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We first motivate the study of multifractals. We then present a rigorous mathematical foundation for
the multifractal analysis of Gibbs measures invariant under dynamical systems. Finally we effect a
complete multifractal analysis for several classes of hyperbolic dynamical systems. © 1997
American Institute of Physics. @S1054-1500~97!00601-0#

This manuscript has several objectives. We first describe
some models in the natural sciences „Richardson’s model
of turbulence, distribution of galaxies in the universe,
and root systems in plant biology… where the fundamental
objects of study are multifractals. We then present a rig-
orous mathematical foundation for the multifractal
analysis of measures invariant under dynamical systems
with conformal and hyperbolic behavior. We consider
measures that are natural from a physical point of view
and capture information on the self-similar properties of
the distribution of trajectories on strange attractors. Fi-
nally, we effect a complete multifractal analysis for con-
formal expanding maps and Smale’s horseshoes.

I. INTRODUCTION

Invariant sets of dynamical systems in general are not
self-similar in the strict sense. However, part of these sets
can sometimes be decomposed into ~perhaps innumerable!
subsets each supporting a Borel probability measure exhibit-
ing a type of scaling symmetry. This means that the measure
admits a group of scale symmetries that reproduces copies of
the set ~or its significant part of full measure! on arbitrarily
small scales ~up to a given precision that decreases with the
scale!. Sets that admit such structure are called multifractals.
The Hausdorff dimension of each subset can be used to char-
acterize this structure. The detailed analysis of the multifrac-
tal structure of a set invariant for a chaotic dynamical system
allows one to obtain a more refined description of the chaotic
behavior than the description based upon purely stochastic
characteristics ~e.g., Lyapunov exponents and measure theo-
retic entropy!.

The concept of a multifractal analysis was suggested by
a group of physicists in the seminal paper ~HJKPS! where
the authors attempted to understand the multiscaling behav-
ior of physical measures on strange attractors, diffusion-
limited aggregates, etc. The multifractal analysis of measures
on limit sets has since become a popular interdisciplinary
subject of study—a search of several electronic databases
showed that there are now hundreds of related papers in
physical, engineering, biological, and mathematical litera-
ture. There are currently 152 papers in the MathSci database
with multifractal or multiscaling in the title.

Below are three diverse areas of current investigation
using the multifractal/multiscaling analysis that we find par-

ticularly fascinating. We believe that understanding the un-
derlying multifractal structure will play an important role in
solving each of these problems.

~1! The first application is the study of turbulence @J#.
According to Richardson’s description of turbulence, there is
a cascade of transfers of energy from large down to small
scales. The cascade is hierarchical in the sense that a distur-
bance on a certain scale receives energy from a larger scale
and transfers it to smaller scale disturbances. At the end of
the cascade the smallest disturbances are characterized by
very large velocity gradients because the conversion of ki-
netic energy into heat is strongly localized.

Under the assumptions that the rate of transfer of energy
is constant both in space and in the steps of the energy cas-
cade, one can obtain the famous Kolmogorov scaling law for
velocity differences ^uv(x1h)2v(x)uq&'h2q/3, where ^•&
denotes spacial average. The case q51 is frequently referred
to as Kolmogorov’s 1/3 law of turbulence.

During the last decade there has been much experimental
and numerical evidence showing that strong fluctuations of
the energy transfer and dissipation are present, a phenom-
enon called intermittency, and that the Kolmogorov law
seems to break down for large values of q . In particular,
investigators observed that the set of high vorticity is a
thread-like fractal set that is definitely not homogeneous in
space. Several authors have attempted to analyze the multi-
fractal structure of the energy dissipation by studying the
Rényi spectrum of the energy dissipation density and have
proposed ~phenomenological! corrections to the Kolmogorov
law utilizing dimension-like characteristics.

~2! The second application is the study of the distribu-
tion of galaxies and clusters of galaxies in the universe
@MPBC, Spi#. One of the key problems in modern cosmol-
ogy is understanding how the spatial clustering of objects
such as galaxies can provide clues about the evolution of the
primordial density inhomogeneities under the action of
gravitational instability. Since clusters are considered multi-
fractals, some characteristics of the multifractal structure
~such as correlation dimension, information dimension, etc.!
may be useful in a physical theory to describe the distribu-
tion of clusters.

~3! The third application is ~plant! biology. The relation-
ship between form and function, particularly resource cap-
ture, is one of the central problems in organismic biology.
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Root systems are a particularly interesting and important ob-
ject of study. Roots explore a solid medium for relatively
immobile resources such as phosphorous. It is hoped that a
multifractal analysis of the metabolic activity of root struc-
tures will provide insights on the ability of root systems to
efficiently forage in time and space for soil resources @LW#.

The first rigorous multifractal analysis of dynamical sys-
tems was carried out in @CLP# for a special class of measures
invariant under some one-dimensional Markov maps. Later
Lopes @Lo# analyzed the multifractal properties of the mea-
sure of maximal entropy for a hyperbolic Julia set. In 1994
Simpelaere @Si# effected a multifractal analysis for Gibbs
measures of Axiom A surface diffeomorphisms. In this paper
we give an alternate proof of Simpelaere’s result using the
methods developed in @PW3# ~see Sec. III!.

Our definition of multifractal analysis is faithful to the
concepts in @HJKPS# and other articles in physical literature.
In addition, our work places these notions onto a solid math-
ematical foundation. The two major components of the mul-
tifractal analysis are the Hentschel–Procaccia ~HP! spectrum
for dimensions ~which should be shown to coincide with the
Rényi spectrum for dimensions! and the f (a)-spectrum for
dimensions ~see the descriptions below!. The multifractal
analysis unifies these two spectra via the Legendre transform
~see Appendix B for the definition of Legendre transform!.
Once the Legendre transform relation between the two spec-
tra is established, one can compute the delicate and seem-
ingly intractable f (a)-spectrum through the Rényi or HP
spectrum, which is completely determined by the statistics of
a single generic trajectory.

There are many papers in the multifractal literature that
treat only one of these two components. In a number of
papers the pointwise dimension, and thus the f (a)-spectrum
for dimensions, are studied not with respect to the natural
metric, but only with respect to the symbolic metric @Ra#.
This symbolic pointwise dimension is, a priori, just an inter-
mediary object and is not physically meaningful. In some
cases the symbolic pointwise dimension coincides with the
usual pointwise dimension, but this is a highly nontrivial
result ~see Theorems II.4 and III.2!. In addition, most authors
restrict their analysis to Bernoulli measures or self-similar
measures and do not include measures of actual physical
interest, like the Bowen–Ruelle–Sinai ~BRS! measures on
hyperbolic attractors and repellers ~or general Gibbs mea-
sures!.

Let us say a few more words for motivating a math-
ematical foundation of the multifractal analysis. Let g:
M!M be a diffeomorphism of a smooth Riemannian mani-
fold M and L,M a compact hyperbolic attractor for g . This
means that ~i! the set L carries a ~uniformly! hyperbolic
structure that is generated by the stable and unstable sub-
spaces at every point xPL , and ~ii! the set L is an attractor,
i.e., there exists an open neighborhood U of L ~the basic of
the attractor! such that f ~¯U!,U and L5˘n50

` f n~U!. For
simplicity, we assume that g is topologically mixing on L
@i.e., given any two open sets U , V,L , there exists NPN
such that for all n>N we have gn(U)˘VfiO#. In @B#,
Bowen showed that the evolution of the Lebesgue measure

in the basin U converges to the BRS measure. From the
physical point of view, this is the natural measure on the
attractor since it describes the orbit distribution of generic
points in the basin. This distribution is not uniform, and as
computer pictures show, there exist spots of high and low
density of visits sometimes called hot and cold spots. See
Fig. 1.

This phenomenon also has been observed for a more
general class of attractors ~hyperbolic attractors with singu-
larities!, which includes the Lorenz attractor, the Lozi attrac-
tor, etc. Attempts to analyze this measure in computer simu-
lations are based on partitioning the basin into a very fine
grid and estimating the measure of each box by the fre-
quency with which a typical orbit visits it.

An approach to encoding all this data was suggested in
@HJKPS# where the authors utilized the Rényi spectrum for
dimensions, defined as follows. Consider a partition of the
attractor by a grid of mesh size r , i.e., each partition element
contains a ball of radius 1

2r and is contained in a concentric
ball of radius r . Given a family of grids parametrized by r ,
define

Rn~q !5
1

12q limr!0

log ( i51
N~r !n~Cr

i !q

log r ,

provided the limit exists ~see @T, V#!, where n is a probability
distribution in the basin of the attractor and N(r) is the num-
ber of partition elements Cr

i of the grid with n(Cr
i ).0. A

priori, the limit may depend on the family of grids. We will
show that for a large class of measures, called diametrically
regular measures, the limit is independent of the family of
grids. The result is also true if the number 1

2 in the definition
of a grid is replaced by any positive number.

Another approach, which seems to be experimentally
and numerically the most accessible, involves the study of
correlations of the distributions of q-tuples along a typical
orbit for q52,3,.. . . This notion was introduced in @G,
GHP#. Let g: X!X be a map on a metric space (X ,r) pre-
serving a Borel probability measure n. We set

FIG. 1. Hot and cold spots on an attractor.
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C~x ,q ,r ,n !5
1
nq card$~ i1 .. .iq!ur~gi jx ,gikx !

<r for all 0<i j<ik,n%.

We define the correlation dimension of order q by

Cq~x !5
1

12q limr!0
lim
n!`

log C~x ,q ,r ,n !

log r

provided the limits exist. If n is ergodic, it was shown in
@Pe1# ~see also @PT#! that for n almost every x

lim
n!`

C~x ,q ,r ,n !5E
X
n~B~y ,r !!q21dn~y !,

where B(y ,r) denotes the ball of radius r centered at the
point y . Clearly this limit depends on the metric r on X and
the ergodic measure n, but not explicitly on the dynamical
system. Thus, for q52,3,.. .

Cq~x !5
1

12q limr!0

log *Xn~B~y ,r !!q21dn~y !

log r ,

provided the limit exists. We stress that in general, one does
not expect this limit to exist. In @PT#, the authors constructed
an example of a continuous map of an interval that preserves
a measure absolutely continuous with respect to the Le-
besgue measure, for which the above limit does not exist for
almost every x in an arbitrarily large interval in q . Combin-
ing this with results in @K# one can construct a diffeomor-
phism of the two-torus, preserving an ergodic measure that is
absolutely continuous with respect to the Lebesgue measure,
having positive topological entropy, and for which the above
limit does not exist for almost every x in an arbitrarily large
interval in q . In @PW2# the authors show that this limit exists
for a broad class of measures including Gibbs measures on
conformal repellers. The limit also exists for Gibbs measures
for Axiom A surface diffeomorphisms.

The natural extension of the correlation dimension of
order q52,3,.. . to all real values q.1 was introduced by
Hentschel and Procaccia in @HP#. Let n be a Borel probabil-
ity measure on a metric space (X ,r). For q.1 we define the
HP spectrum for dimensions by

HPn~q !5
1

12q limr!0

log *Xn~B~y ,r !!q21dn~y !

log r

provided the limit exists.
For an arbitrary Borel probability measure n, the HP

spectrum is not a priori defined for q<1. One problem is
that the measure of some balls may be zero. If all balls have
positive measure ~as in the case of Gibbs measures on repel-
lers and hyperbolic sets!, the definition of the HP spectrum
for all qfi1 makes formal sense although the integral may be
infinite. The Rényi spectrum was a precursor to the HP spec-
trum where one replaces the coverings by partitions. We be-
lieve that a complete multifractal analysis must include
showing that these two spectra agree.

We work with a class of measures that strongly encode
the metric structure of the underlying metric space. A mea-

sure n is called diametrically regular or a Federer measure
@Fe# if for a given A.1 there exists K.0 such that for any
sufficiently small r.0 and every x we have

n~B~x ,Ar !!<Kn~B~x ,r !!. ~DR!

It is easy to see that if ~DR! holds for some number A then it
also holds for all positive numbers A . In the harmonic analy-
sis literature such a measure is sometimes called a doubling
measure. In @PW3# we show that Gibbs measures concen-
trated on conformal repellers are diametrically regular. This
fact plays a crucial role in our multifractal analysis.

In @Pe2#, the second author showed that if n is diametri-
cally regular, then for any q.1

HPn~q !5
1

12q limr!0

log infVr
(BPVr

n~B !q

log r ,

where the infimum is taken over all covers Vr of X by balls
B of radius r , provided the limit exists. We will use this
definition of HP spectrum for dimensions in the paper. Also
in @Pe2#, Pesin showed that the Rényi spectrum coincides
with the HP spectrum for diametrically regular measures. In
general, even good measures may not be diametrically regu-
lar ~see @Pe2#!.

The HP spectrum of dimensions HPn(q) is not a priori
defined for q51. It is believed that in good cases,
limq!11HPn(q)5I(n), where I(n) is the information di-
mension ~see Remark 3 in Sec. II!. It immediately follows
from our analysis that this conjecture is true for Gibbs mea-
sures for conformal repellers and Axiom A surface diffeo-
morphisms.

We now turn to the second ingredient in our multifractal
analysis and define the f n(a)-spectrum for dimensions. To
motivate this, let us briefly return to the study of hot and cold
spots on an attractor. Cover the attractor by a uniform grid of
mesh size r . Let pi be the average number of visits of a
typical orbit to a given box Bi of the grid, i.e., pi5m(Bi),
where m is a natural measure. The collection of numbers $pi%
determine the distribution of hot and cold spots correspond-
ing to the given scale level r . If one magnifies the picture
near a hot spot, another more refined picture of hot and cold
spots emerges. The distribution of hot and cold spots on the
new scale sometimes resembles the distribution of hot and
cold spots on the old one ~if not precisely, then in an
asymptotic way!. One can speculate that this is due to a
hidden group of scale symmetries admitted by the system.

To characterize the asymptotic scaling behavior of the
distribution of hot and cold spots, one can define the scaling
exponents a i by pi 5 ra i. In @HJKPS#, the authors suggested
using the limit distributions of numbers a i as r!` as a
qualitative characteristic of the distribution of hot and cold
spots. We now attempt to lay the proper mathematical foun-
dation to make this idea rigorous.

Given a point xPX and a Borel probability measure n on
X , we define the upper and lower pointwise dimensions of n
at xPZ ,
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d̄n~x !5lim sup
r!0

log n~B~x ,r !!

log r and dn~x !

5lim inf
r!0

log n~B~x ,r !!

log r .

If dn(x)5 d̄n(x) we call the common value the pointwise
dimension at x and denote it by dn(x). We call n exact di-
mensional if d̄n(x)5dn(x)5dn(x)5d for n—almost every x
where d is a non-negative constant. In general one does not
expect the pointwise dimension of n to exist at a typical point
even for good measures that are invariant under dynamical
systems @LM, PW1#. For some dynamical systems, even
when the pointwise dimension of n does exist it is not nec-
essarily constant and hence n is not necessarily exact dimen-
sional @C, PW1#. Nevertheless, good measures that are in-
variant under smooth dynamical systems with hyperbolic
behavior often turn out to be exact dimensional ~see Sec. V!.

The multifractal analysis of X with respect to n is a
description of the fine-scale geometry of the set X ~more
precisely, the subset where the measure n is concentrated!
whose constituent components are the level sets

Ka5$xPXudn~x !5a%,

for a>0. We obtain a natural decomposition of the set X as

X5 ¯
2`,a,`

Ka¯$xPXudn~x ! does not exist%.

There are several fundamental questions about this de-
composition such as how large is the set of values attained
by dn(x) and how large is the set of points x such that dn(x)
does not exist?

For the maps we consider in this paper ~conformal repel-
lers and Axiom A surface diffeomorphisms!, there exists an
open interval of values of a such that the sets Ka are dense.
Thus for these maps the decomposition of the set X is quite
complicated.

To analyze this decomposition one defines the
fn(a)-spectrum for dimensions by

f n~a!5dimHKa ,

where dimH Ka denotes the Hausdorff dimension of the set
Ka . The dimension spectrum is the second major object in
the multifractal analysis.

Since the sets Ka are dense everywhere, one cannot re-
place the Hausdorff dimension in the definition of f n(a)
spectrum by a box dimension, since the box dimension of a
set coincides with the box dimension of the closure of the
set. This would lead to a trivial spectrum of dimensions.

It is important to emphasize that for good dynamical
systems, the union of the sets Ka need not be all of X .
Shereshevsky @Sh# showed that for some C2 Axiom A sur-
face diffeomorphisms, the set of points for which the point-
wise dimension does not exist is dense and has a positive
Hausdorff dimension for any Gibbs measure n. In @BPS# the
authors show that for most C2 Axiom A surface diffeomor-
phisms and conformal expanding maps, and most Gibbs
measures, the set of points for which the pointwise dimen-

sion does not exist is dense and has a full Hausdorff dimen-
sion ~Hausdorff dimension is equal to the Hausdorff dimen-
sion of the basic set or the repeller!.

In @HJKPS# ~see also @CLP#!, the authors present a heu-
ristic argument based on the analogy with statistical mechan-
ics to show that the Rényi-spectrum for dimensions and the
f (a)-spectrum for dimensions form a Legendre transform
pair. Roughly speaking they place a uniform grid of size r
over the attractor and consider the partition function

Z~q ,r !5(
i51

Nr

n~Bi
r!q5(

i51

Nr

exp~2qEi
r!,

where q is the inverse temperature and Ei
r52log n(Bi

r) is
the energy of the grid element Bi

r @the sum is taken over
those grid elements Bi for which n(Bi

r).0#. The free energy
of n is defined by

F~q !52 lim
r!0

1
N~r ! log Z~q ,r !,

if the limit exists. The analogy with statistical mechanics is
then used to relate the Legendre transform of F to the distri-
bution of the numbers n(Bi), i.e., to the dimension spectrum
f n(a). This can be made rigorous using the theory of large
deviations. For all of this to make sense, one must first es-
tablish that the two spectra are smooth and strictly convex on
some interval. A priori this seems quite amazing since in
general one expects the functions f n(a) and Rn(q) to be
only measurable and not even continuous.

Another application of the multifractal analysis of Gibbs
measures is the study of the Lyapunov spectrum ~see Sec.
VI!. Lyapunov exponents measure the exponential rate of
divergence of infinitesimally close orbits of a smooth dy-
namical system. These exponents are intimately related with
the global stochastic behavior of the system and hence, are
fundamental invariants of the system. Lyapunov exponents
are intrinsically only measurable objects and that any regu-
larity in their behavior is unexpected and can be exploited in
studying ergodic properties of the dynamical system.

In @W1# the second author studied conformal repellers
and found an explicit relationship between the dimension
spectrum for measure of maximal entropy and the Lyapunov
spectrum ~the analogous spectrum for Lyapunov exponents!.
He showed that for most conformal repellers, the Lyapunov
spectrum is a real analytic and strictly convex function on an
open interval. It follows that the range of the Lyapunov ex-
ponent contains an open interval of values, and hence the
Lyapunov exponent attains uncountably many distinct val-
ues. For each value a in his interval, the set of points whose
Lyapunov exponent is a is dense in the repeller. Thus the
sets on which the Lyapunov exponent attains different values
are intermingled in a very complicated way. The analogous
result for the positive and negative Lyapunov exponents for
an Axiom A surface diffeomorphism follows from Theorem
III.1 using the same idea ~see Theorem VI.3!.

We believe that one can effect a complete multifractal
analysis for Gibbs measures on hyperbolic sets in arbitrary
dimensions. An obvious obstacle is that action of the map on
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the stable and unstable manifolds is no longer conformal.
There is a paucity of techniques for computing the Hausdorff
dimension for nonconformal maps.

One can consider another interesting dimension spec-
trum associated with the Shannon–McMillan–Brieman theo-
rem when one computes the Hausdorff dimension of the sets
where local entropy of a measure n attains a given value. The
study of this spectrum in certain cases can be reduced to the
study of the f n(a) spectrum for dimensions. There are more
general notions of multifractal spectra. For example, one can
replace the Hausdorff dimension by the topological entropy.
See the paper by Barreira, Pesin, and Schmelling in this vol-
ume @BPS#.

We refer the reader to @Pe2# for a comprehensive and
systematic treatment of dimension theory in dynamical sys-
tems. The text contains detailed proofs of most of the results
mentioned in this paper.

II. MULTIFRACTAL ANALYSIS OF GIBBS MEASURES
ON CONFORMAL REPELLERS

In this section we effect a complete multifractal analysis
for Gibbs measures on conformal repellers. Examples in-
clude Markov maps of an interval, b transformations, ratio-
nal maps having hyperbolic Julia sets, and conformal toral
endomorphism. We prove that the functions f n(a) and
(12q)HPn(q) are analytic, strictly convex on an interval,
and form a Legendre transform pair, provided the measure is
not the measure of maximal entropy ~see Theorem II.2!. In
particular, this implies that the set of values attained by the
point-wise dimension contains an open interval ~a1 ,a2!. Fur-
thermore for each aP~a1 ,a2!, we construct a Gibbs measure
na such that na(Ka)51 and thus the sets Ka are dense in the
repeller. Since Gibbs measures on conformal repellers are
diametrically regular, we know that the HP spectrum coin-
cides with the Rényi spectrum.

Let M be a smooth Riemannian manifold and let g:
M!M be a C11a map. Let J be a compact subset of M
such that ~i! g(J)5J , ~ii! there exists C.0 and a.1 such
that idgxnui>Can

iui for all xPJ , uPTxM , and n>1 ~for
some Riemannian metric on M !, and ~iii! that g is topologi-
cally transitive on J . In this case we say that g is a smooth
expanding map on J . If, in addition, one assumes that there
exists an open neighborhood V of J ~a basin! such that
J5$xPVugnxPV for all n>0%, we call J a repeller. The
results in this paper do not require this extra condition on J .
However, we will abuse terminology and call J a repeller
even if it does not possess an open basin.

We recall some facts about expanding maps. For sim-
plicity we assume that the map g on J is topologically mix-
ing. In @B, Ru1#, Bowen and Ruelle show that for any Hölder
continuous function j on J there exists a unique Gibbs mea-
sure n5nj on J . Expanding maps have Markov partitions
@Ru1, PW3# consisting of partition elements called rect-
angles, $R1 ,. . . ,Rp% of ~arbitrarily small! diameter d such
that

~1! each rectangle R is the closure of its interior R̊ ,
~2! J5¯ iRi ,

~3! R̊ i˘R̊ j5B for ifi j , and
~4! each g(Ri) is a union of rectangles R j .

A Markov partition R5$R1 ,. . . ,Rp% generates a sym-
bolic model of the repeller by a subshift of finite type
(SA

1 ,s), where A5(ai j) is the transfer matrix of the Mar-
kov partition, i.e., ai j51 if R̊ i˘g21(R̊ j)fiB and ai j50
otherwise.

In @PW3#, we constructed a special Markov partition for
repellers. Our construction naturally extends to hyperbolic
sets @W2#. The construction is geometrically natural and sim-
pler than other constructions of which we are aware. This
construction is specially adapted to a given point ~or any
finite collection of points! such that the partition element
containing this point also contains a large ball centered at the
point. More precisely, let R(x) denote the rectangle in R
that contains the point x .

Theorem II.1: There are positive constants C1 , C2 and a
positive integer k such that for any 0,r<r0 and any xPX ,
there exists a Markov partition Rx5$R1 ,. . . ,Rp% for the map
gk such that diam(Ri)<C2r for all i51,.. . ,M and
B(x ,C1r),R(x).

Markov partitions allow us to define a coding map
x:SA

1!J such that the following diagram commutes

SA
1 ——!

s
SA

1

x# #x .

J ——!
g

J

The map x is Hölder continuous and injective on the set of
points whose trajectories never hit the boundary of any ele-
ment of the Markov partition.

Given a Markov partition R5$R1 ,. . . ,Rp%, define the
basic sets

Ri1 ...in5Ri1
˘g21~Ri2!˘•••˘g2n11~Rin!, ~1!

where g2i denotes a branch of the inverse of gi. By the
Markov property, every basic set has the property that
Ri1 ...in5Ri1

˘g2n11(Rin
).

A smooth map g is called conformal if dgx5a(x)Isomx ,
where Isomx denotes an isometry of the tangent space TxM .
A smooth conformal map g is called an expanding map if
ua(x)u.1 for all points x . The repeller J for a conformal
expanding map g is called a conformal repeller.

In @PW3#, we established the fundamental property of
Gibbs measures.

Theorem II.2: Let j be a Hölder continuous function on
a conformal repeller J . Then the Gibbs measure for j with
respect to g is diametrically regular.

The following are several examples of conformal repel-
lers.

~1! Rational Maps. Let R:Ĉ!Ĉ be a rational map of
degree >2, where Ĉ denotes the Riemann sphere. The map
R , being holomorphic, is clearly conformal. The Julia set J
of R is the closure of the set of repelling periodic points of R
@recall that a periodic point p of period m is repelling if
u(Rm)8(p)u.1]. One says that R is hyperbolic ~or that the
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Julia set is hyperbolic! if the map R is expanding on J . It is
known that the map z∞z21c is hyperbolic provided ucu,1/
4. Figure 2~a! illustrates the Julia set of a hyperbolic rational
map. It is conjectured that there is a dense set of hyperbolic
quadratic maps.

~2! One-Dimensional Markov Maps. Let I5[0,1] and f
be a Markov map. This means that there exists a finite family
I1 , I2 ,. . .Ip,I of disjoint closed intervals such that

~A! for every j , there is a subset K5K( j) of indices
with f (I j)5¯kPKIk ~mod 0!;

~B! for every xP¯ j I̊ j , the derivative of f exists and
satisfies u f 8(x)u>a for some fixed a.0; and

~C! there exists l.1 and n0.0 such that if
f m(x)P¯ j I̊ j , for all 0<m<n021 then u( f n0)8(x)u > l .

Let J5$xPIu f n(x)P¯ j I̊ j for all nPN%. The set J is a
repeller for the map f . It is conformal because the domain of
f is one-dimensional @see Fig. 2~b!#.

~3! Conformal Toral Endomorphism. This is a map of a
multidimensional torus defined by a diagonal matrix
(k , . . . ,k) where k is an integer and uku.1.

~4! Beta Transformations. These are expanding maps of
the unit interval defined by

x!bx ~mod 1 !

for b.1. The beta transformation is intimately related to the
base b expansion of real numbers.

~5! Schottky Groups. A Schottky group is a Kleinian
group G ~discrete subgroup of linear fractional transforma-

tions of Ĉ! with generators g1 ,. . .gp , p>1 such that there
exist 2p disjoint Jordan curves g1 , g18 , . . . ,gp , gp8 bounding a
2p-connected region D for which g j~exterior g j!5interior
g j8 for j51,.. . ,p . The group G is free and all nontrivial
elements are either hyperbolic or loxodromic ~G is purely
loxodromic!. The factor of the region of discontinuity
V(G)/G is a closed surface of genus p . The Koebe uni-
formization theorem asserts that all closed Riemann surfaces
can be uniformized by Schottky groups @Kr#, and thus all
co-compact Fuchsian groups possess Schottky generators.
One can also show that every finitely generated, free, purely
loxodromic Kleinian group is Schottky @Ma#.

It is easily seen that the limit set for a Schottky group G
is obtained as a limit set for a Moran-like geometric con-
struction modeled by a ~one-sided! subshift of finite type
@PW1;PW2#. Furthermore, the generators of G are conformal
contraction maps ~on their natural domains of definition! and
thus the mapping induced on the limit set of G by the shift is
conformal and expanding.

Ruelle @Ru2# showed that the Hausdorff dimension d of
a conformal repeller J is given by Bowen’s formula,
P(2d loguau)50, where P is the thermodynamic pressure,
and that the d–Hausdorff measure is equivalent to the equi-
librium measure m corresponding to 2d loguau ~see Appen-
dix B for the definition of equilibrium measure!. The mea-
sure m plays a special role in the multifractal analysis and we
call this measure the measure of maximal dimension.

We follow the statistical physics convention and identify
equilibrium measures on a repeller corresponding to Hölder
continuous functions with the Gibbs measures obtained by
pulling them back to symbolic space ~see Appendix B!.

In @PW1# the authors showed that every Gibbs measure
n on a conformal repeller is exact dimensional and that for
almost every xPJ we have that

dn~x !5
hn~g !

xn
, ~2!

where hn(g) is the Kolmogorov–Sinai entropy of g and
xn5*Ja(x)dn(x) is the Lyapunov exponent of n. The set of
points where ~2! does not hold has zero measure but full
Hausdorff dimension @BPS#.

Our approach to study the pointwise dimension is to
compute it with the help of the pointwise dimension of the
symbolic model. The idea is to replace balls containing a
point x with the basic set containing x . Let

d̄n~x ![lim sup
n!`

log n~Ri1 ...in~x !!

log diam~Ri1 ...in~x !!

and

dn~x ![lim inf
n!`

log n~Ri1 ...in~x !!

log diam~Ri1 ...in~x !!
.

If d̄n(x)5dn(x) we denote the common value by dn(x). We
refer to this value as the symbolic pointwise dimension of the
measure n at x . The careful reader will observe that the sym-
bolic pointwise dimensions are not well defined for points x

FIG. 2. ~a! The boundary of the Black Spot is the Julia set for the polyno-
mial z21c with c52

1
101

1
5i . ~b! A one-dimensional Markov map.
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which lie on the boundary of the Markov partition. Although
the boundary has measure zero with respect to any ergodic
measure, it may carry a positive Hausdorff dimension. The
rigorous way to define the symbolic pointwise dimensions is
to define them on the symbolic model using the ~pullback!
measure of cylinder sets ~see @PW3#!.

The following result from @PW1# describes some rela-
tions between d̄n(x), dn(x) and the lower and upper point-
wise dimensions at x .

Theorem II.3: Let g:J!J be a smooth conformal ex-
panding map and let n be any invariant probability measure
~not necessarily Gibbs!. Then

~1! d̄n(x)<d̄n(x) for all xPJ; and
~2! dn(x) < dn(x) for n-almost every xPJ . Combining ~1!

and ~2! yields;
~3! if dn(x) exists for n-almost every xPJ , then

dn(x)5dn(x) for n-almost every xPJ .

One can obtain a stronger version of Statement ~3! in the
case when n is the Gibbs measure on J corresponding to a
Hölder continuous potential w. Let c be the function such
that log c5w2P(w). Clearly c is a Hölder continuous
function on J such that P~log c!50 and n is the Gibbs mea-
sure for log c. It easy follows that

dn~x !5 lim
n!`

log n~Ri1 ...in~x !!

log diam~Ri1 ...in~x !!

5 lim
n!`

log Pk51
n c~gk~x !!

log Pk51
n

ua~gk~x !!u21 ,

in the sense that if either limit exists then the other limit
exists and they coincide. In @PW3# we proved the following
nontrivial theorem, which says that for Gibbs measures, the
symbolic pointwise dimension coincides with the pointwise
dimension of the repeller. The proof uses the fact that Gibbs
measures are diametrically regular ~Theorem II.2!.

Theorem II.4: Let g: J!J be a conformal repeller and n
a Gibbs measure on J . Then the pointwise dimension
dn(x)5c if and only if the symbolic pointwise dimension
dn(x)5c .

A. Moran cover

Using the basic sets we construct a special Moran cover
Ur of the repeller. Our cover is in the spirit of the cover
originated by Moran in his seminal paper @Mo#. This cover
has the following crucial property: Given a point xPJ and a
positive number r , the number of basic sets Rr

j in the Moran
cover Ur that have a nonempty intersection with the ball
B(x ,r) is bounded from above by a number M , which is
independent of x and r . We call this number the Moran
multiplicity factor ~see @PW1#!. The Moran cover is the op-
timal cover in computing the Hausdorff dimension and box
dimension of repellers. We make repeated use of this cover
and we can not overstate its importance in our analysis.

We now construct the Moran cover. Given 0,r,1 and
a point xPJ , let n(x) denote the unique positive integer such
that

)
k51

n~x !

ua~gk~x !!u21.r , )
k51

n~x !11

ua~gk~x !!u21<r . ~3!

It is easy to see that n(x)!` as r!0 uniformly in x . Fix
xPJ and consider the basic set Ri1 ...in(x),J . We have x
P Ri1 ...in(x), and if x8 P Ri1 ...in(x) with n(x8)>n(x), then

Ri1 ...in~x8!
,Ri1 ...in~x !

.

Let R(x) be the largest basic set containing x with the prop-
erty that R(x) 5 Ri1 ...in(x9)

for some x9PR(x) and
Ri1 ...in(x8)

,R(x) for any x8PR(x). The sets R(x) corre-
sponding to different xPJ either coincide or are disjoint
modulo their boundaries. We denote these sets by Rr

j ,
j51,.. . ,Nr . There exist points x jPJ such that Rr

j

5 Ri1 ...in(x j)
. These sets form an almost disjoint cover of J ~a

cover where the elements of the cover have disjoint interiors!
that we denote by Ur . If one constructs the corresponding
cover on the symbolic model, one obtains a disjoint cover
~see @PW3#!.

Let j be a Hölder continuous function on J and let n5nj
be the corresponding Gibbs measure for g . Define the one
parameter family of functions wq , qP(2` ,`) on J by
wq(x)52T(q)logua(x)u1q log c(x) where T(q) is chosen
such that P(wq)50 @one can show that T(q) exists for every
qPR; see Lemma II.4 in the proof of Theorem II.5 below#. It
is obvious that the functions wq are Hölder continuous.

We now state our main theorem for C11a conformal
expanding maps. This theorem effects a complete multifrac-
tal analysis for Gibbs measures on conformal repellers.

Theorem II.5: Let g: J!J be a C11a conformal repeller
and n a Gibbs measure having potential log c.

~1! The pointwise dimension dn(x) exists for n-almost every
xPJ and

dn~x !5
*J log c~x !dn~x !

2*J logua~x !udn~x !
5
hn~g !

xn
,

where hn(g) is the measure theoretic entropy and
xn5*Jlog ua(x)udn(x) is the Lyapunov exponent of n ~see
Sec. VI!.
~2! The function T(q) is real analytic for all qPR,

T(0)5dimH J , T(1)50, T8(q)<0 and T9(q)>0 @see
Fig. 3~a!#.

~3! The function a(q)52T8(q) attains values in the inter-
val @a1 ,a2#, where 0<a1<a2,`. The function
f n(a(q))5T(q)1qa(q) @see Fig. 3~b!#.

~4! If nfim then the functions f n(a) and T(q) are strictly
convex and form a Legendre transform pair ~see Appen-
dix B!.

~5! The n-measure of any open ball centered at points in J is
positive and for any qPR we have

T~q !52 lim
r!0

log infG r
(BPG r

n~B !q

log r ,
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where the infimum is taken over all finite covers G r of J by
open balls B of radius r . For any q.1 ~actually for any
qfi1, see Remark 2! we have

T~q !

12q 5HPn~q !5Rn~q !,

where Rn(q) denotes the Rényi spectrum.
Sketch of Proof: Fix any qPR. Let nq denote the Gibbs

measure corresponding to wq . Clearly, T(0)5dimH J5d .
To prove Statement 1, we need the following lemma.

Lemma II.1: There exist constants C1.0 and C2.0
such that for all basic sets Ri1 ...in,

C1<
nq~Ri1 ...in!

m~Ri1 ...in!
T~q !/dn~Ri1 ...in!

q <C2 . ~4!

Proof. Since the measures n and nq are Gibbs measures cor-
responding to the Hölder continuous functions log c and
2T(q)loguau1q log c respectively, and m-is the Gibbs
measure corresponding to function 2d log(uau), it follows
from the definition of Gibbs measure @see ~4! in Appendix B#
that the ratios

n~Ri1 ...in~x !!

Pk50
n21c~gk~x !!

,
nq~Ri1 ...in~x !!

Pk50
n21

ua~~gk~x !!!u2T~q !c~gk~x !!q
,

m~Ri1 ...in~x !!

Pk50
n21

ua~gk~x !!u2d

are bounded from below and above by constants independent
of n . The lemma easily follows. j

Given 0,r,1 consider the Moran cover Ur of the re-
peller J by basic sets Rr

j 5 Ri1 ...in(x j)
with radii approximately

equal to r . Let N(x ,r) denote the number of sets Rr
j that have

a nonempty intersection with a given ball B(x ,r) centered at
x of radius r . We have that N(x ,r)<M , uniformly in x and
r , where M is the Moran multiplicity factor.

Since the measure m is a Gibbs measure and
P(2d logua(x)u)50, there exists positive constants C1 and
C2 such that

C1<
m~Ri1 ...in~x !!

Pk50
n21

ua~gkx !u2d <C2

~see Appendix B!.
It follows from properties of the Moran cover @see ~2!#

that there exist positive numbers C5 and C6 such that for
every Rr

jPUr

C5rd<m~Rr
j !<C6rd. ~5!

Since Ur is a disjoint cover of J , we have

(
Rr
jPUr

nq~Rr
j !51.

Summing ~5! over the cover Ur , we obtain that there exist
positive constants C7 and C8 such that

C7<rT~q ! (
Rr
jPUr

n~Rr
j !q<C8 .

Taking logs and dividing by log r , yields

2 lim
r!0

log (Rr
jPUr

n~Rr
j !q

log r 5T~q !. ~6!

Note that ~6! holds for all qPR.
We now prove Statement 1 of the theorem. Given a

number a>0, let

K̂a5H xPJudn~x !5 lim
n!`

log Pk51
n c~gk~x !!

log Pk51
n

ua~gk~x !!u21 5aJ ,
~7!

where dn(x) denotes the symbolic pointwise dimension. De-
fine the symbolic dimension spectrum

f̂ n~a!5dimHK̂a . ~8!

Given qPR, set

a~q !5
*J log~c~x !!dnq

*J logua~x !u21dnq
.

We will show that this definition of a(q) coincides with
Statement 3 in Theorem 1 ~see Lemma II.4!.

The following lemma allows us to compute the Haus-
dorff dimension of the set K̂a(q) .

Lemma II.2:

~1! The measure nq(K̂a(q))51.
~2! The pointwise dimension dnq

(x)5T(q)1qa(q) for
nq-almost all xPK̂a(q) and d̄nq

(x)<T(q)1qa(q) for
all xPK̂a(q) .

~3! The Hausdorff dimension dimH K̂a(q)5T(q)1qa(q).

Sketch of Proof: The first and third statements are easy
consequences of the second statement. To compute the point-
wise dimension dn(x) we use the Birkhoff ergodic theorem
applied to the potential cq(x). To obtain the upper bound for
d̄nq
(x) for all xPK̂a(q) we use the Moran cover and the

Gibbs property of the measure nq . j
It immediately follows from ~6! that T(1)50 and thus

n5n1 . The first statement of the theorem now follows from
Lemma II.2 and Theorem II.2.

We now prove Statements 2, 3, and 4 of the theorem.
We first observe that dimH Ka(q)5T(q)1qa(q). Since
nq(Ka(q))51, this is a consequence of Lemmas II.2, II.3,
and the following general result.

Lemma II.3: Let (X ,r) be a complete separable metric
space of finite topological dimension with metric r, and let m
be a Borel probability measure. If Zb5$xPXudm(x)5d̄m(x)
5b% and m(Zb).0, then dimH Zb5b .

We also require the following lemmas.
Lemma II.4:
~1! The function T(q) is real analytic for all qPR.
~2! The function T(q) is convex. It is not strictly convex

if and only if n5m .
~3! For all q we have a(q)52T8(q).
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Proof.
The proof of ~1! uses the real analyticity of pressure and

the inverse function theorem. The proof of ~2! uses Ruelle’s
second derivative formula for pressure @Ru1#. To prove ~3!
let wq ,r(x)52r logua(x)u1q log c(x) and recall that
wq(x)52T(q)logua(x)u1q log c(x). Since P(wq)50 for
all q we have

d
dq P~wq!5

]P~wq ,r!

]q 1
]P~wq ,r!

]r U
T~q !

T8~q !50.

Using the well known formula for the derivative of pressure
~see Appendix B! we obtain that

T8~q !52

]P~wq ,r!

]r U
r5T~q !

]P~wq ,r!

]q U
r5T~q !

52
*J log~c~x !!dnq
*J logua~x !udnq

52a~q !.
j

It follows from Lemma II.4 that the function a(q) is
analytic and a8(q)52T9(q),0. Hence, the range of the
function a(q) contains an interval. This implies Statements
2, 3, and 4.

The proof of the Statement 5 of the theorem uses several
covering arguments involving the Moran cover and some
refinements. The proof also uses ~6! and the fact that Gibbs
measures are diametrically regular.

B. Remarks

~1! It follows from our proof that for every a1<a(q)<a2
there is a unique Gibbs measure nq on J such that
nq(Ka(q))51 and dnq

(x) 5 f n(a(q)) for every point
xPKa(q) .

~2! For an arbitrary Borel probability measure n on a metric
space X , the HP spectrum is not a priori defined for
q,1. One problem is that the measure of some small
balls may be zero. However, if all balls have positive
measure ~as in the case of Gibbs measures for conformal
repellers!, the definition of the HP spectrum for all qfi1
makes formal sense although the integral may be infinite.
In our proof of Statement ~5! in Theorem II.5, we actu-
ally show that for all qfi1 ~not just for q.1 as stated!,
the function T(q)/(12q) coincides with this extended
definition of HPn(q). In particular this implies that
HPn(q) is well defined for all qfi1.
The case q51 is treated in Remark ~3!.

~3! We define the notion of information dimension. Let j be
a finite partition of the space X . Given a Borel finite
measure n on X , the entropy of j with respect to n is
defined as

Hn~j![
def

2( n~Cj!log n~Cj!,

where Cj is an element of the partition j. Given a positive
number ´, we set

Hn~´!5inf
j

$Hn~j!:diam j<´%,

where diam j5max diam Cj .
We define the information dimension of n by

I~n![
def
lim
´!0

Hn~´!

log 1/´

~provided that the limit exists!.
In @Y#, Young showed that if dn(x)5 d̄n(x)5d for

n-almost every xPX then I(n)5d , and hence is equal to the
Hausdorff dimension of n.

Assume that the measure n is diametrically regular. It is
believed that in good cases

I~n!5 lim
q!11

Rn~q !5 lim
q!11

HPn~q !.

Since the function T(q) is differentiable the limit

lim
q!1

T~q !

12q

exists and is equal to 2T8(1)5a(1). It follows from State-
ment 5 of Theorem 1 that

2T8~1 !5 lim
r!0

log infG r
(BPG r

n~B !log n~B !

log r ,

where the infinum is taken over all finite covers G r of J by
open balls of radius r . This implies that

f n~a~1 !!5a~1 !52T8~1 !5I~n!.

III. MULTIFRACTAL ANALYSIS OF GIBBS MEASURES
ON BASIC SETS OF AXIOM A DIFFEOMORPHISMS

In this section we effect a complete multifractal analysis
for Gibbs measures on basic sets L of a C11a Axiom A
surface diffeomorphisms. We follow the approach suggested
by the authors in @PW3#.

A. Review of hyperbolic dynamics

Let M be a smooth surface and f :M!M a C11a dif-
feomorphism ~i.e., f is a C11a invertible map whose inverse
is of class C11a!. A compact f -invariant subset L,M is
called hyperbolic if there exists a continuous splitting of the
tangent bundle TLM5Es

%Eu into two one-dimensional
subspaces and constants C.0 and 0,l,1 such that for ev-
ery xPL

~1! d fEs(x)5Es( f (x)), d fEu(x)5Eu( f (x));
~2! for all n>0

id f nvi<Cln
ivi if vPEs~x !,

id f2nvi<Cln
ivi if vPEu~x !.

The subspaces Es(x) and Eu(x) are called stable and un-
stable subspaces at x , respectively. Define the continuous
functions as(x)52id f uEs(x)i and au(x)5id f uEu(x)i .
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It is well known ~see for example, @KH#! that for every
xPL one can construct one-dimensional local stable and
unstable local manifolds, W loc

s (x) and W loc
u (x) that have the

following properties:
~3! xPW loc

s (x), xPW loc
u (x);

~4! TxW loc
s (x)5Es(x),TxW loc

u (x)5Eu(x);
~5! f (W loc

s (x)),W loc
s ( f (x)), f21(W loc

u (x))
,W loc

u ( f21(x));
~6! there exist K.0 and 0,k,1 such that for every

n>0

r~ f n~y !, f n~x !!<Kknr~y ,x ! for all yPW loc
s ~x !,

and

r~ f2n~y !, f2n~x !!<Kknr~y ,x ! for all yPW loc
u ~x !,

where r is the distance in M induced by the Riemannian
metric.

A hyperbolic set L is called locally maximal if there
exists a neighborhood U of L such that for any closed
f -invariant subset L8,U we have L8,L. In this case

L5 ˘
2`,n,`

f n~U !.

A point xPM is called nonwandering if for each neighbor-
hood U of x there exists n>1 such that f n(U)˘UfiB . We
denote by V( f ) the set of all nonwandering points of f . It is
a closed f -invariant set. A diffeomorphism f is called an
Axiom A diffeomorphism if V( f ) is a locally maximal hy-
perbolic set. If f is an Axiom A diffeomorphism then V( f )
can be decomposed into a finite number of disjoint closed
f -invariant sets, V( f )5L1¯ . . .¯Ln , such that f uL i is to-
pologically transitive. Each set L i is said to be a basic set of
f . See @KH# for a more complete description.

Let j be a Hölder continuous function on L and let n5nj
be the Gibbs measure for f corresponding to j. We remind
the reader that a finite cover R5$R1 ,. . . ,Rp% of L is called a
Markov partition for f if

~1! R̊ i˘R̊ j50 unless i5 j ;
~2! for each xPR̊ i˘ f21(R̊ i) we have

f ~W loc
s ~x !˘Ri!,W loc

s ~ f ~x !!˘R j ,

f ~W loc
u ~x !˘Ri!.W loc

u ~ f ~x !!˘R j .

It is well known that Gibbs measures on hyperbolic sets have
a local product structure @Ru1#. We state this fact in the
following proposition. Let R be a Markov partition of L
with transition matrix A5(ai , j). Denote by SA the set of all
allowable two-sided sequences of integers
(.. .i22i21i0i1 .. .), i.e., ainin11

5 1 for every n . We define the
coding map x: SA!L by

x~v!5x5 ˘
n52`

`

Ri2n . . .in.

Let n be the Gibbs measure corresponding to a Holder con-
tinuous function f on L and m the pullback of n to SA .

Proposition III.1: There exist positive constants K1 , K2 ,
and r0 with the following properties: such that for any point

xPL , there exist measures nx
s and nx

u on W loc
s (x)˘R(x) and

W loc
u (x)˘R(x) respectively such that for any Borel sets

E,W loc
s (x)˘R(x) and F,W loc

u (x)˘R(x) we have that

K1~nx
s~E !3nx

u~F !!<n~E3F !<K2~nx
s~E !3nx

u~F !!.

In other words, locally, the measure n near a point xPL
is equivalent to the direct product of measures nx

s and nx
u.

The proof relies on the fact that every rectangle R(x) is
essentially a direct product. We now give a brief description
of how to construct the measures nx

s and nx
u. One can show

that these measures are diametrically regular for every x .
This implies that r is also diametrically regular.

Define SA
2 to be the set of all allowable one-sided se-

quences of integers (.. .i22i21i0), i.e., ain11in
5 1 for every

n>0. Similarly define SA
1 to be the set of all allowable

one-sided sequences of integers (i0i1i2 .. .), i.e., ainin11
5 1

for every n>0. We note that the coding of every point y
P W loc

s (x)˘R(x) begins with the same integer i0 .
We define the Hölder continuous function cs on SA

2 by

log cs~v!52 lim
n!`

log
m~Ci2n . . .i21!

m~Ci2n . . .i0!
,

where v5(.. .i21i0). One can show that the measure nx
s is

the pushforward of the restriction to Ci0
of the Gibbs mea-

sure on SA
2 for log cs. Similarly one can show that the mea-

sure nx
u is the pushforward of the restriction to Ci0

of the
Gibbs measure on SA

1 for the function log cu defined by

log cu~v!52 lim
n!`

log
m~Ci1 ...in!

m~Ci0 ...in!
,

where v5(i0i1•••). We have that P~log cs!50 and
P~log cu!50.

Let as(x) and au(x) be the contraction and expansion
coefficients of f along the stable and unstable directions, and
ts and tu the unique roots of Bowen’s equations
P(t loguas(x)u!50 and P(2t loguau(x)u!50!. Using the
above codings, we pull back the functions ts loguas(x)u and
2tu loguau(x))u to SA

2 and SA
1 respectively. Let ms and mu

be the Gibbs measures corresponding to these functions and
let mx

s and mx
u be the push forward of the restriction to Ci0

of
these measures. The measures mx

s and mx
u live on

W loc
s (x)˘R(x) and W loc

u (x)˘R(x) respectively.
We define the one parameter family of functions wq

s ,
qP(2` ,`) on SA

2 by

wq
s5Ts~q !loguas+xu1q log cs,

where Ts(q) is chosen such that P(wq
s )50. Similarly, we

define the one parameter family of functions wq
u,

qP(2` ,`) on SA
1 by

wq
u52Tu~q !loguau+xu1q log cu,

where Tu(q) is chosen such that P(wq
u)50. We set

T~q !5Ts~q !1Tu~q !.

Consider the Gibbs measures mq
s on SA

2 and mq
u on SA

1

corresponding to functions wq
s and wq

u and let nq
s and nq

u be
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their push forwards to W loc
s (x)˘R(x) and W loc

u (x)˘R(x),
respectively. Let nq5nq

s3nq
u be the product measure on

R(x).
We wish to identify every point in L with its symbolic

representative. This cannot be done on the boundary of the
Markov partition. However, for the sake of clarity of our
statements we will assume that this identification holds ev-
erywhere ~see @Pe2# for precise statements!. We now state
our main result that establishes the multifractal analysis for
Gibbs measures ~corresponding to Hölder continuous func-
tions! for basic sets of Axiom A surface diffeomorphisms.

Given a>0, consider the set

Ka5$xPXudn~x !5a%

and then the f n(a)-spectrum for dimensions

f n~a!5dimH Ka .

Theorem III.1: @PW3#

~1! The pointwise dimension dn(x) exists for n-almost every
xPL and

dn~x !5
*SA

log c~x !dm~x !

*L loguau~x !udn~x !
2

*SA
log c~x !dm~x !

*L loguas~x !udn~x !

5hn~ f !S
1

ln
12

1
ln

2D ,

where hn( f ) is the measure theoretic entropy of f and ln
1 ,

ln
2 are positive and negative values of the Lyapunov expo-
nent of n ~see the definition of the Lyapunov exponent in
Section VI!.

The function T(q) is real analytic for all qPR,
T(0)5dimH L , T(1)50, T8(q)<0, and T9(q)>0 @see Fig.
3~a!#.

The function a(q)52T8(q) attains all values in an in-
terval @a1 ,a2# where 0<a1<a2,`. The function
f n(a(q))5T(q)1qa(q) @see Fig. 3~b!#.

If the measure nuR(x) is not equivalent to the measure
mx
s3mx

u, then the functions f n(a) and T(q) are strictly con-
vex and form a Legendre transform pair.

The n measure of any open ball centered at points in L is
positive, and for any qPR we have

T~q !52 lim
r!0

log infG r
(BPG r

n~B !q

log r

where the infimum is taken over all finite covers G r of L by
open balls of radius r . For every q.1 ~actually for any
qfi1, see Remark 3!

T~q !

12q 5HPq~n!5Rq~n!.

Sketch of Proof. Applying a theorem of Manning and Mc-
Cluskey @MM# ~a result like this is only known in dimension
two! we have that

T~0 !5Ts~0 !1Tu~0 !5ts1tu5dimH L .

We denote by Ur
25$Cr

( j ,2)% and Ur
15$Cr

( j ,1)% the Moran
covers of SA

2 and SA
1 respectively ~see Sec. II!. Repeating

arguments in the proof of Theorem II.5, we obtain that @see
~5! in Sec. II#

Ts~q !52 lim
r!0

log (Cr
~ j ,2 !PUr

2ms~Cr
~ j ,2 !!q

log r ~9!

and

Tu~q !52 lim
r!0

log (Cr
~ j ,1 !PUr

1mu~Cr
~ j ,1 !!q

log r .

In particular, T(1)5Ts(1)1Tu(1)50. We first sketch the
proof of Statement 1 of the theorem.

Given a number a>0, let

K̂a5H xPLU lim
n!`

S
(k52n
0 log cs~ f kx !

(k52n
0 loguas~ f kx !u

2
(k50
n log cu~ f kx !

(k50
n loguau~ f kx !u D 5aJ . ~10!

Define the symbolic dimension spectrum

f̂ n~a!5dimH K̂a .

Given qPR, set

FIG. 3. ~a! Graph of T(q). ~b! Graph of f n(a).
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as~q !5
*SA

2 log~cs~x !!dmq
s

*L loguas~x !udnq
s ,

au~q !52
*SA

1 log~cu~x !!dmq
u

*L loguau~x !udnq
u ,

a~q !5as~q !1au~q !.

It is not hard to show that

as~q !5au~q !5hmq
~ f !.

We have the following lemma that allows us to compute the
Hausdorff dimension of the set K̂a(q).

Lemma III.1: For every qPR, we have

~1! the measure nq(K̂a(q)˘R(x))51;
~2! the pointwise dimension dnq

(y) 5 T(q) 1 qa(q) for
nq-almost all yPK̂a(q)˘R(x) and the upper pointwise
dimension d̄nq

(y) < T(q) 1 qa(q) for all yPK̂a(q)

˘R(x); and
~3! the Hausdorff dimension dimH K̂a(q)˘R(x)5T(q)

1qa(q).

The proofs of these statements are very similar to the
proofs of the analogous statements in Lemma II.2.

We also need the following key theorem, which is the
analog of Theorem II.4.

Theorem III.2:

~1! For every qPR and every xPK̂a(q) we have that
dn(x)5a(q).

~2! If dn(x)5a(q) then xPK̂a(q) .

Sketch of Proof: Applying arguments in the proof of
Theorem II.4 to the measures ns and nu and using the facts
that the measure n is locally equivalent to the direct product
of measures ns and nu ~Proposition III.1!, one obtains that
the limit

lim
r!0

log n~B~x ,r !!

log r

exists if and only if the limit in ~10! exists and they attain the
same value. j

The above arguments imply that the function a(q)>0
for all q . Since T(1)50, we have that nuR(x)5n1 . The first
statement of the theorem now follows from Lemma III.1,
Theorem III.2, and the observation that

as~1 !5
hn~ f !
ln

2 and au~1 !5
hn~ f !
ln

1 .

Theorem III.2 implies that Ka(q)5K̂a(q) . Hence,
f n(a(q))5dimH Ka(q)5T(q)1qa(q). Applying Lemma
II.4 to the pairs of functions (as(q),Ts(q)) and
(au(q),Tu(q)), we obtain that the functions a(q) and T(q)
also satisfy the conclusions of Lemma II.4. This implies
Statements 2, 3, and 4. Since the measure n is diametrically
regular and has local product structure, one can use ~9! to

prove Statement 5 by repeating arguments in the proof of the
Statement 5 of Theorem II.5. j

B. Remarks

~1! For any qPR and xPL there exists a measure nq on
R(x) such that nq(Ka(q)˘R(x))51 and dn(q)(x)5T(q)
1qa(q) for n(q)-almost every xPKa(q)˘R(x).

~2! Assume that the measure nuR(x) is equivalent to
mx
s3mx

u for any xPL . One can easily show that
T(q)5(12q)dimH L ~thus T(q) is a linear function!.
This implies that f n~dimH L!5dimH L and f n(a)50 for
all afidimH L.

~3! As in the case of conformal repellers @see Remark ~2!
after the proof of Theorem II.5#, we note that Statement
~5! of Theorem III.1 allows us to extend the notion of the
HP spectrum and Rényi spectrum for dimensions for any
qfi1 ~not just for q.1 as stated!. We actually show that
for all qfi1, the function T(q)/(12q) coincides with
this extended definition of HPn(q). In particular this im-
plies that HPn(q) is well defined for all qfi1.

~4! The case q51 is treated in Remark ~4!.
~5! As in the case of conformal repellers @see Remark ~3!

after the proof of Theorem II.5# one can show that

f n~a~1 !!5a~1 !52T8~1 !5I~n!,

where I(n) is the information dimensions of n @see Remark
~3! in II#. In particular, I(n)5dimHn .

IV. LARGE DEVIATIONS AND ALTERNATIVE
APPROACHES TO THE MULTIFRACTAL ANALYSIS

Our proof of Theorems II.2 and III.1 did not use any
results in the theory of large deviations. This is in contrast to
most multifractal analyses in the literature ~including @CLP,
Si, Lo#! which make essential use of results in the theory of
large deviations.

However, by combining our smoothness and convexity
results for T(q) in Theorems II.2 and III.1 with ~6! and ~9!,
we have verified all the hypotheses needed to apply a large
deviation theorem of Ellis @E# and obtain an interesting for-
mula for the dimension spectrum.

More precisely, consider the family of random variable
X j
r5log n(Rr

j), where j has been picked uniformly from
1,... ,Nr . The moment generating function of Xn is cr(q)
5 E(exp(qXn)) 5 (1/Nr)(B j

rPUr
n(B j

r)q, where E(X) denotes
the expected value of the random variable X . Therefore, ~6!
implies that

lim
r!0

log cr~q !

log r 5T~q !2T~0 !,

which by Theorem II.5 is smooth and convex. Thus, the
assumptions of Theorem II.2 in @E# are met with an5log 1/r .
Recall from Theorem II.5 that the Legendre transform of
T(q) is the ~dimension spectrum! function f n(a). The fol-
lowing theorem is a corollary of Ellis’ theorem ~see @Ri#!,
and gives a counting approach to the multifractal analysis.
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Theorem IV.1: Let n be the Gibbs measure on J corre-
sponding to a Hölder continuous function j. If nfim , then

f n~a!5 lim
´!0

lim
r!0

log Nr~a ,´!

log 1/r ,

where Nr(a ,´) is the number of sets Rr
jPUr such that

a2´,n(Rr
j)<a1´ .

There are clearly close connections between the theory
of large deviations, classical statistical physics, and our ap-
proach. Recall the heuristic argument of @HJKPS# based on
ideas in classical statistical physics justifying the multifractal
analysis ~see Sec. I!. The normalized partition function
Z(q ,r)/Nr corresponds to the moment generating function
cr(q) for the uniformly chosen random variables log n(B j

r),
where the energy Ei of the element n(Bi

r) is 2log n(Bi
r).

The free energy F(q) of n coincides with
limr!0 log cr(q)/log r , which in our language is
(12q)(T(q)2T(0))5(12q)(Rn(q)2Rn(0)). The Leg-
endre transform of c(q) is the level one entropy function that
provides refined information on the convergence of the quo-
tients log n(Bi

r)/log r . In the language of statistical physics,
this is the Legendre transform of the free energy. In our
language the Legendre transform of T(q) is the dimension
spectrum f n(a).

Simpelaere @Si# first effected the multifractal analysis of
Gibbs measures for Axiom A surface diffeomorphisms. We
now outline his approach. His proof exploits the fact that the
restriction of the diffeomorphism to the stable and unstable
leaves are one-dimensional expanding-like maps and that a
Gibbs measure n locally has a product structure, i.e., locally
n'ns3nu.

Simpelaere first shows that the local product structure of
the hyperbolic set implies that the free energy is additive
with respect to the stable and unstable splitting, i.e.,
F(q)5Fu(q)1Fs(q), where Fu(q) and Fs(q) are the un-
stable and stable free energies defined using the measures nu

and ns respectively.
His argument strongly depends on a special family of

grids which is adapted to the hyperbolic splitting. A priori, it
is not at all clear whether the free energy is additive for other
families of grids. For example, if a hyperbolic set is embed-
ded in the plane ~e.g., the Plykin attractor!, he does not dis-
cuss whether the free energy additive with respect to the
standard (x ,y) grid.

He then shows that Fu(q) and Fs(q) satisfy the follow-
ing variational principles

Fu~q !5 inf
rPM ~J ,g !

S
hr~g !2q*Jc

udr

*Ja~x !dr D

and

Fs~q !5 inf
rPM ~J ,g !

S
hr~g !2q*Jc

sdr

*Ja~x !dr D ,

where M (J ,g) denotes the space of g-invariant Borel prob-
ability measures on J and cu, cs denote the projections of c
onto the unstable and stable directions, respectively. It fol-
lows that P(qcu2Fu(q)a)50 and P(qcs2Fs(q)a)50.
Let nq

u and nq
s denote the Gibbs measures for the potentials

qcu2Fu(q)a and qcs2Fs(q)a , respectively. Using tech-
niques in symbolic dynamics and thermodynamic formalism
~i.e., the smoothness of pressure, derivative of pressure!, he
shows that Fu and Fs ~and thus F! are real analytic and
convex.

For a5F8(q), write a5au1as, where au5(Fu)8(q)
and as5(Fs)8(q). If g(a), gu(a) and gs(a) denote the
Legendre transform of F , Fu and Fs respectively, then a
formal property of the Legendre transform implies that
g(a)5gu(a)1gs(a). He now needs to identify g(a) with
the dimension spectrum f n(a).

Applying a construction of measures, as in @CLP#, he
establishes ~using the mass distribution principle! the lower
estimate dimH(Ka)> f n(a). A crucial step of Simpelaere’s
approach is to apply Ellis’ large deviation theorem to obtain
the upper estimate. Thus, he obtains that dimH(Ka)5 f n(a).
Finally, a posteriori, he shows that gu(au)5dimH(nqu) and
gs(as)5dimH(nqs ), and thus g(a)5 f n(a)5dimH(nqu)
1dimH(n1s )5dimH(nqu3nq

s )[dimH(nq). This last fact ex-
ploits the smoothness of the stable and unstable foliations in
the two-dimensional case ~which in general is false in higher
dimensions!.

The theorem of Ellis allows one to obtain refined infor-
mation on the distribution of log n(Bn

r )/log r as r!0. The
large deviation theorem gives the following estimates of the
cardinality of good covers of the set Ka , which allows one to
estimate the Hausdorff dimension of the sets Ka using covers
and to identify the Legendre transform of the free energy
I(z) with the f n(a) spectrum:

lim sup
r!0

logS #n:1<n<Nr such that
log n~Bn

r !

log r P@a ,b#/NrD
log r <2I@a ,b#

and

lim inf
r!0

logS #n:1<n<Nr such that
log n~Bn

r !

log r P~a ,b !/NrD
log r >2I~a ,b !,
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where I(A)5inf$I(z)uzPA% and I(z) is the Legendre trans-
form of his free energy F(q).

Like Simpelaere’s approach, our method also exploits
the fact that the restriction of the diffeomorphism to the
stable and unstable leaves are one-dimensional expanding-
like maps and that a Gibbs measure n locally has a product
structure. We first effect the multifractal analysis for nu and
ns separately and then carefully combine the two pieces to
obtain the multifractal analysis of n.

An important technical tool in our analysis is the fact
that Gibbs measures on conformal repellers and Axiom A
surface diffeomorphisms are diametrically regular. This al-
lows us to prove the remarkable fact ~which has not been
observed by other authors! that for Gibbs measures, the
pointwise dimension of the measure n at a point xPL exists
if and only if the symbolic pointwise dimension of the pull-
back measure on the symbolic space SA exists at the point v
@where x(v)5x#, and the values coincide. Surprisingly, this
means that the symbolic model carries all of the essential
information needed to compute the pointwise dimensions of
the hyperbolic set.

Our crucial result that Gibbs measures are diametrically
regular allows us to work directly with the HP spectrum
~defined using the free energy of covers! and also shows that
it coincides with the Rényi spectrum ~defined using the free
energy of partitions!. Furthermore, we prove that the free
energy of partitions ~grids! and covers is additive, regardless
of which grid or cover is used.

V. THE ECKMANN-RUELLE CONJECTURE AND
‘‘COUNTEREXAMPLES’’

Eckmann and Ruelle conjectured that an ergodic mea-
sure l which is invariant under a C11a diffeomorphism with
nonzero Lyapunov exponents is exact dimensional ~and
hence, dl(x)5const almost everywhere!. This has been one
of the most challenging problems in the interface between
dimension theory and dynamical systems.

In @Y#, Young obtained the positive solution for the
Eckmann–Ruelle conjecture in the two-dimensional case. In
@Le#, Ledrappier proved the conjecture for Bowen–Ruelle–
Sinai measures, and in @PY#, Pesin and Yue extended this
result to some measures including Gibbs measures for
Axiom A diffeomorphisms. A complete proof has recently
been announced in @BPS#.

In @PW1#, we verify the Eckmann–Ruelle Conjecture for
Gibbs measures for Hölder continuous conformal repellers
and conformal Axiom A# @topologically hyperbolic ~see
@AJ#!# homeomorphisms. We also construct a Hölder con-
tinuous Axiom A# homeomorphism of positive topological
entropy for which the unique measure of maximal entropy is
ergodic and has different upper and lower pointwise dimen-
sions almost everywhere. This example shows that the non-
conformal Hölder continuous version of the Eckmann–
Ruelle Conjecture is false and thus the smoothness
requirement in the conjecture is crucial.

In @C#, Cutler constructed an example of a continuous
map of @0, 1# that preserves an ergodic measure l such that

dl(x) exists almost everywhere but is essentially noncon-
stant. Her example has a zero Lyapunov exponent. In @PW1#
the authors present a more refined version of her construction
and show that such a map can be arranged to be Hölder
continuous and topologically hyperbolic. Again we see the
smoothness requirement in the conjecture is crucial.

If a map is smooth and ergodic with respect to a measure
l, then the upper and lower pointwise dimensions of l are
invariant measurable functions, and by the Birkhoff ergodic
theorem are constant almost everywhere. Denote these val-
ues by dl and d̄l . Ledrappier and Misiurewicz @LM#
constructed a one-dimensional smooth ~Cr for any r,`!
map preserving an ergodic measure such that dl , d̄l . Obvi-
ously the measure l is not exact dimensional. Their map has
a zero Lyapunov exponent. Thus the hyperbolicity hypoth-
esis in the conjecture is crucial.

VI. THE LYAPUNOV SPECTRUM

We first consider the case of conformal expanding maps.
Let g:J!J be a smooth conformal expanding map. We de-
fine the Lyapunov exponent of g at x by

x~x !5 lim
n!`

1
n logidgx

n
i5 lim

n!`

1
n log)k50

n21

ua~gk~x !!u,

if the limit exists.
Since the map g is expanding, if the above limit exists,

then it must be strictly positive. Let n be an invariant Borel
probability measure for g that is supported on J . It follows
from the Subadditive Ergodic Theorem that x(x) exists for
n-almost every x and defines a n-measurable function. This
function is typically no more regular than just measurable,
hence any smoothness result related to x(x) is surprising.
The function x(x) is clearly g-invariant.

Given any invariant measure n, it follows from the
Birkhoff Ergodic Theorem that x(x) exists almost every-
where with respect to n. Thus we obtain a decomposition of
the set J by

J5$xPJux~x ! does not exist%¯ ¯
bPR1

$xPJux~x !5b%.

If the measure n is ergodic, then x(x)5xn
5*J logua(x)udn(x) for n-almost every xPJ and we call xn
the Lyapunov exponent for n. We obtain the decomposition
of the set J by

J5$xPJux~x !5xn%¯$xPJux~x ! does not exist%

¯ ¯
bPR1

bfixn

$xPJux~x !5b%.

There are several fundamental questions related to this
decomposition. Do there exist points x such that x(x) exists
but does not equal xn? Since the n measure of this set is zero,
what is the Hausdorff dimension of this set? How large is the
set of values attained by x(x), for example, does it contain
an interval? Do there exist points x such that x(x) does not
exist, and if so, does the set have a positive Hausdorff di-
mension? Since Lyapunov exponents are fundamental invari-
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ants of a smooth dynamical system, it seems important to
have a good understanding of this decomposition.

The following definition for the Lyapunov spectrum was
inspired by a paper of Eckmann and Procaccia @EP#. We
define the Lyapunov (exponent) spectrum for the map g by

l ~b!5dimH Lb , where Lb5$xPJux~x !5b%.

Our strategy consists of first establishing a link between
the Lyapunov spectrum and the dimension spectrum and
then using results from Secs. II and III about the dimension
spectrum to obtain analogous results for the Lyapunov spec-
trum.

We now describe another characterization of the
Lyapunov exponent for conformal expanding maps that al-
lows us to apply some results in @PW1# and relate the
Lyapunov exponent at a point to the pointwise dimension at
that point. Choose a Markov partition for the map g . As
before, consider the basic sets

Ri1 ...in5Ri1
˘g21Ri2

˘•••˘g2n11Rin
,

where g2i denotes a branch of the inverse of gi. By the
Markov property, every basic set Ri1 ...in 5 Ri1

˘h(Rin
) for

some branch h of g2n11. Let Ri1 ...in(x) denote a basic set at
level n that contains the point x .

An easy argument using the Jacobian estimate shows
that the Lyapunov exponent at a point x is the exponential
decay rate of the diameter of the basic set that contains x ,
i.e., the Lyapunov exponent of g at x satisfies

x~x !5 lim
n!`

1
n logidgx

n
i

52 lim
n!`

1
n log diam~Ri1 ...in~x !!.

The following theorem @W1# establishes a relation be-
tween the pointwise dimension at a point and the Lyapunov
exponent at the point.

Theorem VI.1: Let g: J!J be a smooth conformal ex-
panding map and let nj be the Gibbs measure corresponding
to the Hölder continuous potential j. If the Birkhoff average
limn!`1/n( i50

n21j(gk(x))[j̄(x), then

dnj
~x !5

P~j!2 j̄~x !

x~x !
5
hnj

~g !1*jdnj2 j̄~x !

x~x !
, ~11!

provided that j̄(x) and x(x) exist, where P(j) denotes the
thermodynamic pressure of the function j ~see Appendix A!
and hnj

(g) denotes the measure theoretic entropy of the map
g with respect to the measure nj .

The theorem is straightforward to establish for the sym-
bolic pointwise dimension. One then applies Theorem
III.2. j

Assume the Lyapunov exponent x(x) exists at a point x .
For an arbitrary Gibbs measure, the numerator in ~11! may or
may not be defined for this value of x . However, for the
measure of maximal entropy, the numerator always exists
and equals the topological entropy.

We present a few applications of this theorem. The first
application exploits this last observation and establishes the
link between the Lyapunov spectrum and the dimension
spectrum for the measure of maximal entropy.

Let nmax denote the measure of maximal entropy for g .
The measure nmax is the Gibbs measure corresponding to a
constant potential.

Proposition VI.1: Let g: J!J be a smooth conformal
expanding map. Then

~1! If nmaxfim then the Lyapunov spectrum l (b)
5 f nmax

(hTOP(g)/b) is a real analytic strictly convex
function on an open interval I containing the point b5d .

~2! If nmax5m then the Lyapunov spectrum l (b)
5 f nmax

(hTOP(g)/b) is a delta function, i.e.,

l ~b!5H
d , for b5hTOP~g !/d ,
0, for bfihTOP~g !/d ,

where d5dimH J and hTOP(g) is the topological entropy of
g .

This immediately implies the following proposition.
Proposition VI.2: Let g: J!J be a smooth conformal

expanding map for which nmaxfim . Then the range of x(x)
contains an open interval, and hence the Lyapunov exponent
x(x) attains innumerable distinct values.

We obtain the following rigidity result as a simple cor-
ollary of Proposition VI.2.

Proposition VI.3: Let g: J!J be a smooth conformal
expanding map. If the Lyapunov exponent x(x) attains only
countably many values, then m5nmax .

Combining this proposition with a theorem of Zdunik
@Z#, we obtain the following rigidity theorem for rational
maps.

Theorem VI.2: If the Lyapunov exponent of a rational
map having a hyperbolic Julia set attains only countable val-
ues, then the map must be of the form z!z6n.

We now consider the Lyapunov spectrum for Axiom A
surface diffeomorphisms. Let L be a basic set for an Axiom
A surface diffeomorphism f : M!M . For each xPL we
have the functions as(x)52id f uEs(x)i and au(x)
5id f uEu(x)i ~see Sec. III!. Define the positive and negative
Lyapunov exponents x1(x) and x2(x) by

x1~x !5 lim
n!`

logid f uEu~x !i

n 5 lim
n!`

log Pk50
n21au~ f k~x !!

n
~12!

and

x2~x !5 lim
n!`

logid f uEs~x !i

n 5 lim
n!`

log Pk50
n21as~ f k~x !!

n ,

if the limits exist. Since d f uEu(x) is expanding and d f uEs(x)
is contracting, if the limits exist they must be nonzero. If n is
an invariant Borel probability measure, it follows from the
subadditive ergodic theorem that x1(x) and x2(x) exist for
n almost every x and define f -invariant measurable func-
tions.
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Let Lb
15$xPLux1(x)5b%. Consider the following de-

composition of the set L associated with ~positive! values of
the Lyapunov exponent x1(x) at points xPL

L5$xPLux1~x !does not exist%¯ ¯
bPR1

Lb
1 .

If n is an ergodic measure for f , there is a positive con-
stant xn

1 such that x1(x)5xn
15*L log au(x)dn(x) for

n-almost every xPL and we call xn
1 the positive Lyapunov

exponent for n. If n is the Gibbs measure corresponding to a
Hölder continuous function, this set is dense everywhere.

As in the case of conformal repellers, there are several
fundamental questions related to the above decomposition.
Are there points x for which the limit in ~12! exists but does
not equal xn

1 for any measure n? How large is the range of
values of x1(x)? Are there points x for which the limit in
~12! does not exist?

We introduce the (positive) Lyapunov dimension spec-
trum of f by

l 1~b!5dimH Lb
1 .

Since the measure of maximal entropy is the unique Gibbs
measure corresponding to the function w50 it follows that,
c5constant5exp~2hTOP( f )!, where hTOP( f ) is the topologi-
cal entropy of f on L. By slightly modifying the proof of
Theorem VI.1 one can show that for every xPLb

1

dnmax
u ~x !5

hTOP~ f !
b

.

where dnmax
u (x) denotes the pointwise dimension of the con-

ditional measure induced by nmax on the local unstable mani-
fold passing through x . Let us notice that near a point xPL ,
the measure nmax is equivalent to the direct product measure
nmaxx
s 3 nmaxx

u , where nmaxx
s denotes the conditional measure

induced by nmax on the local stable manifold passing through
x .

By combining this result with Theorem III.1 we obtain
the following result.

Theorem VI.3:
~1! If nmax

u
uR(x) is not equivalent to the measure

mx
u
uR(x) for any xPL , then the Lyapunov spectrum

l 1~b!5 f nmax
u S

hTOP~ f !
b D

is a real analytic strictly convex function on an open interval
containing the point b5hTOP( f )/dimH L .

~2! If nmaxuR(x) is equivalent to mx
u
uR(x) for any xPL ,

then the Lyapunov spectrum is a delta function, i.e.,

l 1~b!5H
dimH L , for b5hTOP~ f !/dimH L ,
0, for bfihTOP~ f !/dimH L .

As immediate consequences of this result we obtain that
if the measure nmaxuR(x) is not equivalent to the measure
mx
u
uR(x) for any xPL then the range of the function x1(x)

contains an open interval, and hence, the Lyapunov exponent
attains uncountably many distinct values. Hence if the

Lyapunov exponent x1(x) attains only countably many val-
ues, then nmaxuR(x) is equivalent to mx

u
uR(x) for any xPL .

Similar statements hold true for the negative Lyapunov
dimension spectrum of f corresponding to negative values of
the Lyapunov exponent x2(x) at points xPL .
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APPENDIX A: HAUSDORFF AND BOX DIMENSIONS

Two well-known, dimension-like characteristics of a set
z,Rn are the box dimension and the Hausdorff dimension.

Let Nd(Z) denote the minimum number of sets of diam-
eter precisely d needed to cover the set Z . We define the
lower and upper box dimensions of Z by

dimBZ5lim inf
d!0

log Nd~Z !

logS
1
d D

,

and

dimBZ5lim sup
d!0

log Nd~Z !

logS
1
d D

.

If the numbers dimBZ and dimBZ coincide, we denote
the common value by dimBZ and call it the box dimension of
the set Z .

It is not hard to show that the box dimension of a set
coincides with the box dimension of the closure of the set,
and hence the box dimension of a countable dense set con-
tained in Rn is n .

A finer notion of dimension is the Hausdorff dimension.
For a fixed d.0, one considers covers of the set Z by sets of
diameter <d. For any s.0 we define the s-dimensional
Hausdorff measure of Z by

mH~s ,Z !5 lim
d!0

inf
$Ui%

H(
i
diam~Ui!

sU

3$Ui% is a d-cover of ZJ ,

where $Ui% is a countable d-cover of Z , i.e., a countable
cover of Z by sets each having diameter less than or equal to
d. There exists a unique critical value of s at which mH(s ,Z)
jumps from ` to 0. This critical value is called the Hausdorff
dimension of Z and is written dimHZ .

It is easy to see that dimHZ < dimBZ < dimBZ . We be-
lieve that for a typical set Z the inequalities are strict, i.e., we
have that dimHZ , dimBZ , dimBZ . In @PoW#, the authors
exhibit affine Smale Horseshoes F,R3 such that
dimHF,dimBF .
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The Hausdorff dimension is determined on the subset of
Z having the largest Hausdorff dimension. More precisely,
the Hausdorff dimension of a disjoint union of sets is equal
to the supremum of the Hausdorff dimensions of the indi-
vidual sets.

APPENDIX B: THERMODYNAMIC FORMALISM

This appendix contains some essential definitions and
facts from symbolic dynamics and thermodynamic formal-
ism. For details consult @B, Ru1#. Let X denote a compact
metric space and let C(X) denote the space of real valued
continuous functions on X .

~1! Let g: X!X be a continuous map. We define the pres-
sure P:C(X)!R defined by

PX~w!5 sup
mPM~X !

S hm~g !1E
X
wdm D ,

where M(X) denotes the set of shift-invariant probability
measures on X , and hm( f ) denotes the measure theoretic
entropy of the map g with respect to the measure m. A Borel
probability measure m5mw on X is called an equilibrium
measure for the potential wPC(X) if

PX~w!5hm~g !1E
X
wdm .

For any continuous function, an equilibrium measure exists,
but may not be unique. It is unique if the function is Hölder
continuous. For hyperbolic maps, e.g., conformal repellers or
Axiom A diffeomorphisms, equilibrium measures are often
called Gibbs measures since the pullback of an equilibrium
measure under a coding map ~defined using a Markov parti-
tion! is Gibbs.
~2! The pressure function P:Ca(SA

1,R!!R is real analytic.
We remark that this result may not be true if SA

1 is
replaced by an arbitrary symbolic system.

~3! Let wPCa(SA
1,R!. The map R!R defined by t!P(tw)

is convex. It is strictly convex unless w is cohomologous
to a constant, i.e., there exists C.0 and gPCa(SA

1,R!
such that w(x)5g(sx)2g(x)1C .

~4! Let wPC(SA
1). A Borel probability measure m5mw on

SA
1 is called a Gibbs measure for the potential w if there

exist constants D1 ,D2.0 such that

D1<
m$y uyi5xi ,i50,.. . ,n21%
exp~2nP~w!1(k50

n21w~skx !!
<D2

for all x5(x1x2 .. .)PSA
1 and n>0. For subshifts of finite

type, Gibbs measures exist for any Hölder continuous poten-
tial w, are unique, and coincide with the Gibbs measure for
w.
~5! Given two continuous functions h1 and h2 on SA

1 we
have

d
d´U

´50
P~h11´h2!5E

J
h2dmh1

,

where mh1
denotes the Gibbs measure for the potential h1 .

For f ,gPCa(SA
1,R!, the function t∞P( f1tg) is con-

vex. It is strictly convex if and only if g is not cohomologous
to a constant.

A. Facts about the Legendre transform

Let f be a C2 strictly convex map on an interval I ,
hence, f 9(x).0 for all xPI . The Legendre transform of f is
the function g of a new variable p defined by

g~p !5max
xPI

~px2 f ~x !!.

It is easy to show that g is strictly convex and that the Leg-
endre transform is involutive. One can also show that strictly
convex functions f and g form a Legendre transform pair if
and only if g(a)5 f (q)1qa , where a(q)52 f 8(q) and
q5g8(a). See @Ro# for more details.
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