spatial translationsS*.
Namely, for anyk € Z¢ and anyz = (z;) € M, we set(S*(z)), = zix.

The pair of actions®, .S) on M is called acoupled map latticggenerated by the
local mapf and the interactiod’. If G commutes with the spatial translatiosi§, i.e.,
Sk o G =G o S*, we callG spatial translation invariantin this case the paird, S)
generates Z4*1-action onM. If G = id, the lattice is calledincoupled

One can also define the perturbation in the foabm= G o F. If F' is invertible
(and in what follows we will always assume this) the study of perturbations of such
a form is equivalent to the study of perturbations in the previous form sthed =
Fo(F~toGo F)with F~10o G o F being close to the identity.

1.2. Coupled map lattices of hyperbolic type consider a special type of coupled map
lattice assuming that the local map is hyperbolic. More precisely; let M be an open
set,f : U — M aC*-diffeomorphism, and\ C U a closed invariarttyperbolicset for

f. The latter means that the tangent buritlleV/ over A is split into two subbundles:
TAM = E* @ E* , whereE* andE* arestableandunstable subspace§hey are both
invariant under the differentidD f, and for some&” > 0 and 0< A\ < 1,
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IDf™v| < CA*||v||forn >0, ve E?; (1.3)
|IDf~"w| < CA*||w| forn >0, w e E“.

The hyperbolic sef is calledlocally maximalif there exists an open sét O A such
thatA =, f"(U), whereU is the closure ot/.

For any pointz in a hyperbolic setA one can construdbcal stableandunstable
manifoldsdefined by

Vi) ={y € M 1 d(z,y) <€ d(f"(z), f"(y)) — 0, n — +oo};
Vi) ={y e M :d(z,y) <€, d(f"(x), ")) = 0, n— —oc}.  (14)

It is known that these submanifolds are as smooth as thefmap

The definition of hyperbolicity can easily be extended to diffeomorphisms of Banach
manifolds. Suppose that is a C-diffeomorphism of an open séf of a Banach
manifold NV (endowed with a Finsler metric) and a getc U is invariant undef (note
that A may not be compact). We say thatis hyperbolicif the tangent bundl@\ N
over A admits a splittingl N = E* & E* with the following properties:

1) E® and E" are invariant under the differentiél H;

2) for any continuous sectionsvalued inE* andw valued inE" we have

IDH™|| < CAMv]| and [|DH "w| < CA"|w],

for some constants' > 0 and 0< A < 1 independent of andw;
3) there existd > 0 such that for any the angle betwee®*(z) and E“(z) is
bounded away from zero, i.e.,

inf{ll¢ —nll : £ € E*(2), n € E*G)|, [[€]] = lInll = 1} = b. (1.5)

Note that in the finite-dimensional case the last condition holds true automatically.
It is easy to see that the mapis hyperbolic in the above sense, i.e., it possesses an
infinite-dimensional hyperbolic set

AF =®;cgdli,

whereA; is a copy ofA. Moreover, for each point = (z;) € Ar the tangent space; M
admits the splittinglzM = E*(x) & E“(x), where thestableandunstable subspaces
are

Ee(:z) = ®Z‘eszs($i)7 Eu(@ = ®ieszu($i)' (16)

Furthermore, for each point = (x;) € Ar thelocal stableand unstable manifolds
passing through are

Vi(@) = ®,caVi (@), VE@) = ®,254Vi"(72), (1.7)

whereV;*(z;) andV;*(z;) are the local stable and unstable manifolds;atespectively.
If the hyperbolic set\ is locally maximal, S0 iA .

1.3. Shortrange mapd.he goal of this paper is to investigate metric properties of coupled
map lattices of hyperbolic type. In the finite-dimensional case one uses thermodynamic
formalism (see [Bo, Ru]) to construct invariant measures and then studies the ergodicity
of hyperbolic maps with respect to these measures. The extension of this formalism to
the infinite-dimensional case faces some obstacles. The most crucial obstacle is non-
compactness of the hyperbolic get. One of the ways to overcome this obstacle is to
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introduce a new metric oM with respect to which the space becomes compact. This
metric is known as anetric with weight&nd is defined as follows: given€ ¢ < 1 and
x,y € M, we set

pq('ﬂ g) = Sup qll‘d(xza yl), (18)
iezd
Where\i\ = ‘Zl| + |12| +---+ ‘Z'd|, = (il,iz, s ,id) e 7°.

Fordifferent0< ¢ < 1the metricg, induce the same compact (Tychonov) topology
in M.

Although working withp,-metrics gives us some advantages in studying invariant
measures for the maps and @, it also introduces some new problems. For example,
the setM is no longer a differential manifold and the mapsand ®, while being
continuous, need not be differentiable. In particular, the/setbeing compact is no
longer hyperbolic in the above sense but only in some weak sense. More precisely, this
set istopologically hyperbolici.e., for every point inA ¢ the local stable and unstable
manifolds (1.7) are, in general, only continuous (not smooth).

We will restrict to the class of perturbations to be able to keep track of the hyperbolic
behavior of trajectories for the perturbation mé&p More precisely, we consider the
special class of perturbations called short range maps. The concept of short range maps
was introduced by Bunimovich and Sinai in [BuSi] and was further developed by Pesin
and Sinai in [PS] (see also [KK]). We follow their approach.

Let) be asubset oM andG : ) — M amap. We say that isshortrangedf G is
of the formG = (G;),.,q4, WhereG; : Y — M; satisfy the following condition: for any
fixed k € Z¢ and any points: = (z;),y = (y;) € Y withz; = y; forall j € Z4,j # k
we have

whereC and# are constants and < 0, 0 < § < 1. We calld thedecay constaraf G.
If G is spatial translation invariant th&rm can be shown to be short ranged with a
decay constart, if and only if

d(Go(@), Go(®)) < CO¥ld(zy, yr), (1.10)

foranyz = (z;),y = (v;) € Y withz; =y; forall j € Z, j Z k.
In the following Propositions 1.1-1.3 we collect some basic properties of short range
maps. The proofs can be found in [J1].

Proposition 1.1. LetG be aC-diffeomorphism of an open détc M onto its image.
Assume thafr is short ranged with a decay constahtThen

1) the differential ofG at every pointz, DzG : Tz M — Tz M, is a short range linear
map with the same decay constént
2) the bundle maG is short ranged with the same decay constant

Moreover, if the mays is continuous with respect tog-metric then either of statements
(2) or (2) implies thatZ is short ranged.

Proposition 1.2. For any0 < 6 < 1, there existg > 0 such thatifG : M — Misa
short rangeC**-diffeomorphism with the decay constardnddist:(G, id) < e then
G~lis also a short range map.

Short range maps are well adopted with the metric structutdtofenerated by,-
metrics as the following result shows.
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Proposition 1.3. 1) LetG : M — M be a short range map with a decay constéant
ThenG is Lipschitz continuous as a map frquit, p,) into itself for anyg > 6.

2) If Gis aLipschitz continuous map fropM, p,) to (M, p,,), with somé < ¢1 < 1,
thenG is short ranged with the decay const@nt q.

3) Foranye > 0and0 < # < ¢ < 1, there exis > 0 such that ifG is a C1*-
spatial translation invariant short range map #ff with the decay constartand
disto1(G, id) < 6, thenG is Lipschitz continuous in the,-metric with a Lipschitz
constantl <1 +e.

1.4. Structural stability.We consider the problem of structural stability of coupled map
lattices of hyperbolic typeX1, F). It is well-known that finite-dimensional hyperbolic
dynamical systems are structurally stable (see for example, [KH, Sh]) and so are hyper-
bolic maps of Banach manifolds which admit a partition of unity (see [Lang]). We stress
that the Banach manifold! = ®,c7« M; does not admit a partition of unity and this
result cannot be applied directly. In order to study structural stability we will exploit the
special structure of the system\, F') as the direct product of countably many copies
of the samefinite-dimensional dynamical system/( f). This enables us to establish
structural stability by modifying arguments from the proof in the finite-dimensional
case.

From now on we always assume that the interacfias short ranged.

Theorem 1.1. 1) Foranye > Othere exist® < § < dp such that, ilistca (@, F) < 6,
then there is a unique homeomorphiBmA r — M satisfying® o h = h o F|a,.
with dist-o(h, id) < €. In particular, the setA = h(AF) is hyperbolic and locally
maximal.

2) Forany0 < @ < 1there exist$y > 0 such that ifG is a C?-spatial translation
invariant short range map with a decay consté@randdist-:(G, id) < J, then the
conjugacy mayh is Holder continuous with respect to the metpig, 0 < ¢ < 1.
Moreover,

h = (hi());cz Satisfies the following property:

d(ho(x), ho(y)) < C(O)d™ (xk, yk) (1.11)

for everyk # 0and anyz,y € M withz; = y;,i € Z%,i # k, where0 < o < 1
andC'(§) > Ois a constant. Furthermoré&;(§) — 0 asdist-1(G, id) — O.

Proof. We describe the main steps of the proof of Statement 1 recalling those arguments
that will be used below (detailed arguments can be found in [J1])1/Atz) be an open
neighborhood ofA - andC°(A -, U(A r)) the space of all continuous maps fraky-

to U(A ). Consider the map

G:CUAR, U(AR)) — CUAR, M) (L12)

defined by — ® o 30 F~1. We wish to show thaf has a unique fixed point near the
identity map. Le™®(A », T M) be the space of all continuous vector fields/op. We
denote byZ the identity embedding of ;- into M, by B.,(Z) the ball inC%(A ¢, U(A r))
centered af of radiusy, and byA : B,(Z) — %A, T M) the map that is defined as

follows:
AB(y) = (exp, Bi(1))iez- (1.13)

Whenvy is small.A is a homeomorphism onto the b, (0) in I'°(A g, TM) centered
at the zero section 0 of radiys Set
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G =AoGoAr: D,(0)— I%Ap, TM). (1.14)

If a sectionv € D.(0) is a fixed point ofG’, thenA o G o A~ = v, and hence the
preimage ob, A~1v € B, (Z), is a fixed point 0.

To show thatg’ has a fixed point inD.(0) we want to prove that the following
equation has a unique solutiorin D.,(0):

~((DG")]o — 1d)"HG'"v — (DG")|ov) = v. (1.15)

Note thatl'°(A , T M) is a Banach space and the m(gs differentiable inD,(0). In

fact, DG’ is Lipschitz inv since the exponential map and its inverse are both smooth.
Since the may- is short ranged, so are the mapsand (DG’)|o. Therefore, we can use
weak’ bases to represenb(G’) in a matrix form. This enables one to readily reproduce
the arguments in [KH] (see Lemma 18.1.4) and, exploiting hyperbolicity,add show
that:

1) the operator-((DG')|o — Id)~* is bounded,;

2) the mapk : D,(0) — I'°(Ap, TM) defined by

Kv=—((DG")|o — Id)"Y(G'v — (DG")|ov) (1.16)

is contracting in a smaller balD.,(0) C D,(0) C %A p, TM);
3) K(D1(0)) C Dy (0).

Thus,K has a unique fixed point i, (0).

We now proceed with Statement 2 of the theorem. In order to establish (1.11) we
need to show that the sectiorhas such a property. Let be a section satisfying (1.11).
Since the mag is short ranged and sufficiently closed to an uncoupled contracting
map, it is straightforward to verify that the sectiiv also satisfies (1.11).

Since the may~ is spatial translation invariant, so ks The Holder continuity of
h was proved in [J1] by showing that stable and unstable manifold® feary Holder
continuously in the,-metric. In Sect. 5, we describe finite-dimensional approximations
for h which can be also used to establish an alternative proof of thédt continuity.

d

The hyperbolicity of the mag| », enables one to establish the following topological
properties of this map:

1) the manifoldsVg (h(x)) = h(VE(z)) andVE (h(x)) = h(VE(x)) are local stable and
unstable manifolds fodb. They are infinite-dimensional submanifolds/of and are
transversalin the sense that the distance between their tangent bundles is bounded
away from 0.

2) stable and unstable manifolds férconstitute docal product structureof the set
As. This means that there exists a constastich that for anys,y € Ae with
p(z,y) < ¢, the intersectioV (z) N V#(y) consists of a single point which belongs
10 Ag.

Furthermore, in [J1] the author proved the following result.
Theorem 1.2. If the mapf|, is topologically mixing then so is the mag»,, .

Although the spacé\ equipped with they,-metric is not a Banach manifold and
the mapsF' and @ are not differentiable, Theorem 1.1 allows one to keep track of the
hyperbolic properties of these maps. More precisely, the following statements hold:
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1) The local stable and unstable manifolds are Lipschitz continuous with respect to the
pq-metric. The mapb is uniformly contracting on stable manifolds and the rdap
is uniformly contracting on unstable manifolds. The contracting coefficients can be
estimated from above by (1ed\ with e arbitrary small.

2) The local stable and unstable manifolds are transversal ip tineetric in the fol-
lowing sense: for any points, y € Vi (z), andz € Vi (z),

Pu(T D)+ py(T, ) < CpylF ), (117)

whereC is a constant depending only on the size of local stable and unstable mani-
folds and the number.

The first property was originally proved in [PS] based upon the graph transform
technique. The second property was established in [J2]. These properties allows one to
say that the mag is “topologically hyperbolic”.

2. Existence of Equilibrium Measures

Let Q be a compact metric space and Z?*1-action on$2 induced byd + 1 commuting
homeomorphismsj > 0. Let also/ = {U;} and be a cover of2. For a finite set
X c 741 define

UK =VpexT *U. (2.1)

Denote by| X | the cardinality of the seX.
The actionr is said to beexpansivef there exists > 0 such that for any§, n € €,
d(r*¢,7%n) < eforall z € Z¥* implies¢ = 7.

A Borel measureu on 2 is said to ber-invariant if p is invariant under alld + 1
homeomorphisms. We denote the set ofraithvariant measures o by 1(£2).
Let u € I(2) andUd = {U;} be a finite Borel partition of2. Define

H(p,U) == u(Us)log p(U), (22)
and then set
_ 1 X(@)y = jnf X(a)
h‘l’(p“?u) _al’“.’lgﬂlﬂoo |X(a)‘H(u)u ) - Igf |X(a)|H(Iu,u )7 (23)

WhEYEX(CL) = {(il...id+1) S Z a = (al...ad+1), ap > O, |7k‘ < ag, k =
1,...,d +1}. The (measure-theoretiehtropyof p is defined to be

hr () = suph(u,U) = lim ko (u,U), (2.4)
u diamu—o

A —

where diand/ = max (diaml;).
Let &/ be a finite open cover a2, ¢ a continuous function o, and X a finite
subset ofZ4*1. Define

Zx(p,U) = min { ;exp[gien;j ;(30(7”5)]}» (25)

where the minimum is taken over all subcovéf; } of /X Set
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1
P.(p,U)= limsup ——logZx(p,U). 2.6
(p,U) alwadﬂgm X(0) 9Zx(a)(p,U) (2.6)
The quantity .
Pr(p)= lim P (p,U) = supP-(p,U) (2.7)
diamu—o u

is called thetopological pressuref ¢ (one can show that the limit in (2.7) exists).
For any continuous functiop and anyv € I(2) thevariational principleof statis-
tical mechanics claims that

P(o)= sup (h(v)+ / pdv). 2.8)

vel(Q)

Ameasurg; € I(R)is called arequilibrium measuréor o with respect to &**-action
T if
P = o)+ [ . (29)

In [Ru], Ruelle shows that expansiveness of.4-action implies the upper semi-
continuity of the metric entrop¥i.- () with respect tqu. Therefore, it also implies the
existence of equilibrium measures for continuous functions. For uncoupled map lattices
one can easily check that the actidf §) is expansive om\ ¢ in the p,-metric. The
expansiveness of the actio® (S) on A4 is a direct consequence of the structural
stability (see Theorem 1.1). Thus, we have the following result.

Theorem 2.1. Let T = (@, S) be aZ4*1—action onAg, where® = F o G and G is
short ranged spatial translation invariant and sufficiently-close to identity. Then for
any0 < ¢ < 1and any continuous functiop on (A, p,), there exists an equilibrium
measureu,, for ¢ with respect tor. The measurg,, does not depend an

While this theorem guarantees the existence of equilibrium measures for continuous
functions (with respect tp,-metrics), it does not tell us anything about uniqueness and
ergodic properties of these measures. One can show that uniqueness of equilibrium mea-
sures implies their ergodicity (see [Ki]) and usually some stronger ergodic properties
(mixing, etc.).

Ruelle [Ru] obtained the following general result about uniqueness which is a direct
consequence of the convexity of the topological pressure on the Banach({ace)
of all continuous functions in a,-metric.

Theorem 2.2. Assume that the mapis topologically mixing. Then for a residual set of
(continuous) functions iA°(A ), the corresponding equilibrium measures are unique.

3. Uniqueness of Equilibrium Measures

Ruelle’s theorem does not specify the class of functions for which the uniqueness takes
place. In this section we establish uniqueness faldelr continuous functions with suf-
ficiently small Hblder constant. Our main tool is the thermodynamic formalism applied

to symbolic models corresponding to the coupled map lattices.

3.1. Markov partitions and symbolic representatior@@ne of the main manifestations
of Structural Stability Theorem 1.1 is that the conjugacy map continuous inp,-
metric and is even Blder continuous. Therefore, the study of existence, uniqueness, and
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ergodic properties of an equilibrium measprecorresponding to a (blder) continuous
functionp on A4 for the perturbed mag is equivalent to the study of these properties
for the equilibrium measurg,., for the unperturbed map'.

We shall assume thdtis topologically mixing and the hyperbolic satis locally
maximal. For any > 0 there exists #Markov partitionof A of “size” e. This means
that A is the union of set®;, i = 1,. .., m satisfying:

1) each seR; is a “rectangle”, i.e., for any, y € R; the intersection of the local stable
and unstable manifoldg®(x) N V*(y) is a single point which lies iR;;

2) diamR; < e andR; is the closure of its interior;

3) R; N R; = 0R; N OR;, wheredR; denotes the boundary &;;

4) if x € R; and f(z) € intR;, then f(V*(z, R;)) C V*(f(z),R;); if x € R; and
f~Y(x) € intR;, thenf~Y(V¥(x, R;)) C V¥(f(z), R;); hereV(z, R;) = VS(x) N
R; andV“(x, Rz) = V“(CL‘) NR;.

Thetransfer matrixA = (a;;)1<:,;<m associated with the Markov partition is defined
as follows:a;; = 1if f(intR;) NintR; Z 0 anda;; = 0 otherwise.

Let (X4, 0) be the associated subshift of finite type (whereenotes the shift).
For eacht € ©4 the sef 2 f~"(Re@) contains a single point. Thending map
7 X4 — Adefined byré = (72 f~"(Rew)) is @ semi-conjugacy betweghand
o,i.e,for=moo.

We considemﬁd as a subset of the direct prodet’”, whereQ = {1,2, ..., m}.
The elements will be denoted By= £(i, j);cz4 jez, OF sometimes by = &;(4)icza jez-
This symbolic space is endowed with the distance

po(&m = sup ¢"MleG, §) — G, 5)l, (3.1)
(i,j)eZd+l

which is compatible with the product topology. Let ando, be the time and space
translations orﬁﬁd defined as follows: fo¢ = (&) € =5, & = &()) € Za,

OF)() = &G +E), ke Z;  (0F€); = €up, k € 27 3.2)

, . — d . . .
We define the coding map= ®, ;a7 : ¥4 — Ap.Itis asemi-conjugacy between the
uncoupled map lattice and the symbolic dynamical system, i.e., the following diagram
is commutative:

(F,5)

AF e AF
T T
d 0t,0s d
> A/ S > (3.3)

The following statement describes the properties of the malps proof follows
from the definitions. We denote the boundary set of the Markov partitionf foy OR
and the boundary set of the induced the Markov partition pfby 5. The set3 can be
written in the form of a countable uniof: = Uy, ¢4 B(k), whereB(k) = {z = (2;)ie,a :
XL € 8R}
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Proposition 3.1. (1) = is surjective and Lipschitz continuous with respect to ghe
metric for any0 < ¢ < 1.

(2) Tooy=Fom, mwoos=Som, i.e,mor*=To0T.

(3) 7 is injective outside the &, ... 7" (7 1(B)).

3.2. Coupled map lattices and lattice spin systeriifie coding mapr enables one

to reduce the study of the uniqgueness and ergodic properties of equilibrium measures
corresponding to a (élder) continuous functiop on (A, p,) for the Z4*1-action

7 = (F, S) to the study of the same properties of equilibrium measures corresponding

) _ d . - .
to the functiony* = p o T on X% for the actionr* = (o, o,). In statistical physics the
latter is calledhe lattice spin systenWe describe the reduction in the following series
of results.

Theorem 3.1. (1) Lety be a continuous function oA . ThenPr-(¢*) > P, ().
(2) Letyu* be ar*-invariant measure oEﬁd andy = p* o L. Thenh, (1) < hp-(u*).

As in the case of finite-dimensional dynamical systems it is crucial to know that the
projection measurg = p* o 7, ! of the equilibrium measurg* corresponding to the
functione* is not concentrated on the bound@wf the Markov patrtition, i.e., that

pH(@H(B) = 0. (34)

Theorem 3.2. Let ¢ be a continuous function o r. Assume that the condition (3.4)

holds for any equilibrium measuge® corresponding ta>* = ¢ o 7. Then,

(1) the pressure’,«(¢*) = P(p);

(2) the measurg: = p* o 7. * is an equilibrium measure correspondingto

(3) if u, is an equilibrium measure fop on A, then there exists an equilibrium
measureu” for ¢* = ¢ o 7 with the propertyu,(E) = w*(7~1(E)) for any Borel
setE C Ap.

Theorem 3.1 and Statements 1 and 2 of Theorem 3.2 follow directly from the defi-
nitions of topological pressure and metric entropy forZeactions and the variational
principle (see (2.4) and (2.7)). Statement 3 of Theorem 3.2 can be proved using argu-
ments similar to those in the finite-dimensional case (see [Bo]).A&k the set of
continuous functions oEﬁd of the formg o 7, whereg is a continuous function on r.

Clearly, A is a closed linear subspace of the space of all continuous functioﬁédon
Define a linear functionaF on .4 by the formulag o @ — [ g du and extend it then to
the entire space by the Hahn-Banach theorem. Consider a new functibmdlich is a
weak‘-accumulation point of the average of translationgadver finite volumes of the
lattice. Lety* be the measure correspondingf®. One can see that" is a translation
invariant measure. Finally, one can use the variational principle to show:thiatan
equilibrium measure.

In the finite-dimensional case Condition (3.4) holds provided the potential function
is Holder continuous. This is due to the fact that the equilibrium measure is unique and
hence is ergodic [Ma]. In the infinite-dimensional case the ergodicity efith respect
to time translations is still sufficient for (3.4) to hold.

Theorem 3.3 ([J1]). Lety* be an equilibrium measure corresponding to éléer con-

. . d . N . .
tinuous function orE% . Assume that* is ergodic with respect to the time translation
0. Then it satisfies Condition (3.4).
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The proof of this theorem is similar to the argument in the finite-dimensional case
(see [Bo]). The boundarg can be represented as the unibre= U, cz.5(k), where
B(k) = {z = (z;) : z\, lies on the boundary of the Markov partition fff}. EachB(k)
can be decomposed into “stable” and “unstable” pd&ft¢k) and5~ (k) (depending on
whetherx, lies on stable or unstable local manifolds). The stable part is invariant under

F andis aclosed subset. Thus, its preimagﬁﬁﬁ, 7~ Y(B*(k)) is a closed subset and is
invariant under time translations. By ergodicity, its measure is either zero or one. Since
every equilibrium measure is a Gibbs state and takes on positive values on open sets (see
below) the measure of the stable part'B*(k) is zero. Applying the above arguments

to the inverse of", we conclude that the measure of the unstablespat8= (k) is also

zero and hence Eg. (3.4) holds for the whole boundary set.

Uniqueness of the equilibrium measure implies its ergodicity with respect to the
Z%*1-action induced by, S). This is weaker than ergodicity with respect to the time
translation. In [J1], the author proved directly that for a class ofder continuous
functions Condition (3.4) holds.

Recall that a functiop on A ¢ is Holder continuous in thg,-metric if

lp(@) — ()| < cpg (2, y),

wherez = (z;),y = (y;) € Ar. Note that if the functionp is Holder continuous on

. . . — d . :
Ar (in the p,-metric) then the functiop* = ¢ - 7 on T%  is also Hlder continuous.
The following statement enables one to reduce the study of the uniqueness problem for
coupled map lattices to the study of the same problem for lattice spin systems.

Theorem 3.4 ([J1]). Let ¢ be a Hlder continuous function ofA r, p,). Assume in

addition that B
lp(x) — p(¥)| < cpg(z,y),
wherer = (2;),y = (;) € Ar, o = yo,andcis sufficiently small. Thep,* (7 —%(B)) = 0

o . 74 .
holds for any equilibrium measuge* for o* on X’ . Therefore, for this class of poten-
tial functions, the uniqueness of equilibrium measuredbimplies the uniqueness of
equilibrium measure fop.

In the next section we shall actually show that the equilibrium measure*fds
unique and exponentially mixing for the class dilHer continuous functions satisfying
the condition of Theorem 3.4.

3.3. Gibbs states for lattice spin systervge remind the reader of the concept of Gibbs
states for lattice spin systems of statistical physics.

_ d +. . . .
An elementt € X% C Q%" is called aconfiguration For any subsek c 7z
we set
— . d -
Qx ={nc Q¥ : there existg € ¥4 such that){i) = £(i), i € X }.
The elements of2 x will be denoted bfx, or sometimes b;f_(X). One can say that
Q x consists of restrictions of configuratiofiso X .
. . d . _
Let ¢ be a Hlder continuous function o&%  with respect to they,-metric (see
- d
(3.1)). For each finite subsat c Z*! define the functiom . (¢) on %4 by

1
3 i@ P (Xsezan o(771) — @(77€))

px(©) = (35)
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wherer? is the action &) o (0,)/, X = Z4*1\ X, andz = (i, j), i € Z4, j € Z.
d
A probability measure, on Eﬁ is called aGibbs statdor ¢ if for any finite subset
X c 741,

px (€)= | px(©@dug, (3.6)
X

wherep  and pis are the probability measures 6y and 2 - respectively that are

induced by natural projections. This equation is known aBtiterushin-Ruelle—Lanford
equation

There is an equivalent way to describe Gibbs states correspondirigdert¢ontin-
uous functions on symbolic spaces. kebe such a function. For each finite volunie
we define a conditional Gibbs distribution @y under the given boundary condition

n* by
1

X)) = _ —, (3.7
M e (Toam o) — o0 + 7 ()

Whereg(X)+n (X) denotes the (admissible) conﬂguratmn)émX whose restrictions
to X and X areé(X) andn® (X) respectively. The set of all Gibbs states {ois the
convex hull of the thermodynamic limits of the conditional Gibbs distributions.

The relation between translation invariant Gibbs states and equilibrium measures
can be stated as follows (see [Ru]).

Theorem 3.5. If the transfer matrixA is aperiodic thery is an equilibrium measure
for  if and only if it is a translation invariant Gibbs state far.

In statistical mechanics Gibbs states are usually defined for potentials rather than for
functions. We briefly describe this approach.
A potentialU is a collection of functions defined on the family of all finite configu-
rations, i.e.,
U={Ux: X cz Ux:Qx — R}.

Gibbs state$or a potentialy are defined as the convex hull of the thermodynamic limits
of theconditional Gibbs distributions

expO_ynyp Uv (E(X) + 7 (X))
2 iRy () POy axs0 Uv (1)

pi x (E(X)) = (3.8)

wheren® is a fixed configuration.
We describe potentials corresponding told¢ter continuous functions (in the,-
metric (see (3.1)). Lep be such a function. We writg in the form of a series

= on (3.9)
n=0

Here the value ap,, depends only on configurations inside tHe- ()-dimensional cube
@, centered at the origin of sidex2< - - - x 2n. We also se)o = (0, 0). We define the
functionsyp,, as follows. Fix a configuration* and set

©0(€) = ¢(£(Qo) + T (Q0)). (3.10)
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Continuing inductively we define

0ne1(6) = P(E(Qner) + T (Que1)) — ¢ (EQ) +T(@n)), n=12,.... (3.11)

It is easy to see thdfp,, || — O exponentially fast as — co. We define the potential
U, associated with the functiopon Q,, by setting

Up(E(Qn)) = n(E(Qn))- (3.12)

For other ¢ + 1)-dimensional cubes that are translation@gfwe assign the same value
of U,,.. For other finite subsets @ we define the potential to be zero. Thus, we obtain
a translation invariant potential whose values on finite volumes decrease exponentially
when the diameter of the volume grows.

If @0 = 0, the value of the corresponding potentig) is bounded by the Blder
constant of the functiop. More generally, let us set

Fla,g,€) = {p 1 [(€) — o@)] < ep2(E, M}, (3.13)

[Ug.ll=  sup |Ug, (€@, (3.14)
E(Qn)EQQn

P(g.€) ={U : sggq‘"IIUQnH < e} (3.15)

It is easy to see that, i € F(a, ¢, ¢€), thenU, € P(q*,€). On the other hand/, €
P(q,€) impliesp € F(1/2,q,¢).

The definition of Gibbs states corresponding to potentials is consistent with the
one corresponding to functions. More precisely, Gibbs distributions corresponding to a
Holder continuous function are exactly the Gibbs distributions corresponding to the
potentiall,,.

As we have seen the problem of uniqueness of equilibrium states on symbolic spaces
can be reducedto the problem of uniqueness of translation invariant Gibbs states provided
the functiony is Holder continuous. This problem has been extensively studied in
statistical physics for a long time. In the one-dimensional case (when0) Gibbs
states are always unique and are mixing with respect to the shift provided the potential
decays exponentially fast as the length of intervals goes to infinity (see [Ru]). In the
case of higher dimensional lattice spin systems the well-known Ising model provides an
example where the Gibbs states are not unique even for potentials of finite range (see
[Sim]). We first describe the two-dimensional Ising model in the context of spin lattice
systems.

Example 1 (The Ising Modet,= 1). Define the potential functiog on 2 by
#(€) = B(£(1,0)(0,0) +£(0,0)¢(0, 1)). (3.16)

Then the following statements hold:

(1) ¢(&) depends only on the values&ét three lattice points(1, 0), (O, 0), and(0, 1)
and is Hblder continuous;

(2) there existgiy > 0such that fors > [y Gibbs states corresponding to the potential
U, generated by are not unique.

Based upon this Ising model we describe now an example of a coupled map lattice
and a Hlder continuous function with non-unique equilibrium measure.
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Example 2 (Phase Transition For Coupled Map Latticdsgt M be a compact smooth
surface and 4, f) the Smale horseshoe. One can show that the semi-conjughey —
tweenM = ®;czM and{0, 1}ZZ induced by the Markov partition can be chosen as
an isometry. Thus, the function = ¢ o 71 is Holder continuous om r, where the
function ¢ is chosen as in Example 1. Since the boundary of the Markov partition is
empty Condition (3.1) holds. We conclude that there are more than one equilibrium
measure for the function.

The following statement provides a general sufficient condition for uniqueness of

Gibbs states. Ldl be a translation invariant potential on the configuration S|§z¥cdé1 ,
whereQ ={1,2,...,m}.
(1) ( Dobrushin’s Uniqueness Theord®l, Sim]): Assume that

S (X -DIUE)) <1 (3.17)

X:0eXx

Then the Gibbs state f@r is unique.
(2) ([Gro, Sim]) There exist- > 0 ande > 0 such that if

> e OUX)<e (3.18)
X:0eXx

(d(X) denotes the diameter &f) then the unique Gibbs state is exponentially mixing
with respect to th&4*!-action onQ%"".

The proof of Dobrushin’s uniqueness theorem exploits the direct product structure

of the configuration spac@ZM. This result cannot be directly applied to establish
uniqueness of Gibbs states for lattice spin systems, which are symbolic representations

. , . d. . .
of coupled map lattices, because the configuration sp4cés, in general, a translation

invariant subset of2%"". In [BuSt], the authors constructed examples of strongly irre-
ducible subshifts of finite type for which there are many Gibbs states corresponding to
the functionpy = 0. In order to establish uniqueness we will use some special structure of

the spacé:ﬁd: it admits subshifts of finite type in the “time” direction and the Bernoulli
shift in the “space” direction.

We now present the main result on uniqueness and mixing property of Gibbs states
for lattice spin systems which are symbolic representations of coupled map lattices of
hyperbolic type. In the two-dimensional cage(1), it was proved by Jiang and Mazel
(see [IJM]). In the multidimensional case it was established by Bricmont and Kupiainen
(see [BK3]).

A potential Uy on ¥4 is calledlongitudinal if it is zero everywhere except for
configurations on vertical finite intervals of the lattice. A potentiglis said to be
exponentially decreasinif B

Uo((D)| < Ce M, (3.19)

whereC > 0 and\ > O are constantd,is a vertical interval (i.e., in the time direction),
|I|is its length, and([) is a configuration ovef. Exponentially deceasing longitudinal
potentials correspond to those potential functions whose values depend only on the
configuratioré(0, 5), 5 € Z.

We say that a Gibbs state is exponentially mixing if for every integrable function on
the configuration space tt#&*-correlation functions decay exponentially to zero.
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Theorem 3.6 (Unigueness and Mixing Property of Gibbs States)For any exponen-
tially deceasing longitudinal potentidly and eveny0 < ¢ < 1, there existg > 0 such

that the Gibbs state for any potentiéll = Uy + U; with Uy € P(q, €) is unique and
exponentially mixing.

Proof. We provide a brief sketch of the proof assuming first thigt= 0 andd = 1.
We may assume that the potential is non-negative (otherwise, the non-negative potential
U'(n(Q)) = UM(Q)) + max,) |U((n(Q))| defines the same family of Gibbs distribu-
tions).

We introduce a new potentiél which is defined on rectangles anceiguivalento
the potential/. The latter means that both potentials generate the same conditional Gibbs
distributions. Consider a squapeand a rectangl® and denote b{(Q) = (b1(Q), b2(Q))
andb(P) = (b1(P), ba(P)) the left lowest corners af) and P, respectively. Fixl > 0
(its choice will be specified later) and defingextangular potential/ (n(P)) in the
following way. For every rectangl® with bo(P) = nL, n € Z of sizel(P) x Li(P) we
have

gme) = > UmQ)), (3.20)
Q:Q~P

where the sum is taken over all squaégassociated withP (we write this ag) ~ P)

i.e., the following condition holdsy is of sizel(P) x I(P) andbi(Q) = b1(P), ba(P) <

b2(Q) < ba(P) + L. Itis easy to show thdl’ € P(q, §), wherej = j(e) — 0 ase — 0.
LetV C Z? be any finite volume. Fix a boundary conditign(¥). For any config-

uration&(V) such tha{(V) + 77*(17) is a configuration irZ? a conditional Hamiltonian
specified by the potentidl ((P)) is defined as follows (see A2.3)

Hy W7 (V) == Y TmP)EWV) +7 (V).

PNV

The expressio/ (77(P)|§_(V) + 77_*(17)) means that the potentiél(;(P)) is evaluated
under the condition tha(1") + 77*(17) is fixed. It is easy to see that

HgEWIT @) =— > UMQIEV)+7(V))
Q:QNV 7D
= > D UMQEM) 7 (V)
POV Gavse (321)
= HyWMIm )= Y. > UMQEW) +7(V)).

POV S

The conditional Gibbs distributions defined by (3.8) for the potehtiean be expressed
in terms of the conditional Hamiltonian as follows:

exp(HEW) |7 (V)

NUDE -
O Th ()

: (3.22)

where

EWVI'(V) =Y exp(HGV)|T (V)

(V)
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is thepartition functionfor the potentia[? in the volumel” with the boundary condition
7 (V) (see (A2.2) and (A2.4)). It follows from (3.21) that

exp(HuEMIT (V)  _  exp(HgEWIT ()
i P (Hu IV (V)) i) xp (Hi (1) i (V)

Therefore, the potentials and/ generate the same conditional Gibbs distributions on
any finite volumel’ C 7Z2. B
Let B ¢ V C Z2 We use (3.22) to compute the probability, - (&(B)) of the

configurationg_(B) under the boundary condition and wish to show that it has a limit
asV — Z? independent ofy*. The latter is the unique Gibbs state for the poteritial
Using (3.22) we obtain the following formula for the conditional meagure, (&(B)):

pon €@ = D, L V)

TV)(V)| 5=£(B)

We wish to use the Polymer Expansion Theorem (see Appendix) and decompose the
above expression in the form of (A4.3). Namely,

i, . (€(B) =

NBYexp| Y TmP)+ Y welB)+7 (V) - Y. weli()|,
PCB p:NV\BAD NV A

(3.23)
where N(B) is the normalizing factor, determined the voluni¢ (see (A4.4)),
w(p|* (V) andw(p|<(B) + 7*(V)) are the statistical weights for the polymer(see
(A4.3)), andP is a rectangle. If the parametérin the definition of the rectangles is
chosen sufficiently large anrds sufficiently small by the Polymer Expansion Theorem,
each sum in (3.23) converges to a limit uniformly/{g, 9).

The above argument can be extended to the general casdiyieesn exponentially
decreasing longitudinal potential (see [JM] for detail). The easel is considered by
Bricmont and Kupiainen in [BK3] and is treated in a slightly different way by obtaining
polymer expansions of correlation functions. [

Theorems 3.4 and 3.6 enable us to obtain the following main result about uniqueness
and mixing property of equilibrium measures for coupled map lattices.

Theorem 3.7. Let(®, S) be a coupled map lattice and = ¢g + 1 a function onAg,
where g is a Holder continuous function depending only on the coordinatend

1 is a Holder continuous function with a smalldttier constant in the metrig,. Then

there exists a unique equilibrium measprgon A corresponding tg. This measure is
mixing and takes on positive values on open sets. Furthermore, the correlation functions
decay exponentially for everydttler continuous function on 4 satisfying the above
assumptions.
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4. Finite-Dimensional Approximations

In this section we describe finite-dimensional approximations of equilibrium measures
for coupled map lattices. One should distinguish two different types of approximations:
by Z4*1-action equilibrium measures afidaction equilibrium measures. The first come
from the corresponding*'-dimension lattice spin system while the second one is a
straightforward finite-dimensional approximation of the initial coupled map lattice.

In order to explain some basic ideas concerning finite-dimensional approximations
we first consider an uncoupled map lattidel ( F). Lety be a Hlder continuous function
on M which depends only on the central coordinate, ic€z) = (o), wherey is a
Holder continuous function o/ (whose Hblder constant is not necessarily small). It is
easy to see that the equilibrium measugecorresponding te is unique with respect to
theZ¥*1-action (, S) and thatu,, = ®;czd Hpr Wherepy, is the equilibrium measure on
A C M for ¢ with respect to th&-action generated by. One can also verify that for
any finite setX C Z? the measur@.x = ®;cx 11 is the unique equilibrium measure
on the spacé/y = ®;cx M corresponding to the functiopx = 3,y ¢(S*) with
respect to th&-action Fx = ®;cx f. Clearly,ux, — p, in the weak-topology for
any sequence of subsets, — Z? (i.e., X,, C X,+1 and{J,,~o X» = Z9).

It is worth emphasizing that the sequence of the functiprs does not converge
to a finite function onM asn — oo, while the corresponding-action equilibrium
measureg., . approach the&*1-action equilibrium measure,,.

On the other hand, one can consigeas a function on the spadd x provided
0 € X. The unique equilibrium measure with respect toZhaction generated b¥'x
ISty X ®iex,i70 Vo, Whereryg is the measure of maximal entropy 6.

This simple example illustrates that t&*-action equilibrium measures corre-
sponding to a functiop may not admit approximations by tf#&action equilibrium
measures corresponding to the restrictions td finite volumes.

4.1. Continuity of equilibrium measures over potentials.this section we show that
equilibrium measures for coupled map lattices depend continuously on their potential
functions in the weaktopology.

Fix 0 < ¢ < 1 and consider the space of alblder continuous functions oA
with Holder exponent < « < 1 and Hblder constant > 0 in the metrig,. We denote

this space byF(a, g, €). It is endowed with the usual supremum nofim||. We also
introduce the;*-norm on this space by

l@llg= = max{supg~" sup |o(z) — &), llell}, (41)
n>0 T,y€Ap
where the second supremum is taken over all paingsfor which z; =y, for |i| < n.
The following statement establishes the continuous dependence of equilibrium mea-

sures for coupled map lattices for potential function?(m, q, €). We provide a proof in
the casel = 1 using an approach based on polymer expansiods>Ifl the continuous
dependence still holds and can be established using methods in [BK3].

Theorem 4.1. There exists > 0 such that the unique equilibrium measusg on Ay
depends continuously (in the wéalopology) ony € f(a, q, €) with respect to the
norm|| - ||y, i.e., fore, € Fla,q,€), |m — @llq« — O impliesp,,, — u, in the
weak-topology.
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Proof. Observe that the convergeng{¢,, — ¢||,» — O implies the convergence of
corresponding potentials on the symbolic space. Therefore, we need only to establish
the continuity of the Gibbs state for the corresponding symbolic representation. For a
potentiall/ on £ its norm|| - ||, is defined as

1Ulq = sggq*”HUQn(EQn)u, (4.2)

where 0< ¢ < 1. By Theorem 3.6 the Gibbs state is unique whét, is sufficiently
small. We denote the Gibbs state #oby 11, We show that for any cylinder sétc 5,
ty(E) depends o/ continuously in a neighborhood of the zero potential in the set
Ple, 1) ={U: U], < 1}.

For this purpose we use the explicit expressiopofE) in terms of the potentidl/
provided by the Polymer Expansion Theorem (see (A4.5)). Namely, for a non-negative
potentiall/ € P(q, €) and any finite volume3 C Z? we have that

poEB) = NBYexp | > UEP)+ Y. wEé®B)— Y, w)|,
pPCB odistes, 5<1 e:distg, By<1
dists, 50

(4.3)
whereN(B) is a normalizing factor determined by the volufgsee (A4.4))w(p) and
w(gp|€(B)) are the statistical weights for the polymefsee (A4.5)), and® is arectangle.
By the Polymer Expansion Theorem the statistical weights) andw(p|¢(B)) (B is
fixed) depend continuously di(n(P)) with respect to the norm- ||,. This implies that
1y depends weakly continuously éh

To show thafu,; depends o/ continuously for all (not necessarily non-negative)

potentialsU € P(q, ¢/4) let us consider the potenti&l defined ad/(£(Qy)) = eg™.
Then, for anyU € P(q, ¢/4) we have that

U+U5/4 > 07 U+Ue/4 € P(q7 1/26)

Note that giver),,, U, is a constant potential ag,,. Therefore, Gibbs distributions for
U andU + U, 4 coincide and hence,

Hu = Bu+u, (4.4)

This implies the desired result. O

4.2. Finite-dimensionalZ4*!-approximations. We now describe finite-dimensional
Z4*1-approximations of equilibrium measures for coupled map lattices.

Let p € F(a, ¢, €) be a Hblder continuous function on. Fix a pointz® = (=)
which we call theboundary conditionGiven a finite volumel’ ¢ Z? consider the
function onA4

en,z+ (2) = o(@]v, 7[3). (4.5)
One can see that
lpn,z« — @llgg — 0 (4.6)

asn — oo for any¢; with 0 < ¢ < ¢1. The following result is an immediate corollary
of Theorem 4.1.
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weak™

Theorem4.2. pn, .. — p, independently of the boundary conditioh (recall
thaty,, .. isthe unique equilibrium measure corresponding to the functipn- and
1, 1S the unique equilibrium measure corresponding to the fungtipn

4.3. Finite-dimensiondkL-approximations I: uncoupled map latticed/e describe some
“natural” finite-dimensional approximations of equilibrium measures for coupled map
lattices byZ-action equilibrium measures. We first consider an uncoupled map lattice
(F,S) inthe spacet, p,).

For every volume/ C Z? we setMy = ®;ev M, Fy = ®jev fi, andApy =
®icv A;. One can see thaty, is a smooth finite-dimensional manifoldy, is aC"-
diffeomorphism ofMy,, andA gy is a locally maximal hyperbolic set fdr, .

Fix a pointz* = (zf) € Ap (the boundary conditignand consider a Blder con-

tinuous functiony € F(a, ¢, €) on Ar. Define the function)y z- on Ag v by

Vv (@) =) oS (@, 2" [5). 4.7)

i€V

Consider theZ-action equilibrium measurng, corresponding to the functiapy,, z-. We
can view these measures as being supportedobet ., be theZ*-action equilibrium
measure corresponding ¢o This measure is concentrated Ag- and thus can also be
viewed as being supported o.

Theorem 4.3. There existgg > 0 such that if0 < € < ¢ thenyp, is the limit (in the
weak -topology) of equilibrium measures, asV — Z? in the sense of van Hove, i.e.,
for any fixeda € Z4,

DAV

V74 V| '

Proof. We consider only the casé = 1. Ford > 1 the arguments are similar. It is
sufficient to prove the convergence of the measufes vy m to the measurg* = p.,-
(p* = ¢ o) on the symbolic spacezX 4 asV — Z.

Let us fix a configuration* on Z2. Givenn > 0 andm > 0, consider the rectangle
Vo = {z = (i,5) € Z? : |i| < n.|j| < m} and define the Gibbs distribution 64,
as follows: for any configuratio&(V;,,,,) over the volumé/,,,,, we set

exp > @ (T (EWVam) + T (Vi)
wn(EWVirm)) = s — — (4.8)
8 > Y e (T Vam) 7 (Vm))

N(Vim) 2E€EVinm

Given afinite volumél’ C Z2, for sufficiently large: andm we have thatV’ C V,,,,.
Therefore, the set configuratiogéil) over W is a subset of the configuration space
&E(Vium) over V,,,,,. We denote by, (£(WW)) the measure on this set, whetg,, is
defined by (4.8).

By the definition of Gibbs states and the uniquenesg*ofhe measurg:* is the
thermodynamic limit of measurgs,,,, i.e., for any finite volumé¥ c Z? and any
configurations (W) overW,

wEV) = lim i (EOV)),

nm
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whereV/,,,, converges t&? in the sense of van Hove.

We observe that for each > 0, there exists the limit;: = lim,,,— oo finm, Which
is theZ-action Gibbs state for the functiopﬂ;m* onV, = ®L_,Y4. Thus, for each
fixed n there existsn(n) such that

|,unm(n)(€_(W)) - I/n(f_(W))| < %

for everyW C V,,,,. Notice thatV,,,,,(n) — 72 in the sense of van Hove. This implies
that lim, o0 v, = liMy, o0 tnm(n) = e O

4.4. Finite-dimensiondk-approximations Il: coupled map lattice¥Ve consider a cou-
pled map lattice ¢, S) in the spacet, p,) and define its finite-dimensional approxi-
mations as follows.

Fix a pointz® € Ay (the boundary condition For any finite volume/ c 7
consider the map of/y,

(@v(@), = (®(@,27]5)) (4.9)

where () denotes the coordinate at the lattice $it®ne can see that if the perturbation
is sufficiently small thenby, is a diffeomorphism of\/y.. It can be written asby =
Gy o Fy, whereGy, is the restriction of7 to My, :

Gy () = G(F("[5), 2). (4.10)

Since the diffeomorphisndy is closed to the diffeomorphisrhy, by the structural
stability theorem it possesses a locally maximal hyperbolic set which we denote by
Ao, v. Moreover, there exists a conjugacy homeomorphiism Apy — Ag v which
is close to identity.

The mapsdy andhy provide finite-dimensional approximations for the infinite-
dimensional map® andh respectively. In order to describe this in a more explicit way
we introduce the following maps:

Dy (z) = (Pv(@ly), Folp), hv(@) = (hy(@ly), ids(@]5))-

We denote bylg anddé theC? and respectively'? distances in the space of diffeomor-
phisms induced by thg,-metric. We also usé(0, 9V') to denote the shortest distance
from the origin of the lattice to the boundary of the §et

Theorem 4.4. There exist constants > 0and3 > 0such that forany” c V' c Z¢,

(1) dé(q)v, CDV/) < Ce~Pd0.9V) and oy — O.
(2) d(hv, hy') < Ce=P409V) andhy — h.

Proof. The first statement is obvious sindeis short ranged. The proof of the second
statementis based on arguments in the proof of structural stability (see Theorem 1.1). We
recall thatthe conjugacy maps determined as a unique fixed point for a contracting map
K acting on a balD.,(0) contained in the Banach spdc¥ A, T M) of all continuous
vector fields oA i (see (1.16)).

In order to obtain the conjugacy méap one needs to find a (unique) fixed point for
a contracting mapCy acting inD~(0) by a formula similar to (1.16):

Kyv = —((DG)]o — Id)~XGyv — (DGY)|ov),
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whereg;, = AoGy o A~ (see (1.14)) and;, 3 = ®y 030 F~1. One can show that the
contraction coefficient ofFy is uniform overV and thatF,, converges exponentially
fast toF. Therefore, the corresponding fixed polit converges exponentially fast to
h. O

For a Hlder continuous functiop € F(«, ¢, €) on Ag consider the functiop =
pohonAp, whereh : Ap — Ag is a conjugacy homeomorphism. Let be the
Z-action equilibrium measure oA r 1, corresponding to the functiopy, z- which is
determined by (4.7) with respect to the functipn Finally, we define the measure
vy = (h;l)* oy onAg,y. It also can be considered as a measurd6nAs a direct
consequence of Theorem 4.3 we conclude the following result.

Theorem 4.5. If ¢ is sufficiently small then the measurg is the limit (in the weak
topology) of the measures, asV — Z¢.

5. Existence, Uniqueness, and Ergodic Properties of SRB-Measures

In this section we discuss the problems of existence and uniqueness of Sinai—-Bowen—
Ruelle measures for coupled map lattices as well as some of their ergodic properties
(including mixing and decay of correlations). The first construction of these measures
appeared in [BuSi]. In [BK2], Bricmont and Kupiainen constructed these measures for
general expanding circle maps. Their approach is based upon the study of the Perron—
Frobenius operator. In [PS], Pesin and Sinai developed another method for constructing
SRB-measures for coupled map lattices assuming that the local map possesses a hyper-
bolic attractor.

In this section we develop a new approach and obtain stronger results under more
general assumptions.

Let f be aC"-diffeomorphism of a compact finite-dimensional maniféldpossess-
ing a hyperbolic attracta . The latter means that is a hyperbolic set and there exists
an open neighborhodd of A such thatf(U) c U. In particular,A = N,,~of™(U) and
is a locally maximal invariant set. We assume that the ridptopologically mixing.
Then an SRB-measugeon A is unique and is characterized as follows:

1) the conditional distributions generatedbgn the unstable manifolds are absolutely
continuous with respect to the Lebesgue measure;

2) for any continuous functiop and almost al: € U with respect to the Lebesgue
measure irU,

- 1 n—1
Jm 23 g = [ g 51)
k=0

3) wisthe unique equilibrium measure corresponding to thlkelet continuous function
p“(x) = —logJa¢ f(x), where Jat f(z) denotes the Jacobian ¢fat x along the
unstable subspace.

In the infinite-dimensional case we construct a measur& gmwhich has similar prop-
erties. This is an SRB-measure for the coupled map lattice. Our construction is based
upon symbolic representations of the finite-dimensional approximations of the lattice
constructed in the previous section.

Let V' € Z% be a finite volume. Consider the diffeomorphisis and ®y,. Since
vy is close toFy it has a hyperbolic attractake .
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Since we assume that the mgpis topologically mixing then so are the maps
F, ®, Fy, and®y,. Therefore, the magy possesses the uniqgue SRB-meagyrehat
is supported o\ ¢ 3. This measure is the unique equilibrium measure corresponding
to the Hilder continuous functiopy () = —log Ja¢’ @y (x), where Jat @y (x) is the
Jacobian of the magy, atx along the unstable subspace. We can consider the measure
w1y to be supported on the compact spaté, (p,). Our main result is the following.

Theorem 5.1. The SRB-measurgs, weak converge to a measure ol which is a
unique equilibrium measure = u,, corresponding to a Blder continuous functiop

on M and is mixing. Furthermore, the correlation functions decay exponentially for
every continuous function o satisfying the assumptions of Theorem 3.1.

Remarks.(1) Itis clear that for an uncoupled map lattice the SRB-meagyresnverge

to the measure; 7.1y Which is the equilibrium measure for the potential function
vo(x) = —log Ja¢ f(xo). The potential functiop(x) of the SRB-measure for a coupled
map lattice is a small perturbation@f(x). More preciselyp(r) = @o(x) +¢1(x) where
1(7) is a Holder continuous function with sufficiently smalbttler constant. Its precise
description is given by (5.15).

(2) We follow the approach suggested in [BK2, BK3]. We thank J. Bricmont who
suggested to use the formula (5.8) to expand the Jacobian.

(3) To avoid some technical obstacles we assumejtligan Anosov map. In this
caseAq, = Ap, = My. The general case of hyperbolic attractors can be treated in a
similar way with the use of Theorem 4.4.

(4) Another approach for the existence of SRB-measures was suggested in [PS]. It
is based upon a delicate analysis of conditional measures generated by mgasumes
finite-dimensional unstable manifolds fdr,. Combining results in [PS] and Theorem
5.1 one can show that these conditional measures determine the conditional measures,
generated by the SRB-measurg on infinite-dimensional unstable manifolds fbrin
a unique way. This justifies one of the main characteristic features of SRB-measures.

(5) Using the finite-dimensional approximations approach developed in the proof of
Theorem 5.1 one can show that th&"-topological pressur@, (¢) = 0, wherey is
the potential function for the SRB-measure. Since the SRB-measure is an equilibrium
measure in view of (2.9) we obtain the entropy formula for the SRB-measure

hr(pp) = —/wduw

(see detailed arguments in [J3]).

(6) Another interesting manifestation of our construction of the SRB-measure is the
continuous dependence of the entropy on the perturbatiddsing arguments in the
proof presented below one can show that the potential function depends continuously
on the mapd in the p,-metric. Moreover, the SRB-measure as a Gibbs state is also
continuous in the weak sense with respect to the potential function (see Sect. 4.1).
Therefore, the entropy formula gives the continuous dependence.

Proof of Theorem 5.1Let 7y = ®,;cym; be the semi-conjugacy map between the
symbolic dynamical systenv(, ®;cX4) and Fy, My ) (herer; are copies of the
coding mapr). Define the measure, on Y = ®;c1- T4 by the following relation
wy = (hymy)*vy. Itis easy to see that the following statement holds.

Lemma 5.1. The measuregy converge in the wedkiopology to a measure aM if

the measuresy, converge in the we&kopology to a measure oﬁﬁd asV — 74
The desired result is now a consequence of Lemma 1 and the following lemma.
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Lemma 5.2. The measures,, converge in the weéktopology to a measure on the

(d+1)-dimensional lattice spin systeﬁﬁd which is the unique Gibbs state for alder
continuous function. It is also exponentially mixing with respect taztig-action of
the lattice.

Proof of the lemmalNote that the measutg, is the unique Gibbs state for thedldler
continuous function

ey (&v) = —logJac®y (hy v (§v)) (5.2)
on Y. We express the Jacobian 9dg, (zv/), =y € My as a product

Jac vy (zv) = detDPy Wy, (2v)) = detl + Ay (@v))([] Ja¢ f(z2)),  (53)
eV
wherel is the identity matrix andly is a matrix whose entries are submatrices satisfying
some special properties which we specify later.
Let Eg., (zv) be the unstable subspacezat for the map®, . One can see that
Eg,, (zv) is close to the direct product;cv £ (z;). We choose a bas{al; (), si(z:),
i € V}inthe space

DievTe, M = (Riev E}(1;)) © (Qicv E}(z4))

such thau;(z;) ands;(z;) are bases i}/ (x;) and E;(x;) respectively, and we assume
that they depend &lder continuously on the base point. The derivativeD®y (zy/)
can now be written as follows:

_ (DU @) 0 asi(ay) ap(ay)

Doven) = (U0 o) (1 (i) aton))> 9
where we arrange the elements of the bdsigz;), s;(z;), ¢« € V} in an arbitrary
linear ordery; first, followed bys;. Since® is C*-close toF and is short ranged the
submatricesg;(zv)) satisfy the following conditions (we useto denote one of the
symbolsuu, us, su, Or ss):

(1) @) < ee=Pli=I1, whereli — j]| is the distance between the lattice sitesd

j and constants > 0 andg > 0 are independent of the voluméas well as of the

base pointry;

(2) each submatrig;;(zy) depends félder continuously oy :

& (rv) — @) | < ee™ M ), (5:5)

wherexy = (x;) andyy = (y;) are such that; = y; for i # k (recall thatd is the
Riemannian distance ai¥).

The constant > 0 can be chosen arbitrarily small as thié-distance betwees and
F goes to zero. The constants independent of the volunié and the base pointy,.

Using the graphtransformtechnique one can identify the unstable sulispate,’)
with the graph of a linear mafl,,, : ®;ev Ef(2:) — Qiev Ej (), i.e.,

Eg, (2v) = (@iev Ef (i), Hyy ®icv Ef(24)). (5.6)
The linear magH,,,, has aunique matrix representatieffy) in the basigui(z), si(z:)},
Hyy i) = Y cs;(xy), (5.7)

J

where each submatrif’’ satisfies conditions similar to Conditions (1) and (2):
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(3) lley|| < el
@) et (@v) — ()|l < eePi=kldd (zy, yi), wherezy = (x;) andyy = (y;) are
such thate; = y; fori # k.

To prove Condition (3) one can use the graph transform technique in the form described
in [JLP] and combine it with the fact that the linear mdp,, is short ranged. Condition
(4) follows from the fact that distribution&g , (zv), ®icv E¥(z;), and®;ev Ef(x;)
depend Hlder continuously over the base poitit.

Moreover, the entries};’ satisfy the following crucial condition which allows one
to pass from a finite volume to a bigger one:
(5) e (zv) — ¢ (yv)|| < ee=P4-9V) for any finite volumel” C V' and any point

yy- satisfyingyy[v = zv.

In order to prove (5), we apply the graph transform technique to thedapon
My with the p,-metric restricted tal/y. Note that thep,-distance betweefby and
v ® Fyny is proportional tae~#4V). Therefore, using results in [PS] we obtain that

u,s

the p,-distance between subspaoﬁg;j(:c’v) and 3% (vv) ®ievv By (y:) is also

proportional toee=#4V). Hence, so is the,-distance between linear operatdfs
andH,, . This implies (5).

We choose{l;} = {u; + Hui} = {u; +>_, ¢}’’s;} as a basis g, (zv), and we
write the derivativeD®|Eg (zv) in the new basigl;, s;,i € V'} into the following
matrix form:

D®|Eg, (zv) = (D" f(z:) + & (zv)) + (@7 (@v))(C (zv)).
The latter expression can be rewritten in the form
D" flz)U + (a5;(xv))),

where Ay (z,) = (a;;(zv)) is the matrix whose submatrix entriag;(zy) satisfy the

following conditions (which follow immediately from (1)—(5)):

(6) [lay | < cc™?Ii;

(7) llaij(@v) — aij(yv)l| < ee Pl=Hd (2, yi), wherexy = (z;) andyy = (y;) are
such thate; = y; fori # k.

(8) llaij(zv) — ai(yy)|| < ee=P4HV) foranyV C V.

Next, we apply the well-known formula:

det(expB)) = exp(traceB)).

In our case, ex@) = I + Ay (zy) and hence,

det(/ + Ay) = exp(trace(In{ + Ay)) = exp( Z wy;), (5.8)
eV
where
wyiey) = %trace@ﬁ(xv)) (5.9)
n=1

andal;(zy) are submatrices on the main diagonal 4{(".
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Sublemma. The functionsvy ;(xy) satisfy:
D) |lwvilzv)| < C¢
() |wyi(zv) — wrilyy)| < Ceexp3|i — k|)d’ (zy, yx), wherezy = (z;) andyy =
(y;) are such thatr; = y; fori # k;
() if V C V' then|wy(z) — wy(y)| < Ceexp(=2d(i, dV));
2
(4) there exists the limip; = limy,_ 4+ wy;(x) which is translation invariant in the

following senseip;(z) = v(c’z). Moreover,y is Holder continuous with Elder
constant which goes to zero as- 0.

Proof of the sublemmahe proof is a straightforward calculation. We first show the
following inequality:

gy | < (Ceyrelidl, (5.10)

where is a number smaller thafiandC = C(/3) is a constant.
We use the induction. Far = 2 we have

lad; | =11 aai, | <D e expp(li — Ul + 11— )

lev lev
<> Eexp-f(li — 1| +[1 - jl) — (3= Bl — 4)
lev
< e MY exp(-(8 - Pl — j) < Ce 1, (5.11)
lev

whereC' = C(5) = 3jcz0 Xp(-(0 = A)I).
Let us assume thajel; || < C" 2"t exp(~Ji — j|). Then

lag | =1 aytayl < Y Cn e expEA(li — 1)+ 11— jl) — (8 — Bl — )

lev lev

< e exp(-fli — j). (5.12)
Therefore, Statement 1 follows directly from the definitionugf;.
To prove Statement 2 we need only to show the following inequality:
n n n_ —L2i—
i (zv) — al )| < (Ce)e™ 2" Fld (zy, y),

wherezy = (z;) andyy = (y;) are such that; = y; for i ¥ k. We again use the
induction. Fomn = 2,

122, (zv) — a2 wv)ll = Y aulav)ay(zv) — aulyv)as(yv)
lev

= Z a;(zv)[ay(zv) — a(yv)] + a; (yv)lau(zyv) — au(yv)]
lev

<> Elexp(B(|1 — k| + i — 1) + exp (1L — j| + i — kD)’ (zx, yx)

lev

< 0@ exp(-0 i — K (e, i), (513)
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whereC =23, . exp(-3|l]).
Forn > 2 we argue similarly using Statement (1):

&g (@) — al )l = > al Nav)ay(@v) — af~v)ay (yv)
lev
= Zaﬁ l(fL”v)[t'ﬂllg(xv) aj(yv)] + a(yv)la; ™ Yav) — & M)
lev
< SO(Ceexpl 2 i — 1| — BlI — K — Bl — | — D1 — B ()
a leV 2 2
< (Ce) exp(fg\i — k) d° (zk, yi)- (5.14)

Statement 3 follows from Condition (8) while Statement 4 is a consequence of Statements
2 and 3 and our assumption that the ndajs spatial translation invariant. O

We proceed with the proof of the theorem. Llébe ad-dimensional cube centered
at the origin. Choose any finite volumig¢ C V' and numbers & m < n. We have that

vy €vo,m) = M vy (§ve,m) M)
In order to obtain the desired result we shall show that the one-dimensional Gibbs

distributionsw(g(vm)|nh) has a unique thermodynamic limit 4 — Z%*! and
n — oo. This thermodynamic limit is precisely the uniqde+ 1-Gibbs state for the

potential function _ _
©"(§) = (¥ —log Jac f)(h(£)) (5.15)

on EZd, wherey is defined in Statement 4 of Sublemma.
Note that the functiop™ is the sum of two functionsy* = ¢§ + 3, where

=—logJa¢ fom
and
©f = —logJad f)ohor+logJad foT.

By Statements 1, 2, and 4 of Sublemma and Theorem 1.1 the fungfids Holder

continuous with a small &lder constant in the metrip, providede is sufficiently

small. The functionpj is also Hlder continuous and depends only on the coordinate

&o. Therefore, by Theorem 3.7 the Gibbs state corresponding to this function is unique.
Since the measung, is the unique Gibbs state for thedldler continuous function

e (€v)on Y (see (5.2)) it satisfies the following equation [Ru]: given a configuration

n* e EZd,
expY_cz v (oF (Evm + e n)))
vame P ez oy (F (v, + (V ))’

vv(§vin) IU%\M) = (5.16)

wheref(y, ) is a configuration over the finite vqumEf(n) V x[-n,n] c Z*!, and
77(/\) is the restriction of the configuratioyt to (V, n) = Z#*N\V x [—n, n].
Using (5.3) and (5.8) we rewrite (5.16) in the following way:
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expY_.cz oy (hvmy ol (Ewm + 77(*‘//;)))

vy P Lpez P (v Ty o (vm + 1))
_ expd_ycz Yiey (wyvi —logdae f)(hymyof (Evn + 77(*‘//;)))

X P ke Diey (wyi — log Jae f)(hv vt (i + 1)’

Vv(f(v,n)|77(*7\m) = D

The rest of the proof is split into the following steps.

Step 1.We wish to rewrite the last expression for the conditional distributions
Vv(ﬁ(v,n)|77;‘,/\)) in terms of potentials (see Sect. 3). The potentiatorresponding
n

to the function ¢ — log Ja¢ f)(hm) can be constructed using (3.9)—(3.12).

Given a finite volumé/ andi € V, consider the functiondy ; —log Ja¢ f)(hymy).
In order to construct the potenti&l"* corresponding to this function we again follow
the procedure described in Sect. 3 and usg,(— log Ja¢ f)(hy ) for eachZ4+!-
cube centered ai (k) € V x Z. Not that the resulting potential is invariant under time
translations but may not be invariant under spatial translations.

Step 2.We now rewrite the distributions;, (£(v,)|n:—) in terms of potentialé/"*:

*
V)
Vi *
eXPY_onv,mz Vg Evm + 1)
Vi * .
NV, eszQﬁ(V,n)?@ Ug' vy + n(Tf\m))

vy Ewmlngy) = > (5.17)

Step 3.By Statement 3 of Sublemma,,; — ¢; = v(c’) exponentially fast. Using the
fact thathy — h exponentially fast in the,-metric (see Theorem 4.4) we obtain that
for anyZ4*1-cube@ centered ati(k) € V x Z,

UVHEQ) — UEQ))] < Cee™ AU, (5.18)

By Statement 2 of Sublemma both potentidl$¢|, andU | go to zero exponentially
fast as the side length ¢f increases.

Step 4.Take a larger volumel{’,n’) C Z%** such that
(Vin) C (V',n)/2=(V'/2,n'/2),

whereV’/2 is thed-dimensional cube centered at the origin of the side length equal

to 1/2 of the side length of/. We follow the approach elaborated by Ruelle in [Ru]

(see Sect. 1.7). (For the reader’s convenience we provide the correspondence between
Ruelle’s notations and ourd? = (V',n/), A = (V,n), X =Q, and® = U"?, U).

We first decompose the numerator of (5.17) (for volui¥ig ¢')) into two terms.
exp Z UG (Evmy + U exp(Hw,nm)(Ew,m) + By (Evrny))
NV’ ,n" )7
where themainterm Hy. ,)({(v,»)), the Hamiltonian in volumel(, »), is given by
HymEvm) = Y. Ug€um + T
QC(V)n)

while theboundaryterm is given as follows:
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ByranEurmn) = D> Uy v + Ny — Vel + 1)

QN(V’,n")70
Y Uglwrm +15)-
QN(V/,n")70
QNV/,n")0

By (5.17) and results in [Ru] (see Sect. 1.6) we now only need to verify that the boundary
term satisfies the conditions stated in Sect. 1.7 of [Rul].

We first splitBy+ n/) ({7 ny) INto two termsBy iy (§vr ) = B/ () +B" (§vny +
n), where&w .,y = {v.ny + 1 and B'(n) collects the terms depending only gne
Qv )\ (Vn)r 1-€1

Bm= Y (Ué/ vy ¥ i) — U + n(*m)))
i

+D V(&) *+ M)
Q
while the second term is given as follows:

B'ea+m= > (U8 €y * M) = Ualévr o * M)

QN(V,n)7
+Y " UQ(Evrmn + Ny
Q
Here"/, runsover{@ : QN (V',n) 70,QN V', ) #Z0,QNA =0} and)_;) runs

_—

over{Q: QN ,n)Z0,QN V', n)Z0,Q N A Z0}.

According to [Ru] in order to show that the thermodynamic limivp{& v ) |n(*‘//\n))

goes to aZ?*'-Gibbs state of/, we only need to check that for any fixel, (),
B"(&wv,n)+n) as afunction of) € Q1 )\ (v,) 90€S to zero uniformly iS2v+ ;1\ (v,n)
as (',n') — 2. The second sum iB”, "', goes to zero uniformly since the

potentialU decays exponentially. The first sum i1’ can be further decomposed into
two sums. Let{(Q), k(Q)) € Z4*! denote the center @. We may assume thal’(, n’)
is aZ%*1-cube with equal sides. Then,

V’i * *
Z Ug " * U(ﬁ)) —Uq(&vrnny + U(m))
QN(V,n)7
— V' * *
= >, D> WSt Ny — Ul n) + )

(QIE(V/,n')/2  WQ)E(V/,n")/2
QN(V,n)7 QN(V,n)7

By (5.18) we have

Vi
> U vt Ny — Vel + 1)
W(Q)E(V,n")/2
QN(V,n)70

< C'el(Von)| (V! ') 2 P,
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where |(V,n)| and |(V',n’)/2| are the cardinalities of the corresponding sets and
d((V',n)) is the side length ofi(’, n). The sum

> Uy “(Ewrmny + i) — Ul nn + )
W(Q)E(V/,n)/2
Qv

also goes to zero uniformly @a§(V’, n’)) — oo since both potential&’V" andU go to
zero exponentially fast a§(V’, n’)) — oo.
This completes the proof of the theorem. [

Appendix: Spin Lattice Systems

1. Abstract Polymer Expansion Theoren@onsider a finite or countable sét Its
elements are called (abstracontoursand denoted by, #’, etc. Fix some reflexive and
symmetric relation or® x ©. A pair 6,0’ € ® x © is called incompatible % ¢’)
if it belongs to the given relation. Otherwise, this pair is called compatible ¢'). A
collection{6, } is called acompatible collection of contoufgany two of its elements
are compatible.

A statistical weightw is a complex function on the set of contours. For any finite
subsetA C ® anabstract partition functions defined as

Z(A)= > []wey, (A1.1)

{6;3CA J

where the sum is extended to all compatible collections of conthuesA. The empty
collection is compatible by definition and it is included4A) with statistical weight 1.

A polymerp = [07] is an (unordered) finite collection of different contoéfs= ©
with positive integer multiplicityy;. For every pail’; ” € p there exists a sequence
0" = 0iy, 0i,...,0;, = 0" € pwith0;, £ 0;,,, j =12,...,s— 1. The notation
p € A means that; € A for everyf; € .

With every polymeg we associate an (abstract) grdp(p) which consists o}, «;
vertices labeled by the contours frgsrand edges joining every two vertices labeled by
incompatible contours. It follows from the definition Bfyp) that it is connected and we
denote byr(p) the quantity

r@) = [Ja™ 3 ), (AL1.2)

IV CI(p)

where the sum is taken over all connected subgr&pb$I'(p) containing all ofy_, «;
vertices andl™| denotes the number of edgedih For anyd € o we denote by (0, )
the multiplicity of 6 in the polymerp.

The polymer expansion theorem below is a modification of results of [Se] and [KP]
proven in [MSu] (see also [D2] for closely related results).

Abstract Polymer Expansion Theorem. Suppose that there exists a functief) :
©® — R* such that for any contout

7 w(®)]e® < a(b). (A1.3)

0': 0/ 40



Equilibrium Measures for Coupled Map Lattices 705

Then, for any finite\,
log Z(A) = ) w(p), (A1.4)

PCA

where the statistical weight of a polymer= [¢;] equals to

w(p) = r(p) [ [ we:)™. (A1.5)
Moreover, the series (Al1.4) converges absolutely in view of the estimate
> ol p)w(p)| < [w(®)]e*?, (A1.6)
o D0

which holds true for any contout.

2. Gibbs Stateslet S = {1,2,---,p} and A be ap x p transfer matrix with entries
a;; equal to either 0 or 1. Assume thatis transitive, i.e., there is a constan such
that every entry ofA™ is positive. For any volum& C Z? a configurationin V is an
element;(V) of SV with the valuen, (V) at pointz = (i, ) € V. A configuration,
is called admissible ifi,, ., = 1 for any pairz, = (i, j), z2 = (i,j + 1) € V. For the
family of configurations)(V;) in mutually disjoint volumed/; we denote by -, n(V;)
the corresponding configuration inV; provided such a configuration exists (i.e., is
admissible). Whev' = Z? we have the configuration spal#; = &, T4, whereX 4
is the subshift generated by the matrix

Let Q be a square iZ? andl(Q) its side length. Consider a potentidlsatisfying

0<UMmQ)) <exp[-I(Q)] (A2.1)

for every square) C Z2.
Take a finite volumé” and fix a configuration’ overV = Z2\ V. The configuration
7' (V) is called a boundary condition.

Conditional Gibbs distribution®ver V' under the boundary condition(V) are
defined by

exp [Hn(vV) i/ (V)
EVIrvy

i, (V) = (A2.2)

Heren(V) is a configuration ovey” such that;(V) +77’(X7) is also a configuration ifi?,
HoW ) == > Um@)— >  Um@nV)+7(@nV)) (A2.3)
QEV QNVHA, QNVHA

is theconditional Hamiltonianand the denominator in (A2.2) is tipartition function
for the potentialy in the volumeV with the boundary condition’(V):

E(VI V) = exp [~BHGWIN (V)] - (A2.4).
n(V)
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3. Contour Representation of Partition Function¥Ve shall show that the partition
function E‘(V|n’(X7)) can be represented in the form of an abstract partition function
(A1.1). It has a polymer expansion (Al.4)4fis sufficiently small. We shall describe
the terms in (A1.1) in our specific context.

We first introduce a new potential which is equivalent to the original one (A2.1)—
(A2.4). This means that the new potential defines the same Gibbs distributions over any
finite volume under a fixed boundary condition.

Let b(Q) be the leftmost lower corner af. Take an integel. > ngp and con-
sider a rectanglé® of sizen(P) x Ln(P) such that its leftmost lower corné(P) =
(b1(P), bo(P)) hasb,(P) = rL, wherer andn(P) are integers. We say that the square
Q with b(Q) = (b1(Q), b2(Q)) is associated with the rectangl if b1(Q) = b1(P),
L[b2(Q)/L] = ba(P), I(Q) = n(P), and henc&) C P (here [- ] denotes the integer
part). For any rectangl® we define

Um(P) =>_ UmQ)), (A3.1)
Q

where the sum is taken over all squafgassociated with the rectangie Clearly,
0 < Um(P)) < Lexp [-n(P)] (A3.2)

and absorbing in 5 one can assume that the potential is defined on rectafdlastead
of squareg)) and satisfies

0 < U(n(P)) < exp[—n(P)]. (A3.3)

Setd!'V = {z € V| dist @, V) = 1}, 8FV = {& € V| dist (z,V) = 1}. We call
oV andoFV aninternal and anexternal boundaries o/ respectively. Observe that
every finite volumé/ can be uniquely partitioned into vertical segmevitswith each
segment being a connected component of the intersectibhasfd some vertical line.
We denote by:(V;,) andb(V;,) the points o0*V adjacent td/;,, from above and from
below, respectively. The collection of such elements will be denoted By ands(V).

In addition, we restrict our considerations to the volumes with

Lla(Vn)/L] = a(Vy) and L[b(Vy,) + 1/L] — 1 =b(Vz,). (43.4)

As we still allow arbitrary boundary conditions it is sufficient to prove the uniqueness
of the limiting Gibbs state when the limit is taken over volumes of the special shape
described above.

3.1. Definition of contours.A precontoury = {P;} is a family of rectangles which
satisfy the following conditions:

(1) v = U, P; is a connected subset &f;

(2) everyP; contains a point which does not belong to any other rectangje of

Consider a finite family of rectangldd = {P;} such thatl" = U, P; is a connected
subset ofZ2. This family of rectangles(I") will be a precontour by our definition. It is
called theprecontour ofl". We describe an algorithm which produces a unique minimal
coveringy(I') of T".

() Fixtheleftmost lowepointin r. Among all rectangles df that begin at this point
choose the rectangle, with the maximal linear size(P;,) and include it iny(T").
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(i) Suppose that the rectanglé},, ..., P;, are already selected tgI") during the
previous steps of the algorithm. Fix theftmost lowempointz € T\ (Ulepij)-
Consider all rectangles @f coveringz. Among them choose the rectangles with
the maximal right upper corner (here maximal meagistmost upper. From this
family of rectangles include in(I") the rectangle?;,,, which has the maximal
linear size. _ _

(i) Repeat step (i) until” will be totally covered, i.el' = U; P, .

k+1

We say that a rectanglB is compatiblewith precontoury = {P;} and denote it by
P < ~iffor ' = {P;} U {P} one hasy(I") = ~. Obviously, anyP < ~ belongs toy
and anyP embedded into somE; € v is compatible withy. It is also clear that some
of the rectangle® C ~ can be incompatible with.

A collection of precontourg~;} is called a compatible if for any,,,vi, € {7}
either dist ¢;,,7:,) > 1 orvy;, C v, \ 9'7;,. ForV C Z?, the inclusionl” C V means
that every rectangle df is contained iri/. Furthermorel’'N'V # ) meanthaP NV #
for every P C T'. A collection of precontour$l’;} NV Z () if T'; NV # () for each.

A contouris a tripleQ = ({+;}, {r;}, n), where

(i) either{y;} NV # 0 is a compatible collection of precontours{dr;} is an empty
set;

(i) {m} €V \ (U;0'y;) is a collection of mutually disjoint finite vertical segments
with a(;), b(r;) € U;(0'y; N V) U dFV;

(i) n is a configuration inJ;(0%~; N V);

(iv) either{~;} is non empty and for every; at least one of its ends(r;) or b(r;))
belongs toJ;(877; N V) or {~;} is empty and{r; } consists of a single segment
with a(7), b(t) € 0FV;

(v) forevery pairy; andy;~ there exists a SEQUENGE = Vi, Ty, - - - Vigs Tjos Vies =
;i such that for any < k < s eithera(r;,) € 9'7;, andb(r;,) € 8'5;,,, or
b(Tjk) € 81’?% anda(Tjk) € 81’%1«1'

The contour clearly depends &h In the special case whén = Z2 we obtain so called
free contours.
Given a contouf2 = ({v;}, {7}, n), we set

Q =u;r, Q' =U, Q=Q7UQY, Q=Q7 UU;d').

A collection {€;} is compatibleif for any ©;, and<2;, one has2;, N €2;, = ¢ and the
total collection{~;(2;,), vi(€,)} is a compatible collection of precontours.

_ A contour$2 belongs to the volum# if the corresponding precontouys C V and
Q C V. A contour2 has non empty intersection with the volurvieif {~;} NV Z (

andQ’ C V.

3.2. Definition of statistical weight for contour§Ve partition the finite volumé” into

vertical segment¥/,, and denote the distance betwe€(V,,) and b(V},) by ||V,.|| =

|V..| + 1. The number of configurations I with the boundary condition’(f/) can be
calculated as

NV |y @"V)) = H N (Valnlvys Mbevy) - (A3.5)
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whereN (V|nly.y: T,y 18 the entry of the matrixd!!V=Il indexed byr,y, ), 75, )-
By Perron—Frobenius theorem both matrieeand its adjoint4d* have a unique max-
imal eigenvalue\ > 1. Lete ande* be the corresponding eigenvectors with positive
components, ande;. We normalizes ande” in such a way thap _, e,e; = 1.

Using the Jordan normal form for matrik one can show that

N (Valmaw,y oevy) = €. €r )AHV"H (1+F (Valnlvy movy)) s (A3.6)

a(Vn) Mo(vy,

where for some & p(A) < 1 andv(4) > 0,

|F (Vn|77:1(vn)777£(vn))’ < v(A)p(A)1V-Il, (A3.7)

We define
L) = A~ 2 VeIl (A3.8)

-1 -1
EMm©O"V)) = (H ena(vn)> (H e:mvn)) ;

-1 -1
E*(n(0FV)) = (H e;;aw> (H e,]b(vn)> . (A3.9)

n n

Similarly, we defing=(n(0' V)) andE*(n(d' V) by using the top and bottom elements of
V,, instead of:(V;,) andb(V;,). Given a precontouy and a fixed configuratiop(d’ yNV),

we define grecontour partition functiory

E(%n@'F 0 V) (V) = LG\ "DV E* (0070 V) B 05V n7)

x> [TwmEnvy+y@nv)) -1 [ UmPnV)+q'(PnV)).
n(@erpnv) P P=
(A3.10)
Set

EX VI ©@"V) = LOEW V) > ] <1+U(ﬁ,n(P)))~

n(V) P: PCV
The statistical weight of precontous defined by
Z (v, @7 N V)|y'(V))

N\ A @Iy N V) + ' (0FV N7y))
(A3.11)

W (v, n@' 5y N V) (V) = =
For any contoug2 = ({;}, {7;}, n), thestatistical weighis

W&l (V) = [ W (300" 5% n V') [T Filnidny mttey). - (A3.12)

z J

wheren” =7/ (9V \ (U; %)) + >, n(0'% N V).
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Polymer Expansion Theorem (see [JM]).LetU (n(P)) be a potential which is defined
on rectangles of size(P) x Ln(P). Assume thal € P(q, ¢) satisfies (A3.3). Then there
exists a constanty > 0 such that for anyd < e < ¢g, any finite volumé/ satisfying
(A3.4), and arbitrary boundary conditicm;f(f/) the following equation holds:

LONE@ @ V)WY= > JIw©@,nv)), (A4.1)
{Q;}nv#A

where the partition functiorE(V\n’(IA/)) on the left-hand side is defined by (A2.1)—
(A2.4) withU (n(P)) replacingU (n(Q)) and the right-hand side is the abstract partition
function over contours defined in the previous sections. Thus, the partition function has
the polymer expansion

LV)E@® Q"V)E(V ' (V) =exp( > w(p)), (A4.2)
PNAFD
where the statistical weight(p) is defined in (A1.5)

For a polymerp = [Q], p = U;Q;, a potentialll € P(q, ¢) satisfying (A3.3),
and every sufficiently smal the conditional Gibbs distributions (see (A2.2)) can be
computed by the following formula

i, (EB) =
NB)exp| > UmP)+ > wlelEB)+n' (M) - Y. wlp/(V)|,
PCB ©ipNV\ B PNV A
(A4.3)
whereP is arectangleB C V C P are finite volumesY satisfies (A3.4)) and
__ LB

is the normalizing factor (recall thdt(B) and E*(£(0' B)) are defined by (A3.8)).

One can show that the infinite sums on the right-hand side in the above formula are
convergent uniformly for alB in Z? and obtain an explicit formula for the Gibbs state
in terms of the potentidl independent of the boundary conditigh

w&(B)) =

NB)exp| > UEP)+ Y. wlB)- > wp)|. (A45)
PCB ga:((jil_iST(«a/J\s)sl odistg,B)<1
1Sts, B)=0
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