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Abstract. We introduce a class of dynamical systems on a Riemannian manifold
with singularities having attractors with strong hyperbolic behavior of trajectories.
This class includes a number of famous examples such as the Lorenz type attractor,
the Lozi attractor and some others which have been of great interest in recent years.
We prove the existence of a special invariant measure which is an analog of the
Bowen-Ruelle-Sinai measure for classical hyperbolic attractors and study the
ergodic properties of the system with respect to this measure. We also describe some
topological properties of the system on the attractor. Our results can be considered
a dissipative version of the theory of systems with singularities preserving the smooth
measure.

0. Introduction
At present there is a rather widespread opinion that instability is one of the main
reasons for stochasticity in completely deterministic dynamical systems. This opinion
is based on rigorous results in the study of the stochasticity of hyperbolic and some
quasihyperbolic attractors (such as the Lorenz attractor, the Lozi attractor, etc). It
is also based on a numerical investigation of some physical origins where the
assurance both in stochasticity of the limit set and in instability of the trajectories
in its neighborhood takes place. Moreover, the linear approximation exhibits in
general, a rather strong instability. Usually the models of such a type are described
by systems of ordinary differential equations and it is convenient for the study to
pass from the phase flow to the first-return time map (the Poincare map) of a certain
cross-section surface. This map is, as a rule, discontinuous which creates additional
complications for the investigations.

In this paper we will introduce and study a new class of maps having 'generalized
hyperbolic attractors'. They are rather strongly unstable. In the linear approximation
their instability is as strong as it is in classical hyperbolic attractors. However, the
maps considered here are discontinuous on some closed subset (which is usually
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the union of a finite number of submanifolds). There are trajectories which very
often approach 'anomalously near' the discontinuity set. Although the set of such
trajectories is 'small enough' their existence implies weakening of hyperbolicity. In
fact the hyperbolicity of our maps is as weak as one encounters in systems with
nonzero Lyapunov exponents. Thus the systems with generalized hyperbolic attrac-
tors describe a rather widespread way for the appearance of stochasticity.

Our class of maps is described by a collection of axioms. In particular, the
hyperbolicity conditions are given by means of an invariant system of cones (i.e.
by requirements on the differentials of maps). Such an approach is due to Alekseev
[1], Anosov [2] and Sinai [21] and was developed for the attractors by Afraimovich
et al. [4]. There are also some conditions for estimating the rate of growth of the
differential of the system in a neighborhood of the discontinuity set. They have the
same meaning as the analogous requirements in the definition of general systems
with singularities (cf [10] and also [8]).

The aim of our work is to describe the ergodic properties of the dynamical systems
having the generalized hyperbolic attractors. In particular, we will prove the existence
of Gibbs u-measures (cf Theorem 1). They are analogous to Bowen-Ruelle-Sinai
measures for classical hyperbolic attractors (cf [16]). Our approach for the construc-
tion of such measures is a generalization of the method given in [19]. We will give
the description of ergodic properties of the systems with respect to Gibbs u-measure
(cf Theorems 2-4, 6, 7).

We will also study some topological properties of maps on generalized hyperbolic
attractors. In particular, we will prove (under certain additional conditions) an
analog of the theorem of spectrum decomposition on basic sets for axiom A
diffeomorphisms (cf § 9). It is worthwhile to notice two circumstances. First, in our
case a number of components of topological transitivity is in general countable.
Secondly, for a typical point (with respect to the Riemannian volume) in a basin
of a generalized hyperbolic attractor (whose Riemannian volume is positive) its
trajectory can be considered to be 'quite stochastic' (cf Theorem 3). However, this
basin is not in general a neighborhood of the attractor. One can happen that there
exists a subset of a positive Riemannian volume in a small neighborhood of the
attractor consisting of points whose trajectories go to the attractor but are not
'stochastic'.

We will consider some examples of generalized hyperbolic attractors. Among
them there are Lorenz type attractors (described in [6]), generalized Lozi attractors
(introduced in [22]), Belykh attractors (cf [7]). The metric and topological properties
of Lorenz type attractors have been rather well established (cf [4-6, 9, 23]). In the
case of generalized Lozi attractors only the existence of Bowen-Ruelle-Sinai
measures has been proved in [22]. As for the Belykh attractor its topological structure
and ergodic properties of the map acting on it have been almost unknown until
now, in spite of the very simple form of this map.

1. Definition of generalized hyperbolic attractors: local properties
1.1. Let M be a smooth p-dimension Riemannian manifold, K c M an open
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Dynamical systems with generalized hyperbolic attractors 125

bounded connected subset with compact closure, N <= K a closed subset. Let also
f:K\N->K be a map, satisfying the following hypotheses:

(HI) / is a C2-diffeomorphism from the open set K\N onto its image f(K\N);
(H2) there exist C, > 0, a, > 0, i = 1,2 such that

ll«*2/x||s ClP(x, N+)-> for any xe K\N,

\\d2rx
l\\ s C2p(x, Ar)-"» for any xef(K\N)

where p is the Riemannian distance in M, N+ = JVu<9K is the 'discontinuity
set' for / and

N~ = {y € K: there exist z e N+ and zn€K\N+ such that zn -* z, /(zn) -» y}

is the 'discontinuity set' for/"1 (the image of the discontinuity set for / ) .
Define

and set

We call A the attractor for / It has the following properties which follow easily
from the definitions.

PROPOSITION 1.

(1) D = \\(\Jnszf"(N+));
(2) The mapsf, f'1 are defined on D andf(D) = D, f~\D) = D.

1.2. We set for arbitrary e > 0 and / = 1,2,...

Dt, = {z e K+: p(f(z), N+) > T1 e^\ n = 0 ,1 ,2 , . . .} ,

D", = {z e A: p ( / - ( z ) , N~) > r 1 e—, n = 0 ,1 ,2 , . . .} ,

£>:,, = Dt, n A, D%, = DJ,, n £>:,,,

It is easy to see that the sets D*,, D*,, D"( are closed; Do
e = D*nD~; D* is

/-invariant, D~ is/"'-invariant; D° is both / and /"'-invariant. Besides, D°e<^D
for any e.

We say that A is regular if
(H3) D° * 0 for all small enough e > 0.

We will give an additional condition on A to be regular. Consider the function
(p(z) = p(z, N+) and define for z € D

It is obvious that functions xt(z) a r e both/- and/" 1 invariant on D and **(z)<0
for zeD. It follows directly from the definition of x%(z) that for any e > 0 and
ze D there exists K(e, z )>0 such that for any n e Z

p(f(z), N) = «p(/"(z)) < K(e, z) exp ((**(*) + e)\n\). (1)
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Define D± = {zeD: there exists the limit

**(z)= lim n l n ? ( / " ( z ) ) = O},
n-»±oo | n |

D° - D+ n D~. It is easy to see that these sets are both/ and/"'-invariant. Moreover
for any e > 0 and z e D+ (respectively z e D~ or D°) there exists C(e, z) such that
for any n > 0 (respectively n < 0 or n e Z)

p(/n(z), AT) = <p(/"(z))> C(e, z) exp (-e|n|). (2)

It follows from here that D±<^Dt,D°cz D° for any e > 0.

Remark. Let zeD° and C(e, z) = sup{C(e, z) for which (2) holds for all neZ}.
One can show (cf [14]) that for any m € Z

C( e , / m (z))>C( e ,z)exp(- £ |m|) . (3)

For A <= A denote by /" ' (A) = {z € A\N+: f(z) e A}. A measure /u. on A is called
f-invariant if /*( A) = fi(f~l{ A)) for any A <= A. Let Mf be a collection of normalized
Borel /-invariant measures on A.

PROPOSITION 2. Assume that there exists /u. e Mf such that

(1) n(D)>0; (2) <oo.

Then /u(D°)>0 and, in particular, A is regular.

Proof. One can assume that /i is ergodic (otherwise one should consider its arbitrary
ergodic component). It follows from the conditions (1) and (2) in Proposition 2,
that for /i-almost every z e D there exist the limits

X%{z)= l i m ^ I n ?(/"(*))

and *£(z) = **(z). Hence D+ = £T = D° (/t-mod 0). We will show that /i(D+) > 0.
Assuming the contrary we have by virtue of (1) that for fi- almost every ze D

i
Therefore \D(pdfi = 0. But it is impossible because fi(D) > 0. •

We will give another condition for the regularity of A. Denote by U(e, N+) the
e-neighborhood (in K) of N+ and by v the Riemannian volume in K.

PROPOSITION 3. Assume that there exist C > 0, q > 0 such that for any e > 0 and n > 0

V(rn(U(e,N+)nr(K+)))^Ce". (4)

77ien A is regular.

Proof. Set

J n - l

n t=o
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Dynamical systems with generalized hyperbolic attractors 127

It is easy to see that the sequence of measures nn is compact in a weak topology
in K and let /x be a limit measure. It is obvious that //. is concentrated on A and
is invariant under / Take arbitrary y > 0, e > 0. We have from the definition of D*(

that for Z>y~1

K\DX,<z{xeK: there exists mel+ such that /m(x)e U(ye~'m, N+)}

Therefore the condition (2) implies that

m=O

where C, > 0 is a constant independent of n. This means that

for all large enough /. Taking into consideration that the sets D*j are closed we
obtain from here that

As n(A) = 1 we have /u.(D^()s 1 — Cxy
q. This implies that fi(D+) = l and con-

sequently fi(N+) = 0. Since n is /-invariant this means by virtue of Proposition 1
that fi(D) = 1. It follows from (1) that given e > 0 small enough and any n > 0

\n <p(z) dpn{z) <\\ \r\(p(z)dfin

< C + ln(l/e)<oo.

We have from here

In (z) d^z) <oo.
' A

Now the desired result follows from Proposition 2. •

Remark. Condition (4) formulated for the case of dissipative systems is analogous
to the corresponding condition for conservative systems with singularities (cf [10]).

1.3. Denote by C(z, a, P) a cone at point zeK (a > 0 is a number, P is a subspace
in TZM) consisting of all v e TZM such that

<(v,P) d= min< (v, w) < a.

We say that A is a generalized hyperbolic attractor if there exist C > 0 , 0 < A < l ,
a function a(z) and two fields of subspaces F(s)(z), P<u)(z) <= TZM, dim P(s\z) = q,
dim P{u)(z) = p-q (p = dimM) zeK\N+ such that the cones C(s\z) =
C(s\z, a(z), P(s\z)) and C(u\z) = C(z, a(z), P{a)(z)) satisfy the following condi-
tions:

(1) the angle between Cis)(z) and Ciu\z) is greater than const >0 (uniformly over
zeK\N+); in particular, C | s ) (z)nCw(z) = 0;

https://doi.org/10.1017/S0143385700006635 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700006635


128 Ya. B. Pesin

(2) rf/(C(u)(z))c Clu\f(z)) for any zeK\N+; df~\Cim\z))c C(i)(/"1(z))forany
zef(K\N+);

(3) for any n > 0
(a) letzeK+, BE C(U)(Z) then ||4f"o||aCA-"||o||;
(b) let zefn(K+), ueC(s)(z) then ||d/~"u||> CA""||»||.

For z € D we set

Repeating the arguments given in [15] one can show that for any ze D
(1) £<s)(z), £(u)(z) are subspaces in TZM; dim E(s\z) = q, dim £(u)(z) = />-<?;
(2) rzM = £( s ) (z)0£( u ) (z) , £ ( s ) (z)n£( u ) (z) = O;
(3) the angle between E(s\z) and £<u)(z) is greater than const >0 (uniformly

over z);
(4) for any n > 0

||sCA"||p||, t>e£(s)(z),

1.4. It follows from the above assertions that subspaces £(s)(z) and £(u)(z) define
the uniform hyperbolic structure on D. It means tha t / | A is the smooth map of a
hyperbolic type with singularities. Our aim is to construct an invariant measure for
this map with 'good' ergodic properties. The first step is to define local stable
manifolds V(s)(z) at every point ze D+ and local unstable manifolds V(u>(z) at every
point z € D~. The discontinuous character of / implies that the 'size' of the local
manifolds is only a measurable (but not continuous) function on D despite the fact
that the hyperbolic structure on D is uniform. Therefore the situation is similar to
one arising in the systems with non-zero Lyapunov exponents. We can study it using
the methods presented in [10, 11, 15, 18, 20]. It is worthwhile to emphasize the
following important circumstance. In the general theory of maps with non-zero
Lyapunov exponents (both smooth and smooth with singularities) and preserving
a measure equivalent to the Riemannian volume the set of regular points in the
sense of Lyapunov plays the crucial role. It is the set where one can construct local
stable and unstable manifolds whose size can decrease along trajectories but at most
with a small exponential rate (in comparison with the rates of contraction and
expansion). In our case the same role belongs to the set D° (especially in view of
(3), cf also statement (5) in Proposition 4).

1.5. We give the exact formulations.

PROPOSITION 4. (cf [11,18, 20].) There exists e > 0 such that the following statements
hold:
(1) there exist St > 0 and maps

https://doi.org/10.1017/S0143385700006635 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700006635


Dynamical systems with generalized hyperbolic attractors 129

(B(s)(«,), B(u)(S,) are balls in E(s)(z) and E(u)(z) respectively, of radius 8, centered
at zero) such that the sets

V(s)(z) = {exp, (u, <pis)(z)(u)): u e B(s)(S,)}, ze DJ,,,

V(u)(z) = {exPz (u, ?<u)(z)(u)): u e B(u)(S,)}, ze D^,,,

are C1 -submanifolds in K and

TzV
(s)(z) = Eis\z), TzV

(u)(z) = £(u)(z);

(2) ( )

(3) f/iere exist /x. 6 (A, 1), C*,1* > 0 such that for any n > 0:

p(/n(>0,/n(z)) =s C\l)»"p(y, z) for z e D+
e,,, y e V(s)(z), (5)

p(rn(y)J-"(z))^C?)nnp(y,z) forzeD;,,>3;eV(u)(z); (5')

(4) . /zeD^^eD^nexp.CB^SOxB^S,)) and P(fn(y),fn(z))^0 whenn^
oo thence V*s)(z);
ifzeD;,,, yeD^nexpAB^S^xB^iS,)) and P(r"(y),f-'(z))^0 when
n^oo thenyeV(u\z);

(5) there exists C^ > 0 such that

d(Tyy*\z), Ty2V
is\z))^C?)p(yl,y2) (6)

for any z e D+,, }>,, y2 e V*s)(z) and

d(Tyi V
(u)(z), r,2V<u)(z))< C(,2)p(^, j;2) (6')

for any ze D~,, yx,y2& V<u)(z) (a* is a distance between subspaces in TM);
(6) there exists y > 0 sucn ffcaf /or any m € Z

5,+m>5,exp(—y|m|).

(7) V(s)(z) (respectively V<u)(z)) depends continuously on zeD^i (respectively ze
Dl,).

Remark. I f / e Cr + a , r > 1 then <p(s)(z), <p(u)(z)eCr (for a fixed z); i f / e C1+<* then
instead of (6), (6') we have

d(Tyi v
(s)(z), rwv(s)(z))< cPW,,*)- ,

d(T,, V(u)(z), Tn V(u)(z)) ̂  C(,2)p(yi, y2)
a.

Everywhere in the following we will write D± and Df instead of D* and D*(.

PROPOSITION 5. V(u)(z) <= D" /or an^ z € D~.

Proof. Let ze DJ for some / s i . Consider a ball Bn centered at f~"(z) of radius
zn = rC^ exp (-e|«|) (e is taken according to Proposition 4). We have that BnnN =
4> for small enough e > 0 and any n >0. Define the sets GK>n, K = 0 , 1 , . . . , n by
induction setting

Gln = Bn, GK<n = Bn-Knf(GK-Un), K = 1 , 2 , . . . , « .

We have Gn_1,n<=/"(/O- It follows from [18] that
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Hence, V<u)(z)c:D. On the other hand Proposition 4 implies the existence of
m = m(l) > 0 such that if y e V<u)(z), then y e D~. The desired result follows from
here. •

Let AcA. Define

f(A)=f(A\N+), / -1(A)=/- ' (A\N-).

The sets /"(A) and f~"(A) for n > 1 are defined in the same way. We set for z e D+

W(s\z)=\Jf~"(Vis\f(z))),
naO

and for z e D~

naO

The set W(s)(z) is a smooth imbedded, but possibly non-connected, submanifold
in K of the dimension q. It is called the global stable manifold at z. If y € W^s)(z)
then all images f"(y) for n >0 are correctly defined. For .y e W(s)(z) we denote by
Bis)(y, r) a ball in W<s)(z) of radius r centered at y (with respect to the natural
distance in Wis\z); we restrict ourself to a connected component in W(s)(z)). The
assertions are true for W(u)(z). It is called the global unstable manifold at z. We will
use the same notation.

Fix r > 0 and take y e W(s\z), w e B(s)(y, r), n > 0 (respectively y e W<u)(z), w e
B(u\y, r), n<0). We have by virtue of Proposition 4 (cf (5), (5')) that

(respectively

P<u)(/"(y),f"(w)) — C/x"p(a\y, w)) (7)

where C = C(r)>0isa constant.

2. Gibbs u-measures: existence and ergodic properties
2.1. We give the definition of Gibbs u-measures. Denote by / < u ) ( z ) the Jacobian of

the map df \E(u\z) at a point z e D. Fix / > 0 , points zzDJ,ye WM(z), n >0 and

set

n - l

J=0

One can derive the following assertion from Proposition 4 (cf (5'), (6')) and
conditions (HI) and (H2).

PROPOSITION 6.

(1) For any /> 1, zeD~[, ye W(a\z) there exists a limit

K(z,y) =lim Kn(z,y)>0.
n-*oo

Moreover there is r) > 0 such that for any e>0,re(0, r)) one can find N = N(e, r)
such that

max max |/cn(z, y)-K(z, y)|< e

for any n > JV.
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(2) The function K(Z, y) is continuous on DJ; more precisely, for any zeDJ, ye
Bla)(z,r) and any two sequences of points {zn}, {yn} such that zn-*z, yn-*y,
zneDJ,yneB{u\zn,r) we have

lim K(zn,yn) = K.(z,y).
n-*oo

(3) ForanyzeDJ,yi,y2eW^\z)

K{z,y1)K(yi,y2) = K(z,y2).

Fix /> 1, a point ze DJ and let B(z, r) be a ball in K centered at z of radius r.

PROPOSITION 7. There exist r]> r] > r* >0 such that the following is true. Let
W(z) = expz {u e E(s)(z): || u || < r?}. (8)

Then for any ye B(z, r*) n DJ the intersection V"(y) n W(z) is not empty and consists
of a single point (which we denote by [y, z]); besides

VM(y)^B(a)([y,zlr\3)). (9)

Proof. This follows from Propositions 4 and 6 (cf also [15]). •
Take r<r* and set

U = U(z,r)= U BM([y,z], r<3)).
yeB(:,r)nD /

It is called the rectangle at z. Denote by i'<u) the Riemannian volume on W(u)(z), z e
D~ induced by the Riemannian metric in M; by £ = £(II) the partition of II(z, r)
by the sets C((y) = B(u\[y, z], r(,3)), y e B(z, r) n DJ. This partition is continuous
and measurable with respect to any Borel measure on A.

Let fi be a Borel probability measure on A. Consider z e DT and a rectangle
II = Il(z, r) at z. Assume that JU.(II) > 0 and denote by ne(y), y € B(z, r) n DJ the
conditional measures. We say that fi is ffte Gibbs u-measure (or, simply, u-measure)
if for any />0, zeDf and n = Il(z, r), (r<r?) with /i(II)>0

dfie(y') = r(y)K([z,yly')dSu\y').

Here y6fl(z,r)n Dj", y' e B(u)([z, _y], r(,3)) and r(y) is the 'normalizing factor' given
by the formula

Denote by Mf the class of measures fie Mf for which n{D°) = 1 and by M}u) the
class of Gibbs u-measures fi e Mr.

Any fie Mf is the measure with non-zero Lypunov exponents #(1)(*)» • • • ,Xi P\ x)
at every xe D°. In addition, if /A is ergodic the functions #(l)(x), i = 1, . . . ,p are
constant /i-almost everywhere. We denote the corresponding values by x^ and
assume that

2.2. Fix zeDJ, r<r\3) (cf (9)) and set

U0=B(u)(z,r), U0=U0, Un =/(£/„_,), Un = Un\N+ (10)
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and further

r = i c =( n J(U)C fk(
\<c=0

Define the measures vn on (/„ by the formula

and the measures vn on A putting for any Borel set A <= A

vn(A) = vn(AnUn), n>0. (11)

PROPOSITION 8. Assume that there exists a point zeD~ such that for any k>0

Then for any n > 0 and any Borel set A c: A

(here measures vn are constructed with respect to z).

Proof. (Compare [19], Proposition 3.) For any n > 0 and any Borel set A<= A we
have A n Un = /"( /"" (A) n Uo). It follows from here and the condition of Proposi-
tion 8 that

CMfn(z),fn(y)) "n Jiu)(fk(y)) dvia

CnK(fn(z),f{y)) "n J(a\fk(y))[K(z, y)]~l dto(y)
"(A)nl/0 k=0

= f Cn "n /< u )(/k(z)) ^0(>-) = [ dto(y)
Jf-"(A)nUa k.=0 Jf "(A)r^U0

D

2.3. We say that the attractor A has the property (H4) if there exist a point zeD~
and C>0, t>0, e o >0 such that for any e, 0< e < e0 and « >0

^(u)(V(u)(z)nf-n(U(e, N+)))< Ce',

where C/(e, N+) is the e-neighborhood of N+ in M.
It is easy to see that if A has the property (H4) then it satisfies the condition of

Proposition 8.

THEOREM 1. Assume that A is a generalized hyperbolic regular attractor having property
(HA). Then there exists a measure fi e Mj-u) concentrated on D which satisfies conditions
(1) and (2) of Proposition 2.

Proof. Let z e D~ be the point mentioned in the property (H4) and vk be the measures
on A constructed by (11) with respect to z. Consider the sequence of measures on
A

1 n - l

/ *„=- ! «v (12)
n k=o
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It is easy to see that it is weakly compact. We will show that there exists a subsequence
of measures /xn, which converges (in the weak topology) to a /-invariant Gibbs
u-measure on A. The crucial point in this approach is to prove that some limit
measure ft for the sequence of measures fin is concentrated on D (e.a. fi(D) ~ 1;
this is the measure that is the Gibbs u-measure). The proof of this fact is essentially
based on the property (H4). Now we give the exact formulations.

LEMMA 1. For any y > 0 there exists /0 = 0 such that for any n > 0 and I & l0

Proof. Fix y > 0, a > 0, n > 0 and let £/„ be the sets defined by (10). It follows from
the definition of DJ that for large enough / (depending only on a)

Un\DJ<={xe Un: there exists k,0<k<n such that/~k(x)e U{ae~ck,N~)}

(here e is taken according to Proposition 6). Therefore

By virtue of (H4) we have from here that

i/B( I/ADD s C o ' ( l - e - V .
The right-hand side of this inequality will be less than y if a is small enough
(respectively / is large enough). •

It follows directly from Lemma 1 that the sequence of the restrictions of measures
fj.n to the closed set DJ (for a fixed and large enough /) is weakly compact. Let /I"*
be a limit measure. It is easy to see that /A(I)(DJ)>0.

LEMMA 2. /I(/) is a Gibbs u-measure on DJ.

Proof, (cf [17], Theorem 4.) Let ze DJ be a Lebesque point for /I<(), n = II(z, r) a
rectangle at z with r < r(,4)(y), y e B{z, r) n DJ. We identify fi/£ with a closed subset
W in W(z) (cf (8)) consisting of points [z, y] where y e B(z, r) n DJ. Set

An = {y € B(z, r) n Dr: V(u)(>-) nUn* 0},

C = An\Bn,Dn= U Biu\y,r).
yeBn

It is easy to see that Bn c An and sets An, Bn, Cn have a finite number of elements.
We have from the definitions of measures vn and numbers Cn and from Propositions
4 and 6 that

J D,

f~"(Dn) k=0

K(Z, y') dvM{y') < X, ^
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where Kt > 0, K2 > 0 are some constants. Denote by Sn the measure on Cn such that

Sn(Z) = N(Z)/N(Cn),

where Z^Cn and N(Z), N(Cn) are numbers of elements in Z and Cn. Let h be
a continuous function on £>(~ with a support in II, and d = max>e£>7 |/i(>0|. We have

f h(y)dvn(y)=\ h(y)dvn(y)= £ \ h(w) dvn{w)
JD'i Jn yeAn Jv'u\y)nUa

= I [ h(w)dtH(w)+ I [ h(w)dfn(w)
yeCn J VM(y)nUn ysBn J VM(y)r^Un

= /(n)+/(n)

It easily follows from what was said above that

l{n)^K^\Dn)^2KiK2rfL-', (13)

where K3>0 is a constant. It follows from Proposition 6 and the definition of
measures vn that

\k)=Cn I K(f(z),y) f

= f CnK(/"(z

where

= | *(>•,
J V(u)(y)

is a normalizing factor. Now the result we need follows from (12) and Lemma 13
in [19]. •

For / a /0 consider the sequence of measures on A

A.

There exists a sequence of numbers n, such that the subsequence of measures pn:

weakly converges to a measure /J. on A and for any fixed / > /0 the subsequence of
measures fin._, weakly converges to a measure /I(". It is easy to verify that jl(l)(A) <
fi(A) for any / > / 0 and any Borel set A c A. This means that /I<() is absolutely
continuous with respect to fi and 0 s d ^ ( ' ' / d / i ^ 1.

LEMMA 3. n is a Gibbs u-measure on A.

Proof. Fix arbitrary j8, e e (0,1), /3 is sufficiently close to 1 and e is small enough
and let y = e(l-/2)< 1. Take />/„ so large that /2("(Dr)s 1-y (cf Lemma 1) and
denote by A = DJ,

Let n(A) = a, fj,(B) = b. We have that

Further

<M(A\B) = a-b.
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It follows from here that fi(l)(A)<fi.l{B) +iL'{A\B)<a-b(\-p) and therefore
i ) ( l - j 5 ) s a - l + y<y , hence fo<e. This means that /t coincides up to a factor
8 to the measure /I(/) on a set of /JL-measures 1 -y — e. It implies what we
need. •

LEMMA 4. fi is f-invariant.

Proof. We have that n(D~) = 1. Let A c D" be a closed subset. Then f~\A) <= D~
and there exist a number a and an a-neighborhood of A in K such that

U(A,a)nN = 0 and

Let <p be a continuous function being equal to 1 on A and to 0 out of U(A, a).
Since p is the weak limit of /*.„. it follows from the Proposition 8 that

). •

I = 1 we have that p{N+) = 0. Taking into consideration that fi is/-invariant
we conclude that fi(D) = 1. Repeating the arguments given in the proof of Proposi-
tion 3 one can show that

ln<p(z) dfi(z) <oo
I JA

(recall that <p(z) = p(z, N+)). This means that fi satisfies conditions (1) and (2) of
Proposition 2. •

2.4. In the following we will assume that A is a generalized hyperbolic attractor
satisfying condition (H4) and /ieAf}u>, fi(D0) = l. We will describe the ergodic
properties of /t. One can derive the next assertion from the definition of Gibbs
u-measure and the Fubini theorem.

PROPOSITION 9. For fi-almost every z e D~

i/(u)(Don V(u)(z)) = 1. (14)

Fix zeD~ for which (14) takes place and choose / such that

viu)(Dfn V<u)(z))>0.

Let W be a smooth submanifold in a small neighborhood of V<u)(z) taking in the form

W = {expz {y, <p(y)),ye Ic E(u)(z)},

where / is an open subset and <p : /-» £<s)(z) is a difleomorphism. W has the same
dimension as V(u)(z) and is transversal to V{s\y) for all ye Din V(u)(z).Consider
the map p: Din V<u)(z)-> W where p(y) is the point of the intersection Vis\y) and
W. Denote by vw the measure in W induced by the Riemannian metric in W
(considered as a smooth submanifold in M). One can prove the following result
using the arguments presented in [18] (cf proof of Theorem 4.4).

PROPOSITION 10. The measure p%viu) is absolutely continuous with respect to vw.

https://doi.org/10.1017/S0143385700006635 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700006635


136 Ya. B. Pesin

Fix zG D~ and for / > 0 denote by

PROPOSITION 11. For v-almost every zeA and any /arge enough l>0 we have (1)
/*(<?(/, z)) > 0; (2) fne set Q = Unez/"(<?(', z)) « '*« ergodic component of a positive

measure for the mapf\A (with respect to /A).
Proof. For any continuous function (p on A we set

? + ( z ) = l i m - i <p(fk{z)\

<p-(z) = lim± I ?(/*(z)),
n->oo K k--n

where ze D. It follows from Birkhoff's ergodic theorem that <p+ and <p~ are well-
defined and <p+(z) = <p~(z) almost everywhere except a set A of measure zero. It
follows from the Fubini theorem and the definition of Gibbs u-measure that
»>(u)( V(u)(z) n N) = 0 for /x-almost every zeD0. For such points z Proposition 10
implies that fi(Q(l, z ) )>0 if / is arbitrary large enough. Moreover for /x-almost
every point ye Q(l, z) we have ^^(zjn V<s>(>') = wiN. Because <f> is continuous
and p(f"(y),f(w)) -» 0 when n -» oo it is easy to see that ^ ( y ) = <p+(w). The same
arguments show that ip~(z) = <p~(w). Hence, <p~(y) = <p+(y) = <p+(w) = <p~(w) =
<p~(z) = <p+(z). Now one can prove the desired result by repeating arguments
presented in [3] (cf proof of Theorem 4.4). •
Remark. One can also prove by a slight modification of the above arguments that
any ergodic component of a positive /i-measure can be written in the form

Q=Uf"(R(z)), (15)

where z is a typical point (with respect to /J.) and

R(z)= U VM(y)

for some large enough / (in particular it points out on a symmetry in a structure of
an ergodic component with respect to local stable and unstable leaves).

2.5. Now we can present a description of the ergodic properties of the map / | A
with respect to a Gibbs u-measure /u.. It can be obtained from Proposition 11 by
arguments in [10, 11, 15].

THEOREM 2. Let fi e M}u). Then there exist sets A, <= A, i = 0 ,1 ,2 , . . . , such that
(1) A = LUo A,, A, n Aj, = 0 for i *j, i,j = 0 ,1 ,2 , . . . ;
(2) M(AO) = 0, MA,)>0 fori>0;
(3) for i > 0: A, c £>, /(A,) = A,, / 1 A, is ergodic;
(4) for i > 0: there exists a composition:
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where
(a) AfnAf = 0forj^j2;
(b) f(M) = M+1 for) = 1,2 n, - 1 , /(AT1) = Ah
(c) / " ' | A] is isomorphic to a Bernoulli automorphism;

(5) for the metric entropy h^(f\A) the following formula takes place

M/|A)=f 'l X,(x)

where {#,(*)}, i = 1 , . . . , s(x) is the collection of all positive values of the Lyapunov
exponent at x;

(6) there exists a partition 17 of A with the following properties:
(a) for n-almost every x e A the element Cv(x) of the partition i\ is an open subset

in W(u\x);
(b) ft) > % V n ^ o / S = e, Afc^o/S = v( W(u))

(here v(WM) is a measurable hull of the partition of A consisting of single
leaves W(u)(x) ifxeD' and single points {x} ifxeA\D~);

(c) h(f\A, rj) = /i / i(/ |A) where h(f\A, rj) is the entropy of f\A with respect
to 77.

Denote by

W(S)(A)= U + Wis\z).

The next assertion follows directly from Proposition 9 and Theorem 2.

THEOREM 3. Let / i e M(
f
u). Then for any set A, constructing in Theorem 2 with i > 0

the following holds:
(1) mes (W( s )(A,))>0 (where mes denotes the Riemannian volume in M);
(2) there exists A,<= A such that /i(Aj) = /u.(A,) and for any z e W(s)(Aj) and any

continuous function <p in M there exists

k, -- 1
Km- I <p(f(z)) =
n-»oo n k=o

Using the above results we can now describe the whole class of Gibbs u-measures
on A.

THEOREM 4. There exist sets An, « = 0 , 1 , 2 , . . . and measures /*„ e M(/\ n = 1,2, . . .
such that:

(2) mes (W{s)(An) n W(s)(Am)) = 0 for n * m, n, m > 0;
(3) for n > 0: An c D, f(An) = An, Mn(An) = 1, /1AM is ergodic with respect to nn;
(4) for n > 0: there exist kn > 0 and subset An <= An such that

(a) the sets A n - i =f'(An) are disjoint for i = 1 , . . . ,kn-\ and An_kn = A n l , A =

(b) fk"\AnA is isomorphic to a Bernoulli automorphism (with respect to fin);
(5) forany neM(

f
u)

n>0 n>0
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(6) If v is a measure in K being absolutely continuous with respect to the Riemannian
volume and vn = v\ W<s)(An), n>0 then

1 k~l

lim- I / > „ = /*„.
fc-»oo K ; = i

Proof. Let fii, fi2 e M}u) be two ergodic measures and At, A2c A be two subsets for
which fii(At) = 1 and /u.2(A2) = 1. It follows from Theorem 3 that

mes (W^iAJ n W(s)(A2)) = 0.

This implies the statements (l)-(5). The last statement follows from assertion (2)
of Theorem 3. •

In conclusion we mention a connection between Gibbs u-measures and property
(H4). First of all let us notice that any accumulation point of the sequence of
measures (12) is a Gibbs u-measure (this follows essentially from Theorem 1). We
describe a special property of such measures.

PROPOSITION 12. If fi is the Gibbs u-measure constructed in Theorem 1 then there is
eo> 0 such that for arbitrary e = (0, e0] and any n > 0

»(U(e,N+))^Ce\ (16)

where C > 0, t> 0 are constant independent ofe, n. (The constants C, t, e0 can depend
on the initial point z using in the construction of p..)

Proof. Let h be a continuous function |/i(x)|< 1 for any xe M which is equal to 1
on U(e,N+) and is equal to 0 outside U(2e,N+). We have j h dpnk -* J h dfi for
some sub-sequence nk-*oo. It follows from (H4), and the definition of measures fin

and Proposition 8 that

I < „"( V(u)(z)nf-"'(U(2e, N+)))< C(2e)'.

This implies the desired result. •

We have seen that property (H4) is sufficient to prove the existence of an/-invariant
Gibbs u-measure on a generalized hyperbolic attractor. Now we will show that it
is 'almost' necessary.

PROPOSITION 13. Let fie M}u) (e.a. fi is the Gibbs u-measure on ^invariant under f
and fi(D0) = 1) satisfy (16) with some constants C, t, e. Then for fi-almost every point
z e Do there exists e(z) > 0 such that condition (HA) is true with respect to z and any
e e (0, e(z)] (and the same C, t).

Proof. Since fi is /-invariant we have from (16) for any /> 1, any rectangle lie: D,
of a positive /t-measure, and any n > 0 that

It follows from the definition of Gibbs u-measures and the Fubini theorem that for
any S > 0 small enough there exist a set n s of measure a 1 - 8 such that condition
(H4) holds with respect to any zeUs and any e e (0, e(l, 8)) (for some e(/, 8)). It
implies the desired result. •
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3. Ergodicity and topological properties of the map f | A
3.1. Our approach to the study of the ergodicity and topological properties of
generalized hyperbolic attractors is based on the above description of the metric
properties and some information about a topological structure of the stable lamina-
tion W(s). Roughly speaking we require it to be continuous in a weak sense (in
general it is only measurable). This requirement holds if W(S)(JC) are 'parts' of some
continuous foliation and are expanding 'in all directions' under/"" (the last demand
can be omitted in the two-dimensional case).

We represent some general definitions closely following the approach presented
in [17]. Let /* be a Borel measure in M, X <= M a Borel subset with fi(X) > 0.

We say that W is a measurable lamination on X if W is a partition of X and for
/^-almost every x e X the element of this partition containing x has a form W(x) n X
where W(x) is an immersed C'-submanifold in M passing through X. W(x) is
called the global manifold at x

Given r > 0 the connected part of intersection W(x)n>B(x, r) containing x is
denoted by V(x, r). If r = r(x) is small enough then V(x) = V(x, r(x)) is a graph
of a C'-map <px: £/x -> M where Ux <= TxW(x) is an open neighborhood of zero and
<p(0) = x, d(p(0) = TxV(x). V(x) is called the local manifold at x (of course, it is not
uniquely denned).

We say that W is a continuous (mod 0) r(x)-lamination on X if it is a measurable
lamination and for /x-almost every xeX the maps <p(y) and du<p(y)(u) are con-
tinuous over yeXnB(x, r(x)).

Let W be a continuous (modO) r(x)-lamination on X. Fix xeX and assume
that n , , n 2 are two submanifolds in B(x, r(x)) uniformly transversal to any V(y),
yeXnB(x,r(x)). Let

Z, = {ze II,: there exists y s X n B{x, r(x)) such that z = Z,n V(y)}, i = 1,2.

Consider the projection map x-Z1-*Z2 where x(z\)= zi a"d z, = X n V(y) for some
yeXnB(x,r(x)).

A continuous (mod 0) r(x)-lamination W on X is called absolutely continuous if
for almost every x e X and any Yll, U2 the projection map \ is absolutely continuous
(e.a. the measure x*Pi is absolutely continuous with respect to the measure fi2

where JA, is a Riemannian volume on II, considered to be a smooth submanifold
in M).

A measurable lamination W on X is called expanding if there exist r > 0 and a
measurable function n(x) on X such that for /t-almost every xeX and any n > n(x)

f-n(V{x))^Bw(f-"(x),r),

where Bw(x, r) is a ball on W(x) of radius r centered at x.

3.2. Let A be a generalized hyperbolic attractor for map / satisfying (H1)-(H4). It
is not difficult to see that the partition of D+ (respectively D~) on stable (respectively
unstable) leaves is a measurable lamination on A with respect to any Borel measure
H concentrated on A for which n(D+) = 1 (respectively /u.(D~) = 1). We denote them
by W(s), Wlu). In the general case they are neither continuous nor expanding with
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respect to /""' or f) and we give the additional conditions for continuity and
expansivity.

Let (i be a Gibbs u-measure on A. The following results can be proved by the
arguments given in [15].

THEOREM 5.

(1) If WM is a continuous (mod 0) r(x)-lamination then it is absolutely continuous.
(2) Let Wbe a continuous (mod 0) r(x)-lamination on A and W(s)(x)cz W(x) for

fi-almost every xeA. Assume that W^s) is expanding (with respect to / " ' ) . Then
W(s) is the continuous (mod 0) r(x)-lamination with r(x) = min (r(x), r).

(3) If dim W^s)(x) = 1 for fi-almost every xeA then W(s) is expanding (with respect
tof~x).

Now we give some additional conditions for the ergodicity of the map /1A with
respect to a measure /i. € M}u).

THEOREM 6. Assume that Wis) is a continuous (mod 0) r(x)-lamination on A (with
respect to fi). Then any ergodic component Q <= A for f of a positive fi-measure is open
(mod 0) (with respect to /x and the induced topology in A).

Proof. By virtue of Proposition 5 for /^-almost every xeAwe have that V(u)(x) <= A
and the balls B^^(y, r(y)) are correctly defined for i>(u)-almost every y e V(u)(x)
(e.a. on a set Aiu)(x) <= V(u)(x)). Consider the set

U B^(y,r(y)))nAnB(x,r(x)).
A(U)(X) /

It is easy to see that fi(Q(x)) > 0. One can show using the Theorem 5 (see statement
(1); compare with Proposition 11) that the set

<?=U/"«?(*))

is an ergodic component of a positive measure for the map /1 A. We will show that
Q(x) is open (modO) in the induced topology in A. Assuming, on the contrary,
that we can find a set Ac AnB(x, r(x)) of a positive ^i-measure such that An
Q(x) = 0 . Then there exists a point ye A such that

i>u(AnV(u)(y))>0.

It follows from Theorem 6 that the set x(An V(u)(_y))c V(a\x) has a positive
^•"'-measure (recall that x is the projection map). However, it is impossible, because

X(An VM(y))nA^(x) = 0. D

The next statement is a direct consequence of Theorem 6.

THEOREM 7. Assume that Wis) is a continuous (mod 0) r(x)-lamination on A with
respect to /* andf\A is topologically transitive. Then the mapf\A is ergodic.

3.3. Now we give a description of topological properties of/| A. Let us notice that
if W(s) is a continuous (mod 0) r(jc)-lamination on A with respect to some measure
/i € M}u) then it can happen that it is not the same with respect to some other
measure v e M}u). This motivates the following definition. We say that W(s> is a
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continuous (modO) r(x)-lamination with respect to the class of measures M}u) if
WH) is the same with respect to every fi e M}u ) . For example if W is a continuous
C'-lamination on A (for a definition, see [16]) and W(s)(x) <= W(x) for every x e D+

then W(s) is continuous (modO) r(x)-lamination with respect to M}u) for some
function r(x).

The following result is a direct consequence of Theorem 7 and describes the
topological properties of the map / 1 A.

THEOREM 8. Assume that W(s) is a continuous (mod 0) r(x)-lamination on A with
respect to M}u>. Let An, n = 0 , 1 , 2 , . . . and \in, n = 1 ,2, . . . be respectively the sets
and the measures constructed in Theorem 4. Then for n > 0
(1) An is an open subset in A (mod 0) (with respect to /*„ and induced topology in A);
(2) / | A n is topologically transitive;
(3) fk"\ An _, is topologically mixing (the number k,, and the set Anl <= An are constructed

in Theorem 4).

The result is similar to the theorem on a spectrum decomposition for axiom A
diffeomorphisms with An considered to be the basic sets (cf [16]). But in our case
it is possible that / would have a countable (but not finite) number of components
of topological transitivity (cf, example below in § 5). E. A. Sataev gave additional
conditions on / to have a finite number of components of topological transitivity
(unpublished).

Let us also notice that in Theorem 8 it is described the topological properties of
/ only on, so to speak, 'essential' part of A: a topological behavior o f / on the set
Ao is unknown (and in general can be arbitrary).

The next statement follows directly from Theorem 8 and is an important addition
to Theorem 7.

THEOREM 9. Assume that W<s> is a continuous (mod 0) r(x)-lamination on A and
/1A is topologically transitive. Then f has only one Gibbs u-measure on A.

It follows from Proposition 10 that mes (W(s)(A)) > 0. Therefore if v is an arbitrary
smooth initial distribution in a small neighborhood U of A then one can describe
the evolution of the measure v\ W<s)(A). Namely, if the conditions of Theorem 9
hold the limit distribution is the uniquely defined Gibbs u-measure on A. In the
general case the limit distribution is described by Theorem 4. However the evolution
of v on the other part of U is unknown. In view of this it is interesting to know
whether the set W(s)(A) is open or not. We give now a sufficient condition for this.

THEOREM 10. Assume that W is a continuous and absolutely continuous foliation in
U and W(s)(x)c W(x) for any xe D+. Then the set W(s)(An) for anyn>0 is open
(mod 0) (with respect to mes); in particular, the set W(s)(A) is open (mod 0) too.

Proof. See arguments given in the proof of Theorem 6.

In order to complete a description of the topological properties of the map /1A
we consider the problem of the existence of periodic points.
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THEOREM 11. Let A be a generalized hyperbolic regular attractor for f satisfying
conditions (Hl)-(H4). Then the periodic hyperbolic points are everywhere dense in A.

Proof. Take an arbitrary measure ft e M}u). Its Lebesque points are everywhere dense
in A and let x be one of them. There exists / > 0 such that xeD? and /*(D?)>0.
Fix a > 0 and find n > 0 such that y =f(x) e B(x, a)nD° (we can chose n arbitrary
large). If a is sufficiently small the intersection V(s)(x) n Viu)(y) is not empty and
consists of the single point z, = [x, y]. We have that yx =f"(zl) e V<s>(>>) and

where C>O,O<A<1. First we will show that there is an unstable manifold passing
through >>, and having 'almost the same' size as V(u)(x). It is easy to see that
fk(x) e Dt(k) where l(k) is a function such that 1(0) = Z, l(n) = I and (cf statement
(6) in Proposition 4)

for some t > 0. Besides, we have that

p(/f c(*),/ ' c(z1))^C1

where d > 0 is a constant. It follows from here that

where C2>0 is a constant. This means that Zj€D/+m for some m and moreover
/ k (z , )€ Dt(k)+m. If a is small enough it implies that

with some constant C3 > 0. It follows from here that the intersection V(s)(x) n V<u)(.yi)
is not empty and consists of the single point z2 = [x, yx]. One can show (cf [15]) that

where C4>0 is a constant. Besides, >'2=/n(z2)G V(s)(y) and

Continuing this procedure we construct a sequence of points zm e V<s)(x) which
converges (if n is large enough) to a point z e V(s)(x). This point is in an arbitrary
small neighborhood of x (if a is taken small enough) and has the property that the
unstable manifold passing through it is fixed under / " . Now consider the inter-
section Viu)(x) n Vis\y) which is also not empty and consists of the single point
w = [y, x]. Repeating the above arguments with respect to this point we construct
a sequence of points wm e V(u)(x) converging to a point v e V<u)(x) and having the
same properties as z. It is easy to see that the intersection Vis)(v)n V(u)(z) is not
empty and consists of a single point which is hyperbolic and periodic of the
period n. •

4. Generalized partially hyperbolic attractors
Let M be a smooth p-dimensional Riemannian manifold, K c M a n open boundered
connected subset with the compact closure, N c K a closed subset and/ : K\N-> K
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a map satisfying (HI) and (H2). As in § 1 one can construct the attracting limit set
D and the attractor A = D for/ Then one can define the sets D^i, D%t, D°,, D*,
D°t for arbitrary e > 0 small enough and 1 = 1,2, The attractor A is called regular
if D° ;* 0 for any sufficiently small e. Following [19] we say that A is generalized
partially hyperbolic if D is a partially hyperbolic invariant set for / This means
that for any XE D there exist subspaces E(s0)(x), £( u )(x)c TXM such that

(2) dfE(a)(x) = £(u)(/(x)), dfE(s0)(x) = £(s0)(/(x));

(3) there exist C>0, 0< /i < A < oo, fi<l independent of x such that for any n > 0

H&C-'A-HI, ue£Cu)(x),

>|| < C V H , t>e£(s0)(x).
(4) £<s0)(x), E(u)(x) are uniformly continuous on D (in particular, the angle

4(£(s0)(x), £<u)(x) > const > 0).
As in § 1 one can construct local unstable manifolds V(u)(x), x 6 D~ having the

properties formulated in Proposition 4. At last, one can define global unstable
manifolds W<u)(x), x e D~. The definition of Gibbs u-measures is transformed on
this case without any changes. The following theorem is proved as Theorem 1.

THEOREM 12. If A is a generalized partially hyperbolic regular attractor having property
(HA) then there exists a Gibbs u-measure fie Mf concentrated on D and satisfying
conditions (1) and (2) of Proposition 2.

The next theorem describes ergodic properties of the map /1A with respect to a
Gibbs u-measure and can be proved as Theorem 2.

THEOREM 13. Let fie Afj-u). Then: (1) there exists a partition r\ of A such that
(a) for fi-almost every xe A the element Cv(x) of 77 containing x is an open subset

in W(u\x);
(b) fr] > 7?, V k ^ o / S = e, /\kzOfkv = " (w ( u ) ) ;
(c) the entropy TI M ( / |A) admits the following estimation from below

f .(x)
»fc(/A)& IxMdfi(x)

JA .=1

where {#,(x)}, 1 = 1 , . . . , s(x) is the collection of values of the Lyapunov exponent
for vectors in E(u)(x).

5. Examples
5.1. We consider a number of examples of maps with generalized hyperbolic
attractors in the two-dimensional case (e.a. M is a two-dimensional manifold). First
we formulate some general assumptions which guarantee the validity of hypotheses
(H3) and (H4). Let /be a map satisfying condition (HI). Suppose that
(H5) K = \J?=iKu\ K(i) is dosed, mtKu)nintKU) = 0
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where Ny, My are smooth curves and

UL)

(H6) / is continuous and differentiate map in Kl'\ i = l,...,m;
(H7) / possesses two families of stable and unstable cones C(s)(z), C(u\z), ze

K\UT= i dK{i\ which satisfy conditions (l)-(3) in § 1.3.
(H8) the unstable cone C{a)(z) at z depends continuously on zeK(i) and there

exists a > 0 such that for any z € Nv\dNv, v e C(u)(z) and any vector w tangent
to Ny we have that 4(t>, w) > a;

(H9) there exists T > 0 such that fk(N) n N = 0, k = 0 , . . . , T and aT> 2 where

a= inf inf |d/f |>l.
zeK\N . E C W ( : )

THEOREM 14. If f satisfies conditions (HI), (H5)-(H9) then it satisfies condition
(HA) for any ze Do with constants C, 1, e0 (C does not depend on z, e0 may depend
on z) and has property (4); (in particular, f satisfies condition (H3)).

Proof. First of all it is sufficient to prove this result for the map/T instead off which
still satisfies properties (HI), (H5)-(H9) with T = 1. Therefore we can assume,
without loss of generality, that T = 1. We say that y: [0, b] -» M is a M-curve if y is
smooth and y(t)e C(u)(y(f)), t e[0, fe] (fc is a positive number; we assume that t
is the length of the curve). We shall prove condition (H4) for an arbitrary w-curve.
By virtue of the continuity of unstable cones it implies property (4) and, hence,
condition (H3) (cf Proposition 3). First let us notice that if y is a u-curve then by
virtue of (H5)-(H9) the curve /(y) for any n>0 consists of a finite number of
u-curves, / " (y) = Ui %,«• Moreover, for each i there exist j =j(i, n), I = l(i, n) such
that %„ =/(%,„-!nK(l)). There exists a constant C > 0 such that if y is a u-curve
in one of the sets K('' with the length < C then /(y) can intersect only one component
Np,,. Let d = min {C, length (y)}. Fix a number n > 0 and consider a curve y^ for
some i. We say that it is long if length (%,„) & d. Otherwise it will be called a short
curve. Consider two cases.

(1) yUn is a long curve. Denote by y,n = yi>n n U(N, e). Let us notice that for any
fc = 0, . . . , n the curve /"*(%,„) lies entirely in one of the sets KU) for some
j =j(i, n, k). This allows us to write that

length (y,,J = [ |<//"(/""(rt-(0)| dt = \df"{zUn)\ length (/"'
J / "(TV,)

length (y,,n)= [ |4rn(/""(yt.(0)| dt = \df(yUn)\ length ( / -

where zUn ef~"(yitn), y^n ^/~n(fi,n) are some points. First we write

(17)

\df(2UH)\ }}0\df(fk(z,J)\'
Taking into consideration thatf~in~k\yUn) is a u-curve we have the estimation from
(5') for the distance between points fk(yKn), fk(zin), k = 0 , . . . , n -1. This implies
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by virtue of condition (H6) that there is Cx > 0 independent of n and y such that

CT^ldriy^l/ldfi^r^C,. (18)
It follows from (H7) and (H8) that there is C2>0 independent of y such that

length (-*,„) <2C2me length (*„), (19)

for any e small enough. Now (17), (18) and (19) imply that

length (/-"(-*,„))^ C3e length (/""(y^)), (20)

where C3 > 0 is a constant independent of i, n, e.
(2) ŷ ,, is a short curve. In this case there exists fc, 1 < fc < n such that the following

is true. The curve /"'(y^n) can be stuck together with not more than one curve
/ ' ( % > ) where yJ%n is a short curve. This means that the curves/~'(yi,n) and/~1(yAn)
have a common end and two ends of the curve

are 'free'. We have that

length (yu > n)<2a"1c<c.

So, it is a short curve. Moreover, the measure of the set

fun =f~\y^nU(N, e))Kjf-l(yj,nnU(N, e))

does not exceed 2a~1C4e where C4>0 is a constant independent of i,j, n, e. The
curve yKjn has the same property as the curve %,„ and this process can be carried
out (fc-1)-times. At the end we construct a short curve y'k such that the measure
of the set

y'k = {xeyk:f
k-\x)eU(N,e)}

does not exceed (2a~')kC4e. On the fcth step of this process the curve /" '(y*) will
be stuck together with a long curve. Thus for any fc, 1 < k < n and any long curve
y,n_ke/"~'c(y) there exist not more than two curves y'k, y"k constructed above
which are stuck together with it. According to (17) and (18) the contribution from
the corresponding sets f-"+k~\y'k), fn+k~\y'L) will not exceed (2a-1)fl"fc-1C5e
where C5 > 0 is a constant independent of fc, n, e. It follows from what was said
above that the total contribution from all of the curves y'k constructed above for
all fc = 1 , . . . , n is less than

n

C5e £ (2a-1)"-*-1 length (y)<C6e length (y), (21)

where C6 > 0 is a constant independent of n, e. Now the result we need follows
from (20) and (21). •

Remark. Assume that/satisfies conditions (HI), (H2), (H5), (H6), (H8) and (instead
of (H6) and (H9)) the following condition holds:/is differentiable map in K°\dKU)

and

(H6') p(/k(N),A0>Aexp(-yfc),fc = l , 2 , . . . , (22)
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where A > 0 is a constant and -y>0 is small enough (in comparison with A; in
particular, fk(N) nN = 0, k = 1,2,...). Then / satisfies condition (H4) for any
ze Do with some constants C, 1, e0 (C does not depend on z, e0 may depend on
z); in particular, / satisfies condition (H3).

5.2. Now we will represent a number of two-dimensional maps with generalized
hyperbolic attractors.

1. Lorenz type attractors. Let/ = (-1,1), K = 1x1. Let also-1 = ao<a1<- • -<aq<
aq+l = 1. Set

Pf = / x (a,, ai+1), i = 0 , . . . , q, I = / x {a0, a, a , , aq+1}.

Let T:K\l->K be an injective map,

n * y) = (/(*, JO, g(*» y)), *,yzi (23)
where the functions / and g satisfy the following conditions:
(LI) f, g are continuous in Ps and

limf(x,y)=ft, Hm g(x, y) = gt,
yla, yla,

where ft and gt do not depend on x, i = 1,2 , . . . , g;
(L2) / g have two continuous derivatives in Pt and for (x,y)ePt, i = l,...,q,

_

where y > 0 is a small enough constant, B],BJ,C),C* are some positive
constants, 0^vl,v*,vl,vi<l, A)(x,y), Af(x,y), D)(x,y), D2

y(x,y) are
continuous functions, which tend to zero when y-»a, or v-»aj+1 uniformly
over x.

Besides, H/»||, | | /^| | , Ufcll, ||&,||
(L3) the following inequalities take place

where || • || = maxI=0,...,, sup(X)>,)ep. | • |.
The class of maps satisfying L1-L3 was introduced in [6]. It includes the famous

geometric model of Lorenz attractor [4, 5, 23, 24]. It is described as follows.

THEOREM 15. (cf [4].) Assume that / = / x {0}, X = / x / and T: K\l -> K is a map
of form (23) where the functions f, g are given by the equalities

= ((l+A)\y\"°-A)sgny.

lfO<A<\,Q<B<\, v>\, 1/(1 + A)<»'o<l then Tsatisfies conditions LI-Li.
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Using the results in [5] one can prove that the class of maps introduced above
is rather representative.

THEOREM 16. On an arbitrary smooth compact Riemannian manifold of dimension
s 3 there exists a vector field X having the following property: there is a smooth
submanifold S such that the first-return time map T induced on S by the flow given by
X satisfies conditions L1-L3.

We will describe the ergodic and topological properties of maps with Lorenz type
attractors.

THEOREM 17.

(1) A map T with properties L1-L3 satisfies conditions (HI) and (H2) and the
attractor A for T is a regular generalized hyperbolic; the stable (unstable) cone
at any point z e K is the set of vectors having an angle <30° with the horizontal
(respectively vertical) line.

(2) The stable lamination W**0 can be continued up to a continuous Cl-foliation in K.
(3) If one of the following conditions holds

(a) ^ = 0, i = \,...,q,j = 1,2,3,4;
(b) P(Tn(ff, gf), I)> C, exp (-yn) for any n >0, i = 1 , . . . , q(Q>0 are con-

stants independent of n; y is small enough);
then T satisfies conditions (H5)-(H9), (or (H5), (H61), (HI) and (H&)). In
particular it satisfies condition (H4) for any zeD0 with constants C, 1, e0 (£o
may depend on z) and has property (4).

(4) Under the conditions (a) and (b) T possesses at most a countable number of
ergodic Gibbs u-measures; the ergodic properties of T with respect to any of them
are described by assertions (4), (5) and (6) of Theorem 2 and by Theorems 3
and 4;

(5) Under the conditions (a) and (b) T possesses at most a countable number of
components of topological transitivity for which assertions (l)-(3) of Theorem 8
are true; the periodic hyperbolic points for T are everywhere dense in A.

E. A. Sataev has informed me that he could prove statements (3) and (4) without
the additional conditions (a) or (b) and also has shown that a number of ergodic
Gibbs measures are at most finite.

Proof. Conditions (HI) and (H2) follow directly from L1-L3. It was shown in [5]
that A has a hyperbolic periodic point zfLl. This means that A is regular. Statement
(2) is proved in [6]. Statements (3), (4) and (5) follow directly from the remark to
Theorem 14 and Theorems 2, 3, 4, 8 and 11. •

Remarks.
(1) The existence of Gibbs u-measures for the classical geometric model of Lorenz

attractors (when K is a square, / consists of a single interval) was shown in [9].
Their proof is based on Markov partitions (a construction of Markov partitions in
the general case is described in [6]). If the stable foliation H^s) is smooth (it takes
place, for example, when g does not depend on x) the existence of a Gibbs u-measure
follows from the well-known result in the theory of one-dimensional mappings (one
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can show that A is isomorphic to the inverse limit of a one-dimensional piece-wise
expanding mapping for which (a,, ai+1), i = 0,...,q are intervals of monotonicity;
for details and references see [6]).

(2) We give an example of the Lorenz type attractor for which the discontinuity
set consists of a countable number of intervals. We will see that the corresponding
map has a countable number of components of topological transitivity. Consider a
one-dimensional map g(y), ye [0,1] given by formula

1 2 1 2« + l
1 v if
2 + \ y1 v i f s v <

n+2 2n + \ y n + l y 2(n +

2n + l 1 .r 2n + l

for n = 1,2,3,... .
One can show that there exists a function f(x, y) such that the map T(x, y) =

(/(*» y), g(y)) satisfies condition L1-L3. However it is easy to see that the set

An/xU-.±l
|_n + l «J

is a component of topological transitivity for T.

2. Generalized Lozi attractors. Let c>0 , / = (0, c), K = I x / and 0 = a0< a, < • • • <
aq < aq+i = c. Set / = {a0, a , , . . . , aq, aq+1} x / and let T: K -* K be an injective con-
tinuous map

T(x,y) = (f(x,y),g(x,y)), x,yel

satisfying the following conditions:
Loz 1. T\(K\l) is a C2-diffeomorphism and the second derivatives of the maps T

and T"1 are bounded from above;
Loz 2. / a c ( r ) < l ;
Loz 3. inf{(\df/dx\-\df/dy\)-(\dg/dx\ + \dg/dy\}^0;
Loz 4. inf {\df/dx\ - \df/dy\}^u > 1;
Loz 5. sup{(\df\dx\ + \dg\dy\)/(\3f\dx)-\df/dy\)2}<l;
Loz 6. there exists AT> 0 such that Tk(l) n / = 0 for 1 < it < N and uN>2.
This class of maps was introduced in [22]. It includes the map

T(x,y) = (l + by-a\x\,x) (27)

which is obtained from the well-known Lozi map by a change of coordinates (the
definition of this map and its properties, see for example, in [12-14, 17, 25]). It is
easy to verify that there exist open intervals of a and b such that (27) takes some
square [0, c] x [0, c] into itself and satisfies Loz 1-Loz 6.

THEOREM 18.

(1) A map Twith properties Loz l-Loz 6 satisfies conditions (HI), (H5)-(H9) and
the attractor A for Tis regular generalized hyperbolic; the stable (unstable) cone

point I t K has a vertical (respectively, horizontal line as the center line.
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This map also satisfies condition (H4) for any ze.D0 with some constants C, t,
e0 independent ofz and has property (4).

(2) The stable lamination W(s) can be continued up to a continuous C°-foliation in K.
(3) T possesses at most a countable number of ergodic Gibbs u-measures; ergodic

properties of T with respect to any of them are described by assertions (4), (5) and
(6) of Theorem 2 and by Theorems 3 and 4.

(4) T possesses at most a countable number of components of topological transitivity
for which assertions (l)-(3) of Theorem 8 are true; the periodic hyperbolic points
for T are everywhere dense in A.

Proof. It is not difficult to verify that Loz 1-Loz 6 imply the conditions (HI),
(H5)-(H9). Hence, statement (1) follows from Theorem 14. Statement (2) is proved
in [14]. Statements (3), and (4) follow from Theorems 2, 3, 4, 8, 11 and 14. •

3. Belykh attractor. Let / = [ -1 ,1] , K = / x / and / = {(x, y):y = toe}. Consider the
map T

fory>kx

for>><foc.

In the case A] = fil, A2 = /12 this map was introduced in [7] and was used as the
simplest model in the so-called phase synchronization theory.

THEOREM 19.

(1) Assume that

1 1 2 2
0<A,<-, 0< M l <- , 1 < A 2 < 7Tm' 1</*2<YriJkf' ' k ' < L

Then T is a map from K\l into K satisfying conditions (HI), (H5)-(HS) and
the attractor A for T is generalized hyperbolic (the stable and unstable one-
dimensional subspaces at any point z e Do are respectively horizontal and vertical
lines; the stable and unstable cones at any point z e K are the set of vectors having
an angle <45° with the horizontal or vertical lines).

(2) The stable foliation Wis) is continued up to a continuous (S(z), \)-lamination in
K consisting of intervals I(z)sz on the corresponding horizontal line (passing
through z) with an endpoint on dK and l(I(z)) = p(z, I).

(3) lf\1>2, n2>2 then Tsatisfies condition (H9) and, hence, condition (HA) for
any ze Do with some constants C, 1, e0; T also has property (4);

(4) T possesses at most a countable number of ergodic Gibbs u-measures; ergodic
properties of T with respect to any of them are described by assertions (4), (5) and
(6) of Theorem 2 and by Theorems 3 and 4;

(5) T possesses at most a countable number of components of topological transitivity
for which assertions (l)-(3) of Theorem 8 are true; the periodic hyperbolic points
for T are everywhere dense in A.

Proof. Repeats arguments given in the proof of Theorem 18. •

4. Let M, N be smooth compact Riemannian manifolds of dimension ^ 3 , X, Y,
respectively, smooth vector fields on M and N, and <P'X,<P'Y the flows given by
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them. Assume that the first-return time maps Tx, TY induced by <p'x, <p'Y on respec-
tively Sx, SY have Lorenz type attractors Ax, Ay. Denote by Nx <= Sx, NY <= SY the
discontinuity sets for Tx, TY and consider the map

T:(Sx\Nx)x(AY\NY)^SxxAY

given by the formula

T(x,y) = (Tx(x),<pT
Y

x\y)),xeSx\Nx,yeAY\NY

where r(x) is the first-return time for the trajectory <p'x(x) to Sx.

THEOREM 20. The map T satisfies (HI) and (H2) and the attractor Afar Tis regular
generalized partially hyperbolic with property (HA) for any point zeD0.
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