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Abstract. We describe coupled map lattices (CMLs) of unbounded media 
corresponding to some well-known evolution partial differential equations (including 
reaction-diffusion equations and the Kuramoto-Sivashinsky, Swift-Hohenberg and 
Ginzburg-Landau equations). Following Kaneko we view CMLs also as phenomeno­
logical models of the medium and present the dynamical systems approach to studying 
the global behavior of solutions of CMLs. In particular, we establish spatio-temporal 
chaos associated with the set of traveling wave solutions of CMLs as well as describe the 
dynamics of the evolution operator on this set. Several examples are given to illustrate 
the appearance of Smale horseshoes and the presence of the dynamics of Morse-Smale 
type. 
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Introduction. In this paper we deal with lattice dynamical sys­
tems of an unbounded medium. These are also called coupled map 
lattices (or briefly CMLs) and are described by equations of the form 

(0.1) 

Here n E Z is the discrete time coordinate, J = (jk), k = 1, ... , d is the 
discrete space coordinate, and u(J, n) = uy(n) is a characteristic of the 
medium (for example, its density, or distribution of the temperature, etc.). 
Furthermore, f : md -7 ~d and 9 : (~d)2s+1 -7 ~d are smooth functions; f 
is called the local map and 9 the interaction of finite size s. Finally, 
EO is a parameter which is assumed to be sufficiently small. 

A natural source of CMLs are discrete versions of partial differential 
equations of evolution type. They arise while modeling partial differential 
equations by a computer. In Section 1 we discuss some examples of partial 
differential equations and their discrete versions as CMLs. Intensive study 
of this topic representing various points of view on the subject can be 
found in [2-4, 6, 7, 14]. In general, no information on the global behavior 
of solutions of a partial differential equation can be derived from the study 
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of its discrete versions even when the discretization is very fine. However, 
we believe that some methods of studying spatio-temporal chaos in CMLs 
described in this paper can be applied (perhaps with some modifications) 
to partial differential equations. 

In [18, 24, 25J, Kaneko and collaborators developed a new point of 
view on CMLs as phenomenological models to be used to describe the be­
havior of media with high level of energy pumping (corresponding to large 
Reynolds numbers). They observed the appearance of particle-like local­
ized structures, i.e. distinct. spatial structures obeying individual dynamics 
and interacting with nearest neighbors. Moreover, if the medium is spa­
tially homogeneous, then the individual dynamics are identical. Thus, the 
behavior of the medium obeys Equation (0.1) (with the local map f rep­
resenting the individual dynamics). The discovery by Kaneko et al. drew 
the attention of many physicists and mathematicians to CMLs and led to 
a great interest to this area. CMLs have now become a popular subject of 
study in both pure and applied mathematics. 

The dynamical systems approach to the study of CMLs was originated 
by Bunimovich and Sinai (see [14]) and since then has become a core tech­
nique in the theory (see, for example, [3, 4, 6-10, 23, 27, 37]). The main 
achievement of this approach is the description of the global behavior of 
solutions of Equation (0.1) for a broad class of local maps exhibiting a 
greater or lesser degree of hyperbolicity. Let us point out that in order to 
solve Equation (0.1) one should fix initial and boundary conditions. The 
initial condition is uniquely determined by fixing values (uy(O)). Since the 
medium is unbounded the boundary conditions are given by fixing the rate 
of increase (or decrease) of solutions at infinity. 

In this paper we consider the case when solutions grow at infinity 
at an exponential rate. The corresponding infinite-dimensional dynamical 
system which governs the behavior of solutions of Equation (0.1) (i.e., the 
group of time translations generated by the evolution operator) is described 
in Section 2. Since the medium is unbounded one can introduce the group 
of space translations. We assume that they commute with the evolution 
operator (this depends on the interaction and is always the case when the 
CML is obtained as a discretization of a partial differential equation). This 
leads to an action of the Zp+l-lattice on the infinite-dimensional phase 
space by time and space translations. The main objective of this paper is 
to describe hyperbolic, topological, and ergodic properties of this action. 

In particular, we reveal the mechanism for appearance of finite­
dimensional spatial and/or temporal chaos associated with various spe­
cial classes of solutions (including steady-state, spatio-homogeneous, and 
traveling wave solutions; see Section 3). Although the chaotic behavior 
occurs only on a "tiny" finite-dimensional subset it may (and often does) 
influence the behavior of a physically observable set of solutions of the 
CML, i.e., solutions which are typical in a sense. In particular, we es­
tablish spatio-temporal chaos associated with traveling wave solutions of 
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the CMLs (see Section 4). This class of solutions was studied first by 
Afraimovich and Pesin in [6] and provides the only known class of so­
lutions that may generate finite-dimensional spatio-temporal chaos. The 
dynamics of the evolution operator restricted to traveling wave solutions is 
completely determined by the traveling wave map. In Sections 5 and 6 we 
present all known results describing hyperbolic, topological, and ergodic 
properties of this map as well as consider some interesting examples. 

1. Lattice dynamical systems as discretizations of partial dif­
ferential equations. There are many partial differential equations of evo­
lution type whose discrete versions are lattice dynamical systems of the 
form 0.1. 

Among them we consider some nonlinear reaction-diffusion equation 
as well as then Swift-Hohenberg, Kuramoto-Sivashinsky, and Ginzburg­
Landau equations. 

1.1. A nonlinear reaction-diffusion equation is a partial differ­
ential equation of the form: . 
(1.1) 

8u 
8t = h(u) + I\;A~u, 

where u = u(x, t) is a function of two variables (the space coordinate x 
and time t) with values in the d-dimensional Euclidean space ]Rd (d = 
1,2,3); A is the coupling matrix and I\; is the diffusion coefficient. Equation 
1.1 describes a large variety of phenomena in different fields. Examples 
are heat conductivity in physics, chemical diffusion processes in chemistry, 
enzyme kinetics in biology, and propagation of voltage impulses through 
nerve axosn in neurophysiology (see [29] and [31] for more applications). 

One can obtain a number of well-known particular cases of reaction­
diffusion equation 1.1 by an appropriate choice of the nonlinear term h. 
Among them are: 

1.1.1. The Kolmogorov-Petrovsky-Piskunov (KPP) equation 
for which the nonlinear term is a quadratic polynomial, 

(1.2) h(u) = au(l - u), 

where a > 0 is a parameter. This equation appeared in genetics as a 
model for the spread of an advantageous gene through a population. The 
solution u(x, t) measures the proportion of the population possessing this 
gene during the evolution of the system (the so-called Fisher model), see 
[11,21,28,31]. 

1.1.2. The Huxley equation for which the nonlinear term is a 
cubic polynomial, 

(1.3) h(u) = au(l - u)(u - a), 

where 0 < a < 1 and a > 0 are parameters. 
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1.1.3. The FitzHugh-Nagumo equation where the nonlinear 
term is a two-dimensional map of the plane, 

(1.4) h(u, v) = (d<p(u) -av,bu-cv)). 

Here <p(u) is a cubic polynomial, <p(u) = u(u - 0)(1- u) with 0 E (0,1) and 
a, b, c, d > 0 are real parameters. 

The Huxley equation and FitzHugh-Nagumo equation are used to 
model the propagation of voltage impulse through a nerve axon (see [29]). 

1.2. The Swift-Hohenberg equation is a partial differential equa­
tion of the form 

au - = au - (1 + a2)2u - u3 
at x 

a4u a2u 
= (a -1)u - u3 - - - 2-, 

ax4 ax2 

where u is a real function and a a real parameter. For some physical 
phenomena modeled by this equation see [22,35]; for an extensive mathe­
matical study of the Swift-Hohenberg equation see [15]. 

1.3. The Kuramoto-Sivashinsky equation was introduced by 
Kuramoto in one space dimension for the study of phase turbulence in 
the Belousov-Zhabotinsky reactions. A two-dimensional extension of this 
equation was later used by Sivashinsky in studying the propagation of flame 
fronts in the case of mild combustion (see [17, 22]). We will consider only 
the one-dimensional version which is a partial differential equation of the 
form 

(1.5) 

where u is a real function and 'f] a real parameter. 

1.4. The Ginzburg-Landau (amplitude) equation is a one­
dimensional partial differential equation of the form 

(1.6) 
au . a2u 
at =h(u)+(),+w)ax2 ' 

where h(u) = (K:+i,8)uluI 2 -"/U and)" a,,8, ,,/, K: are real parameters. The 
complex-valued function u(x, t) is defined on n x ~+ where n is an open 
domain in ~d. 

This equation governs the finite amplitude evolution of instability 
waves in a large variety of dissipative systems. Various forms of this equa­
tion arise in hydrodynamic instability theory. For example, one can use 
it to describe the' nonlinear growth of convection rolls in Rayleigh-Benard 
problem or the appearance of Taylor vortices in the flow between counter 
rotating circular cylinders (see [36]). 
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In this paper we will deal with the real version of Ginzhurg­
Landau equation 

(1. 7) 

where h(u) = u('y - <5u2 ) , (u E lR), and ,,(, <5 are real parameters. 
When "( = <5 = 1 this equation becomes the nonlinear heat equa­

tion. 

1.5. Discretizations. One can obtain discrete versions of the above 
partial differential equations replacing derivatives by appropriate differ­
ences. 

For the time derivative we assume the following discretization: 

au 
at ----7 [(u(x, t + Llt) - u(x, t)]1 Llt, 

where Llt is the discretization step. Thus, we obtain the following local 
maps: 

1. for the Kolmogorov-Petrovsky-Piskunov equation, 

(1.8) f(u) = u + Llth(u) = u + vu(l - u) 

is a quadratic polynomial, where v = aLlt is a parameter; 
2. for the Huxley equation, 

(1.9) f(u) = u + Llth(u) = u + vu(l - u)(u - a) 

is a cubic polynomial, where v = aLlt is a parameter; 
3. for the FitzHugh-Nagumo equation, 

(1.10) f(u,v) = (u + A<p(u) - CtV,/3u + TV) 

is a two-dimensional map, where A = dLlt, a = aLlt, /3 = bLlt, 
X = cLlt, and "( = 1 - X are positive numbers and 0 < e < 1; 

4. for the Swift-Hohenberg equation, 

(1.11) f(u) = (1 + v)u - I1U 3 

is a cubic polynomial, where v = (1 - a)]Llt and 11 
parameters. 

5. for the Kuramoto-Sivashinsky equation, 

(1.12) f(u) = vu 

is a linear function, where v = (1 - 1])Llt is the parameter; 
6. for the (real) version of the Ginzburg-Landau equation, 

(1.13) f(u) = u + Llth(u) = u + vu(l - qu2 ) 

Llt are 

is a quadratic polynomial, where v = "(Llt and q = (<5h)Llt are 
parameters. 
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1.6. For the space derivatives we allow any discretization scheme 
involving an arbitrary number of points. For example, we choose the fol­
lowing discretizations: 

f}u 
f}x --r [u(x + ~x, t) - u(x, t)]! ~x, 

f}2u 
f}x 2 --r [u(x + ~x, t) - 2u(x, t) + u(x - ~x, t)]!(~x)2, 

f}4u 
f}x 4 --r [u(x + 2~x, t) - 4u(x + ~x, t) + 6u(x, t) 

-4u(x - ~x, t) + u(x - 2~x, t)lI(~x)\ 

where ~x is the discretization step. The interaction 9 is then a function of 
28 + 1 variables, where 

8 = 1 for Kolmogorov-Petrovsky-Piskunovequation, 

Huxley equation, 

FitzHugh-Nagumo equation, 

Ginzburg-Landau equation, 

8 = 2 for Swift-Hohenberg equation, 

Kuramoto-Sivashinskyequation. 

2. Lattice systems as infinite-dimensional dynamical systems. 
We provide a formal mathematical description of lattice systems in terms 
of dynamical systems. Consider the direct product of finite-dimensional 
Euclidean spaces R = Q9zp JRd = (JRd )Zp. We introduce a special norm 
called norm with weights. Namely, given q1 = (q1,i), q2 = (q2,i) with 
q1,i > 1, Q2,i > 1, i = 1, ... ,p and u = (uy) E R, J E l,P, we set 

(2.1) L L lu(J)1 
Ilu II Q1 ,Q2 = .. . (' ) (' )' . . Q J1 ... Q J 

Jl Jp P 

where J = (ji) and Q(ji) = (Ql,i)ii if ji 2 0 and q(ji) = (q2,i)ii if ji < O. 
Norms with weights were used by Sattinger in [34] to study the stability of 
traveling waves for some partial differential equations and by Afraimovich 
and Pesin in [6] to study spatio-temporal chaos in traveling waves for some 
lattice systems. 

The lattice dynamical system 0.1 can now be described as the infinite­
dimensional dynamical system (MQl ,Q2' CP) with the underlying phase space 

(2.2) 
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and the non-linear evolution operator <.li = <.liE 

Let us point out that the dynamical system (Mq1 ,q2' <Ii) corresponds to so­
lutions of the CML which satisfy the initial condition (u:1(O)) E M q1 ,q2 and 
boundary condition Ilullq1 ,q2 < 00 (i.e., the solution may grow at infinity 
at an exponential rate). 

We observe that M q1 ,Q2 is a Banach space with respect to the metric 
11·IIQloQ2. Moreover, the operator <Ii has a special form <Ii = F+€G where F = 
®zP I is the direct product of copies of the local map I and G = (!l3}IEzp. 
F is called the uncoupled map and G the coupling or interaction. H 
€ is sufficiently small the operator <Ii is a small perturbation of the map F. 

(2.4) 

(2.5) 

(2.6) 

and 

(2.7) 

We assume that the following main assumptions hold: 
AI. There exists K > 0 such that for 1 = 1,2: 

sup IIDllx11 :S K, 
xERd 

det (8g(x)) # 0, 
8Xl 

We emphasize that we do not require that the maps I and 9 be 
bounded but only their first and second derivatives. Under assumptions 
Al and A2, the dynamical system (Mq1 ,Q2' <Ii) is correctly defined. More 
precisely the following statement holds: 

PROPOSITION 2.1 (see [6]). Under Assumptions Al and A2 for any 
ql = (Ql,i),q2 = (Q2,i) as above the operator <.li maps M q1 ,Q2 into itself. 

Let us stress that the operator <Ii is not differentiable in the sense of 
Frechet but in the sense of Gateaux (the latter means that it is differentiable 
only along finite-dimensional subspaces). One can show that the Gateaux 
differential of <Ii is given by the following linear map: 

(2.8) du<Ii(~):1 = !,(u:1)~:1 + L ai· ~i' 
li-:11:58 
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The space Mq1 ,q2 admits spatial translations (or shifts) Sk : Mql,q2 

-7 M q1 ,Q2 given by 

(2.9) 

where I = (i j ), k = (kj ) E ZP. 
We now assume that the following condition holds: 
A3. The maps <pI and Sk commute for any 1 E Z and k E ZP. 
Let us note that if the interaction 9J does not depend on J the as­

sumption A3 holds. This is the case when the lattice system is obtained as 
a discretization of a partial differential equation. 

Under assumption A3 the maps {(<pI, Sk) : 1 E z, k E ZP} generate 
an action of the ZP+1-lattice on Mql ,Q2' The main goal of this paper is to 
describe topological, hyperbolic, and ergodic properties of this action. 

3. Types of chaotic behavior in lattice systems. 

3.1. In [32], Pesin and Sinai discussed the following types of chaotic 
behavior in lattice systems corresponding to actions of temporal and/or 
spatial translations. A lattice dynamical system is said to display: 

1) temporal chaos if there exists a measure f.t invariant under the 
Zl-action {<pI} which is mixing; 

2) spatial chaos if there exists a measure f.t invariant under the ZP­
action {Sk} which is mixing; 

3) spatio-temporal chaos if there exists a measure J.L invariant un­
der the Zp+l-action {<pI, Sk} which is mixing. 

In many cases the chaotic behavior of lattice systems is essentially 
finite-dimensional. This means that there exists a finite-dimensional (of­
ten smooth) submanifold in the infinite-dimensional phase space which is 
invariant with respect to time translations or space translations or both 
and which supports an invariant mixing measure. Such submanifolds are 
usually associated with special classes of solutions. 

It may also happen that such a submanifold is stable in the infinite­
dimensional phase space, i.e., solutions which start in a small neighborhood 
of this submanifold approach it with time. 

In this case chaotic behavior is persistent and thus is physically ob­
servable. Otherwise, chaotic behavior occurs on a "tiny" finite-dimensional 
submanifold and is "invisible." In some cases the invariant submanifold 
is stable in a weaker sense: it possesses an infinite-dimensional separatrix 
which is everywhere dense in the phase space. In this case the chaotic 
behavior should also be considered as physically observable. However, it 
is essentially unstable (with respect to small perturbations of initial data) 
and hence, is significantly more difficult to study. 

3.2. One can observe temporal chaos in the space of solutions which 
are spatially-homogeneous, i.e., do not depend on the spatial coordinate, 
uy(n) = u(n). We assume that the coupling gj(Xl ... , x2s+d does not 
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depend on j, i.e., gj = g. It is easy to see that the function u(n) should 
satisfy the following equation: 

(3.1) u(n + 1) = f(u(n)) + cg(u(n), ... , u(n)). 
~ 

28+1 

This equation reproduces orbits of the map He : lRd -+ lRd given by He(x) = 
f(x) +cg(x) where g(u) = g(u, ... , u). The map He is a small perturbation 

'--v--" 
28+1 

of the local map f and completely determines the behavior of the evolution 
operator cI>e on the space of spatially-homogeneous solutions. To illustrate 
this let us introduce the embedding map X : lRd -+ M q1 ,q2' where X(x) = 
(uy) with uy = x for any J E ZP. Obviously, this map is linear. 

PROPOSITION 3.1. 
1. The space of spatially-homogeneous solutions 11. = X(lRd ) is a d­

dimensional linear subspace of the Banach space Mql ,q2' 

2. 11. is invariant under both space and time translations, i. e. under 
the ZP+1-action (cI>~, Sl<). 

3. The action of the evolution operator on the space of spatiaUy­
homogeneous solutions, cI>eI1l., is linearly conjugate to the map He' 
z. e. the following diagram is commutative: 

~ 11. C M Q1 ,Q2 

1 ~< 
~ 11. C M q1 ,Q2 

Dl. Embedding of Spatially-homogeneous Solutions. 

Proof. The first statement follows immediately from the fact that 
the map X is linear. Since every point in 11. is spatially-homogeneous, 
11. is invariant under space translations. The invariance of 11. under time 
translations and commutativity of the diagram follows from the definitions 
of 11. and He. 0 

As an immediate consequence of Proposition 3.1 we obtain that if /-L is 
an invariant mixing measure for the map He then the measure X*/-L (defined 
by X./-L = /-L 0 X) is an invariant mixing measure for the evolution operator 
cI>eIMQ1,Q2' Thus, the latter displays temporal chaos. 

The problem of finding an invariant mixing measure for He is purely 
finite-dimensional and can be solved within classical perturbation theory. 
For example, if the local map is hyperbolic (Le, possesses a hyperbolic 
invariant set) then so is the map He for sufficiently small E. This guaran­
tees the existence of mixing measures (see a more detailed description of 
hyperbolic sets in Section 5 below; see also the Appendix). 
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It is unknown whether the space 1i is stable in Mql ,q2' in the above 
mentioned sense, and therefore, whether the associated temporal chaos is 
physically observable. 

3.3. In order to demonstrate the phenomenon of spatial chaos we 
consider the space of steady-state (stationary) solutions, i.e., solu­
tions which do not depend on time: uy(n) = uy. It is easy to see that 
these solutions form a finite-dimensional linear subspace of the phase space 
M q1 ,q2' We have the following equation for uy: 

(3.2) 

Steady-state solutions have been studied by many authors. For exam­
ple, in [2], Afraimovich and Chow considered the case of a one-dimensional 
lattice (p = 1) and assumed that 9 = g(Ul' U2, U3) = Ul - 2U2 + U3 (this 
form of function 9 corresponds to the spatial discretization of the reaction­
diffusion equation described above). In this case Equation 3.2 becomes: 

(3.3) 

with j integer. Solving (3.3) for Uj+l yields 

(3.4) 

Solutions to equations 3.4 are determined by the map Ga : lR2d -+ lR2d 

given by 

(3.5) 

where x, y E ffi,d. 

PROPOSITION 3.2. There exists an embedding X : ffi,2d -+ Mq1 ,Q2 such 
that 

1. the space of steady-state solutions S = X (lR2d ) is a smooth 2d­
dimensional submanifold of Mql ,q2; 

2. the space S is invariant under both space and time translations; 
3. the action of the evolution operator on the space of steady-state 

solutions, <PelS, is conjugated to the map Ga , i.e. the following 
diagram is commutative: 

1ll>2d ~ ScM 
Jl'II. -------. Ql,Q2 

D2. Embedding of Steady-state Solutions. 
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Proof For any (x, y) E JR2d, set X(x, y) = (Uj), where 

for n > 0 

for n = 0 

for n < 0 

and G";/(x, y) = (-~h(x)+2x-y, x) (here we use the index 1 to denote the 
first component of the maps Ga and G;;l, i.e. the corresponding projection 
to JRd). The first statement now follows. By the definition of steady-state 
solutions every point in S is fixed under time translations. The invariance 
of S under space translations Sj and the commutativity of the diagram 
follow from the definitions of G a and X. 0 

In [2], Afraimovich and Chow studied topological properties of steady­
state solutions. A solution U * = {uj} of equation 3.4 is said to be a 

homo clinic point for space translations on S if there exists UO E JRd such 
that 

(3.6) lim u* = un. 
111-+00 J 

One can show that UO E S. In [2], the authors studied the problem of 
existence of a homo clinic point with bounded l2 (or lOO)-norm. If such 
a point exists, then the map Ga possesses a locally maximal hyperbolic 
set and hence, has many invariant mixing measures (see Appendix). They 
also discussed the stability of homo clinic points with respect to small linear 
perturbations. 

4. Traveling wave solutions. We describe another class of solu­
tions known as traveling wave solutions. We shall show that traveling wave 
solutions running with a given velocity form a finite-dimensional smooth 
submanifold in the infinite-dimensional phase space which is invariant un­
der both time and space translations. We also observe finite-dimensional 
spatio-temporal chaos associated with traveling waves. 

Let m be an integer and I = (li) E ZP an integer p-tuple. For J = 
(ji), k = (ki ) E ZP, we set G, k} = 2:f=l jiki' A traveling wave solution 
of Equation 0.1 is of the form: 

(4.1) uG, n) = ¢((I,J) + mn), 

where ¢ : Z -+ JRd is a function. The numbers m and li determine the 
velocity of the wave. From now on we assume that 

1. the numbers li are relatively prime (Le., their least common divisor 
is I); 

2. m > s 2:f=lli' 
The last condition means that the velocity of the wave is large. 

For simplicity we consider only one-dimensional lattices (i.e., p = 1; 
for the general case we refer the reader to [6, 7]). The norm in the phase 
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space M q1 ,q2 is determined by two numbers ql > 1 and q2 > 1 in the 
following way 

(4.2) 

We fix m, l E Z which satisfy Conditions 1 and 2, i.e. m, l are relatively 
prime numbers and m > ls + 1. 

We also assume that the coupling gj (Xl ... , X2s+1) does not depend 
on j, i.e., gj = g. 

The function 7f; must satisfy the following traveling wave equation: 

(4.3) 7f;(k) = f( 7f;(k - m)) + Eg( {7j;(k - m + li)}lil::;s), 

where k = lj + mn + m is called the traveling coordinate. 
Denote by 'l' = 'l' (E, ql, q2, m, l, s) the set of solutions of the traveling 

wave equation which is a subset in (~d)2:. In view of our assumptions on m 
and l, Equation 4.3 is an equation with delay argument (i.e., k - m + ls ::; 
k - 1 < k). Therefore, a traveling wave is uniquely determined by the 
values: 

(4.4) xp = 7f;( -m -ls + p + 1) for p = 1, ... , ls + m. 

These relations define a (non-linear) map a : (~d )ls+m -t 'l'. 
The dynamics on the set 'l' of traveling waves is given by the shift 

map Q€ defined by Q€('!jJ)(k) = '!jJ(k + 1). In [6], the authors demonstrated 
that this dynamics is finite-dimensional and is governed by the traveling 
wave map F€ : (~d)ls+m -t (~d)ls+m given by 

(4.5) FE(Xl, ... , Xl s+m) = (X2"'" Xl s+m, f(xl s+1) + Eg(Xp(i))f=_s), 

where p(i) = l(s + i) + 1. 
THEOREM 4.1 (see [6]). There exist q~O) > 1, q~O) > 1 such that for 

(0) (0) 
any ql :::: ql ,q2:::: q2 we have: 

(4.6) 

1. the map a is a smooth embedding of (~d) ls+m into Mql ,q2; the 

image 'l'Ql,Q2 = a((~d)ls+m) is a smooth submanifold of dimension 
d(ls + m); 

2. for any X E (~d)ls+m and ~ E (~d)ls+m the differential dxa is 
given by 

(dxa(~))(k) =df('!jJ(k - m))(dxa(~))(k - m) 
s 

+ E L ai((dxa(~))(k - m + li)), 
i=-s 

where ai = ~('!jJ(k - m + li)lil::;s),' moreover, 



(4.7) 
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sup Ildxallql.q2 < 00; 
xE{lRd)I.+m 

3. the shift map Qc and the traveling wave map Fe are smoothly con­
jugated via the embedding map a, i. e., a 0 Fe = Q c 0 a; in other 
words the following diagram is commutative: 

jRd ls+m a 
q; ql,q2 ~ 

Fe 1 1 Qe 

jRd ls+m a 
q; ql ,q2 ~ 

D3. Embedding of Travelling Wave Solutions, I. 

Every solution 'IjJ of the traveling wave equation 4.3 determines a solu­
tion u = u,p = u,p,j(n) of the lattice system 0.1 whose values at time n = 0 
are given as 

(4.8) 

It follows that u,p,j(n) = 'IjJ(lj + mn) = 'IjJ(k - m) for every time n. In 
particular, every traveling wave is uniquely determined by its values at 
countably many points of the form lj with j E Z. 

Equation 4.8 defines the linear map f3( 'IjJ) = u,p on q; ql ,Q2' 

THEOREM 4.2 (see [6]). For any ql 2: q~O) and q2 2: q~O) (see Theorem 
4.1) we have: 

1. f3 is a smooth linear embedding of q; Ql ,Q2 into MQi ,Qb; the image 
AQ1 ,Q2 = f3(W Q1 ,Q2) is a smooth submanifold of dimension d(ls+m); 

2. the map Q';' and the restriction of the evolution operator <Pc to 
AQ1 ,Q2 are conjugated via the map f3, i. e. f3 0 Q';' = <Pc 0 f3; in other 
words, the following diagram is commutative: 

D4. Embedding of Travelling Wave Solutions, II. 

Combining the above two diagrams together we obtain that the dy­
namics of the evolution operator <Pc on the set of traveling wave solutions 
with a given velocity mil is completely determined by the traveling wave 
map Fe. Namely, the following diagram is commutative: 



340 D.R. ORENDOVICI AND YA.B. PESIN 

(JRd)ls+m ~ A q1 ,q2 C Mq\ ,q~ 

F.rn 1 1 ~. 
(JRd)ls+m ~ A q1 ,q2 C M q\ ,q~ 

D5. Embedding of Travelling Wave Solutions, III. 

where X = {3 0 a is the (non-linear) conjugacy map. 
It is immediate to check that the submanifold Aq1 ,Q2 is preserved under 

space translations Sk and hence, is invariant with respect to both time and 
space translations. We call it the traveling wave submanifold. We will 
sometimes use a more explicit notation for it, A~'1~q2' to indicate that it 
consists of traveling wave solutions running with the velocity mil. 

As an immediate consequence of the diagram D5 we obtain that if 
/L is an invariant mixing measure for the map Fe then the measure X*/L 
is an invariant mixing measure for the evolution operator <pe IAq1 ,q2 (see 
Appendix). 

Below, we shall study topological and ergodic properties of the travel­
ing wave map and in particular, describe situations where the existence of 
mixing measures is guaranteed. We now show that the submanifold A~"~2 
of traveling waves solutions is stable in some weak sense. 

As we noted above the traveling wave equation is an equation with 
delay argument and therefore, the dynamics on the set of the traveling 
wave solutions is a "drift." Such systems were studied in [5, 6]. We follow 
the approach suggested in [6] to construct an infinite-dimensional stable 
manifold for Aql ,q2 . 

Consider the non-linear operator Qe : M q1 ,q2 --+ M q1 ,q2 given by 

It is easy to see that the restriction of this operator to the set of traveling 
waves \If ql ,Q2 C M Q1 ,Q2 coincides with the shift map Q e' For any fixed 
'IjJ E \If Ql ,Q2' we set 

(4.10) 

It is easy to check that for every 'IjJ E \If Ql ,Q2 the subspaces Vq~ ,Q2 ('IjJ) 
are linear and form a filtration, i.e., Vq~~; ('IjJ) C Vq~ ,q2 ('IjJ) for every k. 
Moreover, the linear subspace 

(4.11) 

is everywhere dense in MQl ,Q2' One can also prove the following statements: 
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1. The subspaces Vq~ ,q2 ('¢) are invariant under the operator Q f:) more 

precisely, QC(Vq~,q2('¢)) C Vq~~r:-Is('¢); 
2. If ql ~ q~O) and q2 ~ q~O) then for every k the subspace Vq~ ,q2 ('¢) is 

stable, i.e. there are constants C = C(k, ql, q2) > 0 and 0 < 'Y < 1 
such that for any w E Vq~ ,q2 ('¢) 

(4.12) 

moreover the subspace Vq~ ,q2 ('¢) is transverse to IlT ql ,Q2 at '¢. 
We now describe the embedding of the subspaces Vq~ ,q2 ('¢) into the 

space of solutions of the lattice system. Consider the map ~ on Mq1 ,q2 
which associates to every w = (Wj) the solution U = (uj(n)) = ~(w) such 

that Uj (0) = Wlj' It is clear that the restriction of ~ to IlT ql ,q2 coincides 
with j3. Moreover, the following statement holds: 

PROPOSITION 4.3 (see [6]). ~ is a linear bounded operator from Mq1 ,q2 
to Mql ql which establishes the conjugacy between Q~ and the evolution 

l' 2 

operator; more precisely the following diagram is commutative: 

Mq1 ,q2 ~ Mql ql 
l' 2 

Q;' 1 1 ~. 

Mq1 ,Q2 ~ Mql ql 
l' 2 

D6. Embedding of Stable Manifolds. 

For any traveling wave solution U = j3('¢) E Yq1 ,q2' where '¢ E IlT q1 ,q2 
we set 

(4.13) 

Clearly, 

(4.14) Wq1 ,q2(U) = U W;1,q2(U), 
kEZ 

The following theorem describes stability properties of the traveling wave 
solutions. 

THEOREM 4.4 (see [6]). For sufficiently large ql, q2 and for any U E 
A q1 ,Q2 the submanifold Wq1 ,q2 (u) is infinite-dimensional and everywhere 
dense in Mql ql ; It is invariant under the evolution operator <I> c, transverse 

l' 2 

to Aql ,q2' and stable. 
Summarizing the above results we have established that for sufficiently 

large ql and q2 
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FIG. 1. Stable Separatrix for a Traveling Wave Submanifold. 

• the set of traveling wave solutions of the lattice system is a smooth 
submanifold A q1 ,q2 of finite dimension d( ls + m) in Mqi ,q~ ; 

• the dynamics of the evolution operator <I>c on this submanifold is 
completely determined by the traveling wave map Fe; 

• the union of submanifolds W q1 ,q2(U) over U E A q1 ,q2 forms an 
infinite-dimensional everywhere dense separatrix transverse to 
Aql ,Q2 j we denote it by W q1 ,q2 = W (Aql ,q2)' 

Let q~O) > 1 and q~O) > 1 be chosen according to Theorem 4.1. Fix 

any ql > q~O) and q2 > q~O). There exists a smallest positive integer L such 
that (q~O))L ~ ql or (q~O))L ~ q2. 

For every integer 1 ::; 1 < L, let us set iii = iii(l) = qi/l, i = 1,2. We 
have that iii ~ q? 

Therefore, for every integer m ~ ls + 1 such that m and 1 are relatively 
prime, Theorem 4.2 applies and provides a smooth d(ls + m)-dimensional 
submanifold A~"~2 C Mql ,q2' It has an infinite-dimensional everywhere 

dense separatrix W(Aq~,lq_ ). 
1, 2 

Therefore, one has countably many submanifolds Aq~,lq_ corresponding 
1, 2 

to traveling waves running with velocities mil, such that iii = ql and ii~ = 
q2. Each of these submanifolds possesses an everywhere dense separatrix. 
This indicates that there is no stability in the space M q1 ,q2 in a strict sense 
but only in a weak one (along the stable separatrices). For values of 1 other 
than mentioned above such that qiO) < iiI < ql and q~O) < ii2 < q2 for some 
iiI and ih, the stable separatrices W (A~"~2) are nowhere dense in Mql ,q2' 

There is an analogy between submanifolds A~',lq2 and inertial mani­
folds for differential equations u' = F(u) in a Hilbert space. Recall that 
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FIG. 2. Coezistence 0/ Countably Many Traveling Wave Submani/olds. 

an inertial manifold for the semigroup {S(t)h~o associated to such an 
equation is a finite-dimensional smooth submanifold M which satisfies the 
following properties: 

(1) S(t)M c M, i.e. M is positively invariant for the semigroup. 
(2) M attracts exponentially all the orbits of the system. 
While the first property obviously holds for the submanifolds A~:~2' 

the second property holds only in a weak sense, i.e., along their stable 
manifolds. 

5. Dynamics of the traveling wave map: The case of a hyper­
bolic local map. As we saw above the dynamics of the evolution operator 
on the set of traveling wave solutions running with a given velocity is com­
pletely determined by the traveling wave map (4.5). In this section we de­
scribe hyperbolic properties of this map, i.e ., properties which characterize 
instability of trajectories. Our goal is to illustrate that for sufficiently small 
interactions these properties are dominated by the hyperbolic behavior of 
the local map f. In particular, we show that if the local map is hyperbolic 
in a strong sense (i.e., it possesses a hyperbolic set; every trajectory in this 
set is highly unstable; see below) then so are the traveling wave map and 
the restrictions of space and time translations to the submanifold of trav­
eling wave solutions. This implies that the CML displays chaotic behavior 
of the highest degree, i.e., there exists a measure invariant under space and 
time translations which is supported on the set of traveling wave solutions 
and has ergodic properties of higher order (in other words, it is equivalent 
to the Bernoulli measure in the classical probability theory). 

We begin by considering a map Fc : (~d t ---t (~d t of the form: 
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which is a generalization of the traveling wave map. Here Xi E JRd, i = 
1, ... ,n and 1 :S k < n. Furthermore, f : JRd -+ JRd is a diffeomorphism and 
9 : (JRd)n -+ JRd is a smooth map. We assume that f and 9 satisfy conditions 
Al and A2. This implies that the map Fe is a local diffeomorphism, i.e., 
its differential dxFe is non-degenerate for every X E (JRd)n. In particular, 
Fe is locally one-to-one but it may not be globally one-to-one. 

5.1. One can view the map Fe as a small perturbation of the map Fo: 

Let us note that the map Fo is an endomorphism and its differential dxFo is 
degenerate for every x E (JRd)n. Therefore, in studying topological and er­
godic properties of the map Fe, for sufficiently small c classical perturbation 
theory may not be applied directly and may need significant modifications. 

We provide a useful description of Fo. Set m = n - k + 1 < nand 
consider the map G : (JRd)m -+ (JRd)m 

(5.3) 

This map is a diffeomorphism and its inverse is given by: 

It is easy to see that Fo is a suspension over G, i.e., we have the following 
commutative diagram: 

7r 

---+ 

D7. The Suspension of the Endomorphism Fo by the Diffeomorphism G. 

where 1l' : (JRd)n -+ (JRd)m is the natural projection to the last m d­
dimensional components of (JRd) n. 

5.2. We consider the case when the local map f possesses a locally 
maximal hyperbolic set A. Recall that a compact invariant set A is called 
hyperbolic if for every x E A there exists a splitting of the tangent space 
TxM at x into two subspaces ES(x) and EU(x), TMA = ES(x) Efl EU(x) 
such that: 

1. the splitting is invariant under the differential df, i.e., 



(5.6) 

(5.7) 
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2. the subspaces ES (x) and EU (x) are respectively stable and un­
stable for the differential df, i.e., 

Idfx nvl ~ c,\nlvl 

for every v E ES(x) and 

I dJ;'v I ~ c-1 A -nlvl 

for every v E EU(x), where c > 0 and 0 < A < 1 are constants 
independent of x and v. 

A hyperbolic set A is said to be locally maximal if there exists an open 
neighborhood V of A such that 

00 

(5.8) A= n r(V)· 
n=-oo 

For every point x E A one can construct local stable and unstable 
manifolds. We denote them by ~~c(x, 1) and Wl~c(x, 1) respectively. The 
local stable manifold consists of those points Y whose forward trajectories 
follow the trajectory of x within the distance c for sufficiently small c. The 
local unstable manifold is characterized in a similar way by reversing time. 

Assume that A is a locally maximal hyperbolic set for the local map 
f. Consider the set Ao = ®7=1 Ai, where Ai are copies of A, i = 1, ... ,n. 
We have that Fo(Ao) C Ao and Ao is hyperbolic. 

The set A may not survive under small perturbations of Fo (even for 
local diffeomorphisms). Therefore, we introduce the set 

(5.9) Ao = n FojAo. 
i?O 

The set Ao is invariant under Fo, i.e., Fo(Ao) = Ao. It is locally maximal 
and hyperbolic and admits the following characterization: 

LEMMA 5.1 (see [6]). For any y E Ao there exists a sequence Yk E Ao 
such that Yo = Y and FO(Yk) = Yk+l for k E Z. 

In the case of endomorphisms, for every point x in a locally maximal 
hyperbolic set one can construct a local stable manifold. It is uniquely 
defined and consists of those points Y whose forward trajectories follow 
the trajectory of x within the distance c for sufficiently small c. On the 
other hand there are many local unstable manifolds, each corresponding 
to a branch of preimages of x. We will specify later the choice of unstable 
manifolds. 

For the endomorphism Fo, the local stable manifold at a point x = 
(Xi) E Ao is given by 

k-l n 

(5.10) WI~c(X, Fo) = II B(Xi' c) x II Wl~c(Xi' 1), 
i=l i=k 
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where c > 0 is sufficiently small. We will define the local unstable manifold 
at x by 

k-l n 

(S.l1) Wl~c(x, Fo) = II {Xi} X II Wl~c(Xi' f). 
i=l i=k 

In [6J, the authors studied hyperbolic properties of the map Fe for suffi­
ciently small c using a modification of the classical perturbation theorem 
for hyperbolic sets. 

THEOREM S.2 (see [6]). There exists co > 0 such that for any 0 < 
c < co there is an invariant locally maximal hyperbolic set Ae for Fe. 

5.3. We consider the traveling wave map Fe' By Theorem S.2, for 
sufficiently small c there exists a locally maximal hyperbolic set Af; for Fe' 
Let J.L be an invariant mixing measure on Ae' Using the map X we can push 
this measure on Aq1 ,q2 (see Diagram DS). Hence, we obtain the measure 

J.Lql,q2 = X*J.L· 

THEOREM 5.3 (see [6]). The measure J.LQ1,Q2 is invariant under time 
and space translations and is mixing. 
Therefore, the lattice dynamical system displays spatio-temporal chaos. 

5.4. In this section we show that the local map corresponding to the 
FitzHugh-Nagumo equation possesses a locally maximal hyperbolic set. 
The FitzHugh-Nagumo equation is the only example known to the authors 
of a partial differential equation whose local map is hyperbolic. 

Consider the map f : ]R2 -+ ]R2 defined by 

(S.12) f(x, y) = (x + Ah(x) - ay,(3x + ,y), 

where h(x) = x(x-e)(l-x), A, 0 < "e < 1 and a, (3 are positive numbers. 
Let R = [e, 1] x [r, s] be a rectangle, where rand s are positive numbers. 

PROPOSITION 5.4. Assume that numbers a, (3" and e satisfy the 
following conditions: 

(S.13) 
1- e a(3 
-e- < 1-,' 

l-e 
,<--2 . 

Then for all sufficiently large A there exists a rectangle R = [e,l] x [r, s] 
such that the intersection R n f(R) consists of two connected components 
Rl and R2 (see Figure 3). 

Based on Proposition 5.4 one can now develop a "horseshoe-type con­
struction" to obtain an invariant subset A for f. One can then use the 
standard "cone technique" to show that A is hyperbolic. More precisely, 
the following statement holds. 

PROPOSITION 5.5. The set 
00 

(5.14) A = n r(R) 
n==-oo 

is a locally maximal hyperbolic set for f. 
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FIG. 3. The Horseshoe for the Local Map of the FitzHugh-Nagumo Equation. 

6. Dynamics of the traveling wave map: The case of a local 
map of Morse-Smale type. 

6.1. In this section we consider the case when the local map f is 
a Morse-Smale diffeomorphism. It was studied in [30]. Morse-Smale dif­
feomorphisms are hyperbolic in a weak sense: there exist finitely many 
hyperbolic periodic points which determine the behavior of all other orbits 
(the formal definition is given below). These systems are not chaotic, in 
fact, the behavior of every single trajectory is well understood: all of them 
(except hyperbolic periodic points) move towards attracting periodic points 
as time increases and towards repelling periodic points as time decreases. 
Our goal in this section is to show that for sufficiently small interactions 
the traveling wave map Fe is also of Morse-Smale type and so are space and 
time translations restricted to the set of traveling wave solutions. Thus, 
the topological behavior of the CML is completely understood and is not 
chaotic. We show that the compactification of the local map associated to 
some partial differential equations considered in Section 1 is Morse-Smale. 

We first provide some necessary background. 
Let M be a smooth compact Riemannian manifold and F : M -+ M 

a CI-diffeomorphism. A point x E M is called nonwandering if for any 
neighborhood U of x there exists a positive integer n such that Fn(U)nU 1:-
0. f2(F) denotes the set of all nonwandering points of F-

A point x E M is periodic if FP(x) = x for some positive integer p. 
The set of all periodic points of F is denoted by Per(F). A periodic point 
x is hyperbolic if dxFP is a hyperbolic linear map (i.e., IAI 1:- 1 for any 
eigenvalue A). If x is a hyperbolic periodic point for F one can construct 
the local stable and unstable manifolds Wl~c (x) and Wl~c (x) as well as the 
global stable and unstable manifolds WS(x) and WU(x). 
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A diffeomorphism F is called a Morse-Smale diffeomorphism if it 
satisfies the following properties: 

1. O(F) = Per(F); 
2. every periodic point is hyperbolic; 
3. the global stable and unstable manifolds of periodic points intersect 

transversally. 
We now consider the case when F is an endomorphism. Given a hy­

perbolic periodic point x one can construct the local stable and unstable 
manifolds as well as the global unstable manifold; however, the global sta­
ble manifold may not be constructed (see [12]). Therefore, we modify the 
above definition in the following way. 

An endomorphism F is called Morse-Smale if it satisfies the following 
properties: 

1. O(F) = Per(F); 
2. Every periodic point is hyperbolic; 
3. The local stable and global unstable manifolds of periodic points 

intersect transversally. 
We point out that an invertible Morse-Smale endomorphism is a 

Morse-Smale diffeomorphism and so is its inverse. 

6.2. We assume that the following conditions hold: 
MSt. The local map f has 00 as a repelling or attracting fixed point; 

one can define the compactification map 1 : Sd -+ Sd by 1 = 
Po f op-1, where P : Sd\ {N} -+ JRd is the stereographic projection 
and N "the North Pole" of Sd; 

MS2. The map 1 is a C1 Morse-Smale diffeomorphism; 
MS3. The map 9 and all its first order derivatives "vanish at infinity", 

i.e. for any a > ° there exists a ball B(O, R) C JRd n centered at 
o of some radius R such that Ilg(x)II,II(gz;(x))11 < a for every 
x ~ B(O, R) and i = 1, ... ,n (here (gz;) denotes the d x d matrix 
of partial derivatives of 9 with respect to Xij, i = 1, ... , n, j = 
1, ... , d). 

Let us remark that the map 9 corresponding to a space discretization 
of a partial differential equation is linear (see Section 1). Therefore, it can 
be changed outside a large ball in (JRd) n to satisfy Assumption MS3. Below 
we will show that the local maps arising from our list of examples satisfy 
Assumptions MSI and MS2. 

It is easy to check that under Assumptions MSI-MS3 for € ~ 0, the 
map Fe induces a map Fe : (Sd)n -+ (Sd)n where (Sd)n is the compactifi­
cation of (JRd)n "along each d-dimensional component." Assumption MS3 
insures that the map Fe is as smooth as the map Fe and is a small pertur­
bation of Fo in the C1_ topology. 

Let us also note that, if instead of the component-wise compactification 
of (JRd)n we used the standard one-point compactification, the induced map 
Fo need not be continuous. 
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The following result describes the dynamics of the compactification of 
the traveling wave map in the case when the local map is a Morse-Smale 
diffeomorphism. It was proved in [30]. 

THEOREM 6.1. Under Assumptions MS1-MS3 there exists co > 0 
such that for any 0::; c < co the map FlO is a Morse-Smale endomorphism. 
Moreover, FlO is a local diffeomorphism for 0 < c < co· 

Although the traveling map FlO is defined on (JRd)n which is not com­
pact, using Theorem 6.1 and the standard stereographic projection we 
conclude that FlO is of Morse-Smale type. More precisely it has finitely 
many periodic orbits, all hyperbolic, say Per(F,,). They constitute the 
non-wandering set. Furthermore if a trajectory remains bounded then its 
c¥- and w-limit sets is a subset of Per(F,,). 

As we saw in Section 4 the dynamics of the evolution operator on the 
set of traveling wave solutions is conjugate to the dynamics of the traveling 
wave map FlO' Hence, it is also of Morse-Smale type. 

6.3. We illustrate that local maps for some CMLs from our list (see 
Section 1) are of Morse Smale type. 

6.3.1. Kuramoto-Sivashinsky equation. The local map is linear, 
f(u) = //u. For // different from 0 and 1 it is a diffeomorphism of JR which 
has 0 the only fixed hyperbolic. 

THEOREM 6.2. The compactification map j is a Morse-Smale diffeo­
morphism of Sl with two hyperbolic fixed points corresponding to 0 and 00 

(one of them is attracting and the other one is repelling). 

6.3.2. Huxley equation. Recall that the local map is a cubic poly­
nomial, f(u) = u + //u(l - u)(u - e). 

Since 0 < e < 1 the map f has three fixed points 0, e, and 1. It 
is easy to check that if // < 0 is sufficiently small they are hyperbolic 
(the derivatives are /,(0) = 1 - //e > 1, /,(e) = 1 - //(e2 - e) < 1, and 
/'(1) = 1- //(1- e) > 1). 

It is also easy to see that for every u E JR the derivative of f is, 
/' (u) = -3//u2 + 2//( e + l)u + (1 - //e), strictly positive. Hence, f is strictly 
increasing and therefore, does not have any other periodic point. It also 
follows that f is a diffeomorphism of JR with 00 a repelling point. 

Therefore, f satisfies Assumptions MS1-MS2. 
THEOREM 6.3. For -1 < // < 0 and 0 < e < 1 the compactification 

map j is a Morse-Smale diffeomorphism of Sl with 4 fixed points. 
Similar arguments apply to show that the Swift-Hohenberg and 

Ginzburg-Landau equations (whose local maps are also cubic polynomi­
als) have local maps of Morse-Smale type in some range of parameters. 

6.3.3. KPP equation. The local map is a quadratic polynomial 
f(u) = u + c¥u(l - u). It has two fixed points 0 and 1. 

The derivative of f is /,(u) = 1 + c¥(1 - 2u). It is easy to see that 
there exists C¥o > 0 such that f' (u) > 0 for all 0 < c¥ < C¥o and u < 
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FIG. 4. The Local Map lor Huzley Equation (v < 0). 

(1/2)(1 + 1/0.0). We change f for u > A = 1/(20.0) such that f' > 0 and 
the new map f has one more hyperbolic fixed point p > A (see Figure 4). 

The new map is a diffeomorphism of IR with 4 fixed points: 0 is re­
pelling (f'(O) = 1 + a > 1), 1 attracting (f'(I) = 1 - a < 1); P repelling 
and 00 attracting. 

y 

x 

FIG. 5. The Change 01 the Local Map for the KPP Equation. 
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THEOREM 6.4. For 0 < a < ao the compactification map f is a 
Morse-Smale diffeomorphism of Sl with 4 hyperbolic fixed points. 

Let us point out that the number of fixed points of a Morse-Smale 
diffeomorphism of Sl is even, alternating attractors and repellers. 

We consider now the KPP equation for sufficiently large values of the 
parameter. Set Uo = (l+a)/a (a is fixed). It is clear that f(O) = 0 = J(uo) 
and J(uo/2) > Uo for a> 1. Since f'(u) = 1 + a - 2au for every u E [0, uo] 
we obtain that J'(u) = ° for u = uo/2, f'(u) = 1 for U1 = 1/2, and 
J'(u) = -1 for U2 = (2 + a)/(2a). One also has that J(ud = J(U2) > Uo 
if a> 1 + vis. 

In this case one can find two intervals U1 = [0, U1] and U2 = [U2' uo] 
such that for every u E U = U1 U U2 the derivative of J is expanding, i.e. 
IJ'(u)1 ~ ). > 1 for some). which does not depend on u (see Figure 6). 

y 

,A, 
, 

~ , , 
~ '" x 

0 lil liO ~ 

FIG. 6. Expanding Local Map for the KPP Equation. 

Define A to be the set of all points u E I whose positive orbit remains 
in I, i.e. A = ni>o J(1). The set A is a Cantor-like subset of U on which J 
is conjugate to tile full shift on the space of one-sided infinite sequences. It 
is well known that this system is mixing. We therefore pose the following 
conjecture: 

Conjecture. For a > 1 + vis the map Fe (for sufficiently small E > 0) 
has an invariant mixing measure. 
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6.3.4. FitzHugh-N agumo equation. Consider the following vector 
field: 

(6.1) X(x, y) = (dh(x) - ay, bx - cy). 

Let X t be the flow generated by X. A rectangle R is called invariant under 
X t iffor every x E oR the vector X(x) points inside R. 

PROPOSITION 6.5. There exists a rectangle R C ~2 of the form R = 
[-xo, xol x [-Yo, yol with Xo, Yo > 0, such that for any r ~ 1, the rectangle 
r R is invariant. 

It follows from Proposition 6.5 that for every t > 0 the diffeomorphism 
X t admits the compactification map Xt : S2 -+ S2 (see Section 6.2). The 
latter is a diffeomorphism with the North Pole (corresponding to 00) as a 
repelling point. 

Denote ¢ = (ab) / (cd). One can show that if 

(6.2) (0-1)2<4¢ 

then the vector field X has the origin 0 as the only attracting critical point 
and if 

(6.3) (0 - 1)2 > 4¢ 

then there are three critical points 0 and Pi(Xi, Yi) for i = 1,2, where 
Xi = 0 + 1 ± V(O - 1)2 - 4¢ and Yi = (b/C)Xi. The points 0 and P2 are 
attracting and P1 is a saddle point. 

One can prove that the flow X t does not have any closed orbits and 
hence, the nonwandering set consists only of the critical points 0, P1 and 
P2 which are all hyperbolic. 

One can also show that the stable (unstable) manifolds of these points 
are transversal. We conclude with the following result: 

THEOREM 6.6. Xt is a gradient-like Morse-Smale flow on the sphere 

Recall that a flow Xt is a gradient-like Morse-Smale flow if it has no 
periodic orbits, the set of critical points is finite (and therefore coincides 
with the set of nonwandering points), all critical points are hyperbolic, and 
their stable (unstable) manifolds intersect transversally. 

For every real number h we define the Euler map CPh : ~2 -+ ~2 
generated by the flow X t by 

(6.4) CPh = Id + hX, 

It is easy to see that 

(6.5) CPh(U, v) = (u + Acp(u) - o:v, f3u + ,v), 

and hence, CPh coincides with the local map for the FitzHugh-Nagumo equa­
tion with A = dh, 0: = ah, f3 = bh and X = ch. 
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FIG. 7. The Phase Portraits for the FitzHugh-Nagumo Equation: a) the local 
map has two fixed points (0 is attracting, 00 is repelling); b) the local map has 
four fixed points (0 and P2 are attracting, PI is a saddle, and 00 is repelling). 

" For h small 'Ph is close to the identity map and is a diffeomorphism 
of ]R2. Moreover !Ph maps each rectangle r R into its interior and hence, 
admits a compactification diffeomorphism <Ph : S2 -+ S2 with the North 
Pole as a repelling fixed point. 

Following the proof of the Palis-Smale theorem of structural stability 
for Morse-Smale systems one can prove the following result 

THEOREM 6.7. There exists ho > 0 such that for any h, Ihl < ho the 
map <Ph is topologically conjugate to Xh. 

THEOREM 6.8. For sufficiently small A, a, /3, and'Y the compactifi­
cation map is a Morse-Smale diffeomorphism of the sphere S2. It has two 
fixed points (one attracting and one repelling) if Condition 6.2 holds and 
four fixed points (two attracting, one saddle, and one repelling) if Condition 
6.3 holds. The repelling point corresponds to 00. 

6.4. Bifurcations. As we saw, the local map for the FitzHugh­
Nagumo equation is Morse-Smale in some domain of the parameter space 
and has a hyperbolic set in some other domain of the parameter space. 
In fact one can pass from the first domain to the second one by varying 
parameters A (and perhaps X) and observe a sequence of bifurcations. 

We believe that a "typical" sequence of bifurcations consist of period 
doubling. On Figure 8 we present the bifurcation diagram which was 
obtained using the program "Dynamics" by J.A. Yorke and H.E. Nusse 
addapted for Unix/XU systems by Eric J. Kostelich and Brian R. Hunt 
(see [38]). We wish to thank Brian Hunt for providing us with the second 
version of the program. 

Explanation to Figure 8. Period doubling bifurcations are clearly 
seen when a = 0.1, /3 = 0.2, X = 0.4 (and hence, 'Y = 1 - X = 0.6), 
() = 0.5 while parameter A varies from 0.5 to 8. The first sequence of 
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FIG. 8. The Bifurcation Diagram for the local map for FitzHugh-Nagumo 
Equation. 

period doubling bifurcations starts at point 0 while the second one starts 
from point P2 (see Figure 7b). 

7. Conclusion. We briefly summarize here some important aspects 
of our discussion in the paper. 

1. If the local map of a CML is hyperbolic in a strong sense (i.e., it 
possesses a locally maximal hyperbolic set) then so is the traveling wave 
map Fe: (for sufficiently small e) and in turn, space and time translations 
considered on the set of traveling wave solutions. In this case the dynamics 
of the CML is chaotic on a finite-dimensional smooth submanifold in the 
infinite-dimensional phase space Mql ,q2 (endowed with the metric 11·lIql ,Q2 • 

An example is the two-dimensional local map for the FitzHugh-Nagumo 
equation in some range of parameters. 

If the local map of a CML is Morse-Smale (i.e., it is hyperbolic in a 
weak sense) then so are the traveling wave map Fe: (for sufficiently small 
e) and space and time translations restricted to the set of traveling wave 
solutions. In this case the dynamics of the CML is not chaotic and the 
topological behavior of individual trajectories can be completely described. 
Examples include one-dimensional local maps for Kuramoto-Sivashinsky 
equation, Huxley equation, and KPP equation as well as two-dimensional 
local map for the FitzHugh-Nagumo equation (in some range of parame­
ters). 

2. The chaotic behavior in the infinite-dimensional phase space M Q1 ,Q2 

associated with traveling wave solutions is not stable in a strong sense with 
respect to initial data: A small change in the initial condition may cause 
the corresponding trajectory to diverge from the initial one. However, there 
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is stability in a weak sense: Every submanifold A~:~2 (which consists of 
traveling wave solutions running with the velocity mil) possesses a stable 
everywhere dense separatrix. 

The global instability is due to the metric structure of the phase space 
Mq1 ,q2 and ultimately is determined by the boundary conditions we have 
specified (we allow solutions which can grow at an exponential rate as the 
spatial coordinate tends to infinity). This instability is associated with the 
"pathological" behavior of the metric 11·llql,q2 over ql and q2; more precisely, 
the space MQ1 ,Q2 is nowhere dense in MQ~ ,Q~ if ql :S q~ and q2 :S q~ and at 
least one of these inequalities is strict. 

Let us note that "in practice" one can never deal with infinite space 
and therefore, cannot distinguish between metrics 11·IIQ1,Q2 with different ql 
and q2. From this point of view the space of solutions which are bounded 
as the space coordinate tends to infinity (Le., solutions for which the norm 
lIuli = SUpjEzlUj I) is more "practical." Let us point out that the traveling 
wave solutions that lie in the hyperbolic set for the evolution operator 
(assuming that the local map is hyperbolic) are indeed bounded in space. 
More generally, any subset which is invariant under the traveling wave 
map and its inverse and is bounded corresponds to a set of traveling wave 
solutions of the CML which is bounded in space. It is unknown whether 
the set of all traveling wave solutions running with a given velocity forms 
a smooth submanifold and whether this submanifold is stable in the strong 
sense. 

3. In this paper we considered three special classes of solutions: 
steady-state solutions, space-homogeneous solutions, and traveling wave 
solutions. It would be interesting to find other classes of solutions where 
CMLs may display temporal or I and spatial chaos. 

4. The local maps associated with most of the partial differential 
equations that we have considered in this paper are one-dimensional of 
Morse-Smale type (except for the KPP equation in some range of the pa­
rameter). The only two-dimensional example we have studied is provided 
by the local map associated with FitzHugh-Nagumo equation. In this case 
one can find both hyperbolic sets and Morse-Smale type behavior. It is 
a challenging problem in the area to study hyperbolic (and respectively 
ergodic) properties of multi-dimensional local maps associated with other 
well-known partial differential equations or arising in other models. 

5. In this paper we considered only CMLs which correspond to partial 
differential equations of evolution type. Little is known about CMLs which 
correspond to the wave equation. In particular, it would be of great im­
portance to understand dynamics on the space of traveling wave solutions. 
It is quite likely that these solutions are stable in the strong sense. 
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APPENDIX 

A. Equilibrium states and mixing property. For the reader's 
convenience we collect here some basic notions from statistical physics and 
ergodic theory which were used in this paper. Let T : X -+ X be an 
invertible map and J.L a Borel probability measure invariant under T, i.e., 
J.L(A) = J.L(T(A)) for any measurable set A c X. J.L is said to be 

1. ergodic if any invariant set A c X has measure either 0 or 1. 
2. mixing if for any two measurable sets A, B c X 

(A.1) lim J.L(T-n(A) n B) = J.L(A)J.L(B). 
n--too 

It is well known that any mixing measure is ergodic. 
Let X be a compact metric space, T : X -+ X a continuous map, and 

'P a continuous function on X. An invariant measure J.L = J.Lcp is called an 
equilibrium measure corresponding to 'P if 

(A.2) 

where hv(T) is the metric entropy of T with respect to v and the supremum 
is taken over all T-invariant measures. 

THEOREM A.1 (Corollary 20.3.8 in [26]). Let M be a compact smooth 
Riemannian manifold, T : M -+ M a topologically transitive Cl-diffeomor­
phism possessing a locally maximal hyperbolic set A. Then for any Holder 
continuous function 'P : A -+ lit there exists a unique equilibrium measure 
J.Lcp which is mixing. 
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