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A Multifractal Analysis of Equilibrium Measures for
Conformal Expanding Maps and Moran-like
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In this paper we establish the complete multifractal formalism for equilibrium
measures for Holder continuous conformal expanding maps and expanding
Markov Moran-like geometric constructions. Examples include Markov maps
of an interval, beta transformations of an interval. rational maps with hyper-
bolic Julia sets, and conformal toral endomorphisms. We also construct a
Holder continuous homeomorphism of a compact metric space with an ergodic
invariant measure of positive entropy for which the dimension spectrum is not
convex, and hence the multifractal formalism fails.

KEY WORDS: Hausdorll dimension; pointwise dimension; multifractal
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1. INTRODUCTION

Invariant sets of most dynamical systems in general are not self-similar in
the strict sense. However, part of these sets can sometimes be decomposed
into (perhaps uncountably many) subsets each supporting a Borel prob-
ability measure possessing a type of scaling symmetry. This means that the
measure admits a group of scale symmetries which reproduces copies of the
set (or its significant part of full measure) on arbitrarily small scales (up to
a given precision which decays to zero with scale). Sets that admit such
structure are called multifractals. The Hausdorff dimension of each subset
can be used to characterize this structure. The detailed analysis of the
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multifractal structure of a set invariant for a chaotic dynamical system
allows one to obtain a more refined description of the chaotic behavior
than the description based upon purely stochastic characteristics.

This paper describes the multifractal analysis of measures invariant
under dynamical systems. The concept of a multifractal analysis was
suggested in the seminal paper by Halsey et al,"'"’ who where they were
attempting to understand the scaling behavior of physical measures on
strange attractors, diffusion-limited aggregates, etc. They were also search-
ing for quantities to distinguish between attractors which have the same
fractal dimension. The multifractal analysis of measures has became a pop-
ular interdisciplinary subject of study-—a search of several electronic
databases showed that there are now hundreds of related papers in the
physical and mathematical literature.

The first rigorous multifractal analysis of dynamical systems was
carried out in ref. 5 for a special class of measures invariant under some
one-dimensional Markov maps. Lopes'*®' studied the measure of maximal
entropy for a hyperbolic Julia set. Recently, Simpelaere*” effected a com-
plete multifractal analysis for equilibrium measures of Axiom A surface
diffeomorphisms.

Our definition of multifractal analysis is faithful to the definitions in
ref. 11 and other articles in the physical literature, and our work places
these notions onto a solid mathematical foundation. The two major com-
ponents of the multifractal analysis are the Hentschel-Procaccia (HP)
spectrum for dimensions and the f{a) spectrum for dimensions (see descrip-
tions below). The multifractal analysis unifies these two spectra via the
Legendre transform.

There are many papers on multifractal analysis which treat only one
of these two components. In a number of papers the f(a) spectrum for
dimensions is studied not with respect to the natural metric, but only with
respect to the symbolic metric (ie., the standard metric on the symbolic
space associated with the dynamical system), which is just an intermediary
object and not physically meaningful. In some cases the two dimension
spectra coincide, but this is a highly nontrivial result (see Theorem 2).
In addition, most authors restrict their analysis to Bernoulli measures or
self-similar measures and do not include measures of actual physical
interest, like the Bowen-Ruelle-Sinai measures (BRS) on hyperbolic
attractors and repellers (or general Gibbs measures). Thus, very few papers
in the mathematics literature on multifractal analysis are true to the
original spirit of the subject and help put it on a solid mathematical
foundation.

During the last few years, there has been a burst of activity in studying
the multifractal analysis for measures supported on the limit sets of
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geometric constructions in R"”. Various authors have obtained some par-
ticular results for restricted classes of measures: they mostly studied the
f(o) spectrum with respect to a symbolic metric and mostly considered
Bernoulli measures. Moreover, most authors considered only similarity
constructions (see extended list of references in ref. 17).

Let us say a few words for motivating the multifractal analysis. Let
g: M — M be a difftomorphism of a smooth Riemannian manifold M and
let A< M be a compact hyperbolic attractor for g. For simplicity, assume
that g is topologically mixing on A. Bowen''’ showed that the evolution of
the Lebesgue measure in a basin of A converges to the BRS measure. From
the physical point of view, this is the natural measure on the attractor since
it describes the orbit distribution of points in the basin which are typical
with respect to the Lebesgue measure. This distribution is not uniform,
and, as computer pictures show, there exist spots of high and low density
of visits sometimes called hot and cold spots (see Fig. 1).

This phenomenon also has been observed for a more general class of
attractors (hyperbolic attractors with singularities), which includes the
Lorenz attractor, the Lozi attractor, etc. Attempts to analyze this measure
in computer simulations are based on partitioning the basin into a very fine
grid and estimating the measure of each box by the frequency with which
a typical orbit visits it. This leads to an enormous amount of data.

An approach to encoding all this data was suggested in ref. 11, which
who utilized the Rényi spectrum for dimensions, defined as follows. Cover
the attractor by a grid of mesh size r, ie., a partition of the repeller such
that each partition element contains a ball of radius 1/2r and is contained

O

cold spot

hot spot .'

Fig. . Hot and cold spots on an attractor.
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in a ball of radius r, where both balls are centered at the same point. Given
a family of grids parametrized by mesh size r, define

_ L o Sive)
l—gr-o log r

R.(q)

provided the limit exists,'* *® where v is a Borel probability measure and
N(r) is the number of partition elements C’ of the grid with »(C’)>0. A
priori, the limit may depend on the family of grids. We will show that for
a large class of measures (diametrically regular measures), the limit is inde-
pendent of the family of grids. The result is also true if the number 1/2 in
the definition of grid is replaced by any positive number.

Another approach involves the study of correlations of the distribu-
tions of g-tuples along a typical orbit for g =2, 3,.... More precisely, let
g: X — X be a map on a metric space (X, p) preserving a Borel probability
measure v. We set

1 . .
C(x, q.r,n) =Ecard{(il i) plghx, ghx)<r for all 0<i;<iy <n}

We define the correlation dimension of order ¢ by

1 lim lim log C(x, q, ¥, n)

C X)=
(\) l—qr—-()n—-»‘/. logr

4

provided the limits exist. If v is ergodic, it was shown in ref. 24 (see also
ref. 26) that for v almost every x

lim C(x~,q,r n) =J V(B(y, )Y dv(y)

"n— 7 X

where B(y, r) denotes the ball of radius r centered at the point y. Thus, for
g=23,..

1 . AYyg— 1 )
Cx)= lim log § v(B(y, 1)~ ' dv(y)
I—gr—o log r

provided the limit exists. In general, one does not expect this limit to exist.
In ref. 26 the authors constructed an example of a continuous map on an
interval that preserves a measure absolutely continuous with respect to the
Lebesgue measure, for which the above limit does not exist for almost
every x in a large interval in ¢. Combining this with results in ref. 12, one
can construct a diffeomorphism of the two-torus preserving an ergodic
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measure that is absolutely continuous with respect to the Lebesgue
measure, having positive topological entropy, and for which the above
limit does not exist for almost every x in a large interval in ¢. In this paper,
we show that this limit exists for a broad class of measures including equi-
librium measures for conformal repellers. This unifies and extends almost
all cases in the literature.

The natural extension of the correlation dimension of order ¢ =2, 3,...
to all real values ¢ > 1 was introduced by Hentschel and Procaccia.''” Let
v be a Borel probability measure on a metric space (X, p). For ¢>1 we
define the HP-spectrum for dimensions by

¢— 1 s
HP (q)= ! lim log | x v(B(y,r))* " dv(y)
l1—gr=o log r

(HP)

provided the limit exists. In some cases the HP spectrum can be defined
formally for all ¢ # 1 (see Remark 5 after the statement of Theorem 3). The
Rényi spectrum was a precursor to the HP spectrum where one replaces
the coverings by partitions.

We work with a class of measures which incorporate the metric struc-
ture of the underlying metric space. Namely, a measure v is diametrically
regular or a Federer measure'® if for each 4 > 1 there exists X >0 such that
for any sufficiently small » >0 and every x we have

W(B(x, Ar)) < Kv(B(x, r)) (DR)

In the harmonic analysis literature such a measure is sometimes called a
doubling measure. To show that a measure v is diametrically regular, it is
clearly enough to establish (DR) for a single value of 4 > 1.

We show in Theorem A2 that Gibbs measures concentrated on
repellers for expanding maps are diametrically regular. This fact plays a
crucial role in our multifractal analysis.

In ref. 25, Pesin showed that if v is diametrically regular, then for any
g>1

log inf, cw V(B)!
HP,(q)= L jim 28 5 Lpew, V(B)
1—gr-o log r

where the infinum is taken over all covers B, of X by balls B of radius r,
provided the limit exists. We will use this definition of HP spectrum for
dimensions in our proofs.

Pesin'>*’ showed that the Rényi spectrum coincides with the HP spec-
trum. In general, even good measures may not be diametrically regular. One



238 Pesin and Weiss

can construct a smooth ergodic measure for a diffeomorphism of a compact
manifold which is not diametrically regular.’*’

In this paper, we introduce and systematically study Hoélder continuous
conformal expanding maps on compact metric spaces. One of our main
results is that any Gibbs measure corresponding to a Hoélder continuous
function is diametrically regular (Theorem A2). Our main tool is a con-
struction of a Markov partition for continuous expanding maps. This con-
struction is geometrically natural and simpler than other constructions for
smooth expanding maps that we are aware of. This construction is specially
adapted to a given point (or any finite collection of points) such that the
partition element containing this point also contains a “large” ball centered
at the point. The same approach can be used to construct special Markov
partitions for Axiom A diffeomorphisms and their continuous analogs.
Hence, Gibbs measures for Axiom A diffeomorphisms are diametrically
regular.

We turn to the second ingredient in our multifractal analysis and
define the f(«) spectrum for dimensions. Given xe X, we consider the
upper and lower pointwise dimensions of v at x,

i log v(B(x, r ] X, r
3,(x) =tim sup EXBCIN g = tim g (BMET)
r—0 log r o log r

If d (x) = d (x), we call the common value the pointwise dimension at x and
denote it by d.(x). We call v exact dimensional if

d(x)=d(x)=d (x)=d

for v-almost every x, where d is a nonnegative constant. In general one
does not expect the pointwise dimension of v to exist at a typical point even
for nice measures which are invariant under dynamical systems.''®>”’ Even
when the pointwise dimension of v does exist it is not necessarily exact
dimensional.*- 27!

Nevertheless, measures which are invariant under smooth dynamical
systems with hyperbolic behavior often turn out to be exact dimensional.
Eckmann and Ruelle have conjectured that hyperbolic measures (ie.,
ergodic measures with nonzero Lyapunov exponents almost everywhere)
are exact dimensional. This has been established for hyperbolic measures in
the two-dimensional case in ref. 41 and for hyperbolic BRS measures and
equilibrium measures for Axiom A diffeomorphisms in refs. 14 and 30.

The multifractal analysis is a description of the fine-scale geometry of
the set X whose constituent components are the sets

K.={xeX|d{x)=a}
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for e e R. The f.(a} spectrum for dimensions is defined by
Sla)=dim, K,

where dim; K, denotes the Hausdorff dimension of the set K,. A priori,
one may consider the box dimension instead of the Hausdorff dimension in
this definition. In Remark 2 after Theorem 3 we observe that in the cases
we consider in this paper, this replacement leads to a trivial spectrum of
dimensions.

We obtain a natural decomposition of the set X as

X= | K,u{xeX]|d(x)does not exist}

— L <o

If v is exact dimensional, then v(K,)=1. It is important to emphasize
that the union of the sets K, may not be all of X. Shereshevsky'*®’ showed
that for a class of C? Axiom A surface diffeomorphisms, the set X\|J, K,
1s dense and has positive Hausdorff dimension for any equilibrium measure v.
His proof can be modified for conformal repellers.

For the maps we consider in this paper (Hélder continuous conformal
expanding maps) there exists an open interval of values of « such that the
sets K, are dense. Thus for the maps we consider this decomposition of the
space X is quite complicated from the topological point of view.

In ref. 11 the authors presented a heuristic argument showing that the
HP spectrum for dimensions and the f{«) spectrum for dimensions form a
Legendre transform pair. For this to make sense one must first establish
that the two spectra are smooth and strictly convex on some interval. 4
priori this seems quite amazing since in general one expects the functions
f{a) and HP (g) to be only measurable. Furthermore, it is not at all clear
whether, even in the exact dimensional case, the pointwise dimension
attains any values besides d. Once the Legendre transform relation between
the two dimension spectra is established, one can compute the delicate and
seemingly intractable f,(«) spectrum through the HP spectrum, which is
completely determined by the statistics of a typical trajectory. See also
Theorem 6.

Recently, Simpelaere'®”’ effected a multifractal analysis of equilibrium
measures for Axiom A surface diffeomorphisms. Simpelaere’s approach can
presumably be modified to work for (multidimensional) conformal
repellers of (noninvertible) expanding maps. In ref. 29 we give an alter-
native proof of his result using the methods introduced in this paper as well
as compare and contrast the two approaches. Simpelaere uses methods
from large-deviation theory to obtain upper estimates of the Hausdorff
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dimension of the level sets K, while our approach is based on the equality
of the symbolic pointwise dimension and pointwise dimension. Simpelaere
established the Legendre transform relation only for a special type of Rényi
spectrum defined with respect to a special family of grids which is adapted
to the hyperbolic splitting. Our approach handles the general Rényi spec-
trum (which we show coincides with the HP spectrum) with the help of the
diametrically regular property of equilibrium measures that we establish in
Theorem A2.

In Remark 3 in Section 4 we construct a Holder continuous
homeomorphism of a compact metric space with an ergodic invariant
measure of positive entropy for which the dimension spectrum is not con-
vex, and hence the multifractal formalism fails.

In this paper we effect a thorough multifractal analysis of equilibrium
measures for Holder continuous conformal expanding maps. Examples
include Markov maps of an interval, hyperbolic Julia sets, and conformal
toral endomorphisms. We prove that the functions f(«) and (1-—gq);
HP . (g) are analytic, strictly convex on an interval, and form a Legendre
transform pair, provided the measure is not the measure of maximal
entropy (see Theorem 1). In particular this implies that the set of values
attained by the pointwise dimension contains an open interval (o, a,).
Furthermore for each ae[a,, «,], the set K, is dense.

Our results generalize and extend all known results related to the mul-
tifractal analysis of smooth conformal expanding maps. We do not use any
techniques from the theory of large deviations in our analysis as do refs. 5,
15, and 37. However, after effecting the multifractal analysis, we can apply
a large-deviation result of Ellis'®’ to obtain an interesting counting formula
for the dimension spectrum f,(«) (Theorem 6).

The HP spectrum of dimensions HP (g) is not a priori defined for
g=1.1t is conjectured that in “good” cases, lim,_,,, HP (q) =1(v), where
I(v) is the information dimension (see Remark 4 after Theorem 3 for the
definition). It immediately follows from our analysis that this conjecture is
true for equilibrium measures for Holder continuous conformal expanding
maps.

Another class of examples that we consider are Moran-like symbolic
geometric constructions where the basic sets comply with a given symbolic
dynamical system. Moran first studied a special class of these constructions
and computed the Hausdorff dimension of the limit set. In refs. 27 and 28
we extended the original Moran idea to much broader classes of geometric
constructions.

In this paper we undertake a complete multifractal analysis of equilibrium
measures for a large class of Moran-like geometric constructions which
satisfy the separation condition introduced in Section 4. This separation
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condition allows for large intersections of the basic sets at each level. Our
analysis is based upon the dynamical properties of the map on the limit set
induced by the shift map on symbolic space, and we require that this map
is expanding and conformal. In general, it need not be either expanding nor
conformal even when the Moran-like construction is modeled by the full
shift. Whether the induced map is expanding and conformal strongly
depends on the symbolic dynamics and its embedding into Euclidean
space, i.e., the gaps between-the basic sets. Our multifractal analysis of
these expanding and conformal geometric constructions is intimately related
to our analysis for conformal expanding maps.

We conclude this introduction by previewing a few new ideas and
results that we develop in this paper. We construct a new Markov partition
for repellers (see Theorem Al in Appendix A). This construction is
geometrically natural and simpler than other constructions for smooth
expanding maps that we are aware of. This construction is specially
adapted to a given point {or any finite collection of points) such that
the partition element containing this point also contains a “large” ball
centered at the point. The same approach can be used to construct special
Markov partitions for Axiom A diffeomorphisms and their continuous
analogs.

Using Markov partitions, we prove that equilibrium measures on con-
formal repellers are diametrically regular (see Theorem A2 in Appendix A).
In the harmonic analysis literature such measures are sometimes called
doubling measures. These measures strongly encode the metric structure of
the underlying metric space. We exploit this important property many
times in our analysis.

Theorem 2 is one of the major results in the paper. This theorem
allows us to compute pointwise dimensions using the symbolic model and
then to conclude that the pointwise dimensions computed on the symbolic
level coincide with the pointwise dimensions on the repeller. The proof of
Theorem 2 uses, in particular, the fact that equilibrium measures are
diametrically regular.

Finally, we show that for equilibrium measures, the HP spectrum,
which is a priori only defined for ¢ > 1, is well defined (and finite) for all
g€ R. See Remark 5 after the statement of Theorem 3.

For physical motivations for the multifractal analysis, along with a
complete multifractal analysis of equilibrium measures on two-dimensional
hyperbolic sets based on the methods developed in this paper, we refer the
reader to ref. 29. Weiss'*”' gives an interesting application of the multifrac-
tal analysis to the spectrum of Lyapunov exponents. Pesin'®’ provides a
comprehensive and systematic treatment of dimension theory in dynamical
systems.
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2. CONFORMAL REPELLERS

In this section we undertake a multifractal analysis for smooth
expanding maps. Let M be a smooth Riemannian manifold and g: M - M
a C'** map. Let J be a compact subset of M such that (i) g(J)=J, (ii)
there exists C>0 and a>1 such that |dg"ul|= Ca" |u|| for all xelJ,
ue T M, and n>=1 (for some Riemannian metric on M), and that (iii) g
is topologically transitive on J. In this case we say that g is a smooth
expanding map on J. If, in addition, one assumes that there exists an open
neighborhood ¥V of J (a basin) such that J={xe V: g"e V for all n>0},
we call J a repeller. The results in this paper do not require this extra con-
dition on J. We will call J a repeller even if it does not possess an open
basin.

We recall some facts about expanding maps. For simplicity we assume
that the map g on J is topologically mixing.'"" Bowen''' and Ruelle'**
show that for any Hdlder continuous function £ on J there exists a unique
equilibrium measure v=v. on J. It is well known that expanding maps
have Markov partitions consisting of partition elements called recrangles
{R,.., R,} of (arbitrarily small) diameter ¢ such that:

1) Each rectangle R is the closure of its interior R

(1)

(2) J=UR,

(3) Ii,mIé,=®fori¢j

(4) Each g(R,) is a union of rectangles R,

(See refs. 34 and 35 and Appendix A.) A Markov partition Z={R,,.., R,}
generates a symbolic model of the repeller by a subshift of finite type
(27.0), where A =(ay;) is the transfer matrix of the Markov partition, i..,

a;=1if R.ng™ '(Roj) # (& and a,;= 0 otherwise. This defines a coding map
x: 2% —J such that the following diagram commutes:

Ti——

zl lz

J —<-

The map y is Holder continuous and injective on the set of points whose
trajectories never hit the boundary of any element of the Markov partition.

Let £ be a Holder continuous function on J. The pullback by y of &
is a Holder continuous function ¢ on X7, ie, ¢ =yx;'& Let u, be the
Gibbs measure corresponding to ¢. Its push forward is a measure on J
which is the equilibrium measure corresponding to & (see Appendix B). We

denote it by v..
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A Markov partition Z ={R,,.., R,} allows one to set up a complete
analogy between repellers of expanding maps and limit sets of Moran
geometric constructions (see ref. 27 and Section 4). Define the basic sets

Ril-“in=Ri|mgkl(Ri:)m ﬁg7"+l(Ri,,) (1)

where g/ is a branch of the inverse of g’. By the Markov property, every
basic set r,,.., =r; nh(r,) for some branch / of g="*".

We need the following well-known estimates of the Jacobian of C/*~
expanding maps.''* '*)

Proposition 1. There ezist positive constants C;, C, such that for
any n-tuple (i,---i,) and any x, ye R,
[Jac g"(x)]

<——=<C,
' Jac g(y)]

where Jac g denotes the Jacobian of g.

A smooth map g is called conformal if dg .= a(x) Isom,, where Isom,
denotes an isometry of the tangent space T .M. A smooth conformal map
g is called an expanding map if |a(x)| > 1 for all points x. The repeller J for
a conformal expanding map g is called a conformal repeller. Examples of
conformal repellers include one-dimensional Markov maps and hyperbolic
Julia sets (see below). Ruelle'**’ showed that the Hausdorff dimension & of
a conformal repeller J is given by Bowen’s formula P(—dlog |a|) =0, where
P is the thermodynamic pressure, and that the d-Hausdorff measure is
equivalent to the equilibriumn measure m corresponding to —d log |a|. The
measure /m plays a special role in the multifractal analysis and is called the
measure of maximal dimension.

Using the basic sets, one can construct a special Moran cover U, of the
repeller. Given and a point we X'}, let n(w) denote the unique positive
integer such that

nien) — 1 ()

[T la(a“ (™" >, [ laGe(a* ()" <7 (2)

k=0 k=0

It is easy to see that n{w)— oo as r — 0 uniformly in w. Fix we 2} and
consider the cylinder set C,.., <Z7. We have weC; . and if
w'eC, ., With n(@') 2 n(w), then

> Ingen) *

.

C'I o) C'l R
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Let C(w) be the largest cylinder set containing « with the property that

Uw)=C;. 4, for some w"el(w) and C;.. ., . <Clw) for any
o' e C( w) The sets C(w) corresponding to different we 2} either coincide
or are disjoint. We denote these sets by C/, j=1,.., N,. There exist points
w;e X} such that C/=C, ., . " These sets form a disjoint cover of X'}
Wthh we denote by A,. The sets RI=x(C)), j=1,.., N,, may overlap
along their boundaries. They comprise a cover of J (which we will denote
by the same symbol AU, if it does not cause any confusion). We have that
R/ = oy for some x; eJ.

Let Q cZ +* bea subset One can repeat the above arguments to con-
struct a spec1a1 Moran cover of the set y(Q) < J. It consists of cylinder sets
Ci, j=1,.., N,, for which there exist points w; € Q such that C/ I=¢, inten
and the intersection C/ n C!" ~ Q is empty 1f j#i. We denote thls specxa’l
cover by U, ,.

The Moran cover has the following crucial property. Given a point
xeJ and a positive number r, the number of basic sets R/ in the Moran
cover U, that have nonempty intersection with the ball B(x, r} is bounded
from above by a number M, which is independent of x and r. We call this
number the Moran multiplicity factor.*”

In order to verify this property of the Moran cover let ry=
max{diam R;: i=1,..., p}. Since the sets R, are the closure of their interiors,
there exists a number 0 <r,<r, such that each R, contains a ball of radius
r;. The following proposition shows that each basic set R/ in the Moran
cover contains a ball of radius Cr, where C >0 is a constant independent
of r and j. This implies the desired property of the Moran cover.

Proposition 2. There exist positive constants D, and D, such that
for every xeJ

B (\ D, ]:[ la(g*(x))] ")

k=0

n—1
SR, ., (x)eB (x, Dy IT la(g* ()]~ '>

k=0

where R; . ;(x) is a basic set containing x [see (1)] and B(x, a) is the ball
of radius a centered at the point x.

Proof. Since g is conformal and expanding on J, we have
n—1

ldgll = [T la(g*(x))| = |Jac g"(x)|

k=0
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This fact and Proposition 1 imply

diam R,, ., (x)

< diam R, x max |ldg "

VE i

=diam R, x max |Jac g ~"(y)|

Ve N

d.am R max.re R," |Jac gﬂ'(}’)l
=d1 .

( [Jac g ~"(g"(x))|

) Hac g ~"(g"(x))l

n—1

<C [T la(g“ Gl

k=0

where C, >0 is a constant. Since each R; is the closure of its interior, we
have that for the intrinsic diameter of R, . ,(x)

int diam R;, ., (x)
>diam R; x min [dg, "
=diam R, x min |Jac g ~"(y)|
ve R,"
min, ., |Jac g~"(»)|
|Jac g~"(g"(x))

=diam Ri,,( )IJac g7 "(g"(x))l

n—1

>C, [ la(g(x))

k=0
where C, >0 is a constant. This completes the proof of Proposition 2. |

Let & be a Holder continuous function on J and v = v, the correspond-
ing equilibrium measure for g. Denote by ¢ the pull back of £ under the
coding map y and by u =4, the Gibbs measure corresponding to {. We
have that v=y,u.

Let  be the function such that logy =¢ — P(¢). Clearly ¢ is a
Holder continuous function on X such that P(log¥)=0 and u is the
Gibbs measure for log .

Define the one-parameter family of functions ¢, g&(—co, c0) on 27
by ¢ ,(w)=—T{(g)log |a(x(w))| + q log ¥(w), where T(g) is chosen such
that P(¢,) =0 [one can show that T(q) exists for every g € R; see Lemma 4
in the proot of Theorem 1 below]. It is obvious that the functions ¢, are
Hoélder continuous.
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We now state our main theorem for C’** conformal expanding maps.

Theorem 1.

(D

d(x)= { L+

The following conditions hold.

The pointwise dimension d,(x) exists for v-almost every x € J and

fog #(@) dute) ||| | _ tog etz duto)|

(2) The function T{(q) is real analytic for all ge R, T(0)=dim, J,
T(1)=0, T'{g)<0, and T"(q) =0 (see Fig. 2A).

( A) slope = —0.{e0)
T(q)
-~ d=dim, F
slope = —0/(—o0) 1 q
\ \‘~‘\\ slope = —0u{0)
\‘ - -
AY
\
Y
A)
‘\ z
! slope = —ou(—o0)
(B) tangent to the curve at ot( 1), with slope = |
o b
M@ s=dim,, J
info. dim. = HR, (1) DRSS
vertical tangent
J{CTC) | S S
flage) f=- 7~ '

0

\ . '
¢ vertical

«__tangent} -
a(o0) a(l) 0/(—o0) o
E qg>0
Fig. 2. (A) Tiq), (B) f(a).
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{3) The function a(g) = — T7{g) attains values in the interval [«,. «,],
where 0 <o, <o, < 0. The function f (a(q)) = T(q) + qa(q) (see Fig. 2B).

(4) If vs£m, then the functions f,(a) and T(q) are strictly convex and
form a Legendre transform pair (see Appendix C).

(5) The v-measure of any open ball centered at points in J is positive
and for any ge R we have

loginf, > ., W(B)Y
T(¢) = — lim g .,,ZB %, (B)
r—0 logr

where the infimum is taken over all finite covers %, of J by open balls B of
radius r. For any ¢ > | (actually for any ¢ # 1; see Remark 5 after the state-
ment of Theorem 3) we have

()

I =HP (q)=R(q)
-9

where R (g) denotes the Rényi spectrum.

Proof. Fix any geR. Let u, denote the Gibbs measure corresponding
to ¢, and let v, denote the push forward of u, to J. Clearly,
7(0)=dim, J=d.

To prove Statement 1, we need the following lemma.

Lemma 1. There exist constants C, >0 and C, > 0 such that for all
basic sets R; .., .

vq(Rh »»»i,,)
)T(qm/ V(Rn i,,)q

<G (3)
iy

Proof. Since the measures x4 and u, are Gibbs measures correspond-
ing to the Holder continuous functions log ¥(w) and -T(q) log |a(x(w))| +
q log yr(w), respectively, and m is the equilibrium measure corresponding to
function —dlog(|a(x)|), it follows from the definition of Gibbs measure
[see (Bl) in Appendix B] that the ratios

(R, (x)
[Tio w(gh(x))
VAR, .. (x))
T2 ) la((g5 () =7 Y(g*(x))
m(R; . . (x))

TTiCd la(g*(x) =

822.86.1-2-17



248 Pesin and Weiss

are bounded from below and above by constants independent of n. The
lemma easily follows. |

Given 0 <r < 1, consider the Moran cover U, of the repeller J by basic
sets R/=R, ..., with radii approximately equal to r. Let N(x, r) denote
the number of sets R/ that have a non-empty intersection with a given ball
B(x, r) centered at x of radius r. We have that N(x, r) < M, uniformly in
x and r, where M is the Moran multiplicity factor.

Since the measure m is an equilibrium measure and P(—d log ja(x)|)
=0, there exist positive constants C, and C, such that

m(R; ... (x))
—d g C7

Ci <= 3
VTS 'Ia(g )

(see Appendix B).
It follows from properties of the Moran cover [see (2)] that there
exist positive numbers Cs and C, such that for every R/ e U,

Csr'<m(R]) < Cer? (4)

Since U, is a disjoint cover of J, we have
Z V‘I(R',/:) = 1
Rlew,
Summing (4) over the cover U,, we obtain that there exist positive con-
stants C, and Cg such that
C,<r™ Y WRIIK Gy
RleWN,

Taking logs and dividing by log r yields

—lim '"'_( = T(g) (5)

We now prove Statement 1 of the theorem. Given a number « >0, let

. Yilology(at(w)
R.={oes; L S Tog Jat FrTERE (©)

Define the spectrum

ﬁ'(a)=diml-lka (7
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Given g e R, set

ot s
1 logliprten)) du

§ =1 log la(x(w))| =" du,,

a{q) =

We will show that this definition of a(g) coincides with Statement 3 in
Theorem | (see Lemma 4).

The following lemma will help us to compute the Hausdorff dimension
of the set X

x(q)*
Lemma 2. For every g R, we have:
(1) v:/(X(KaL((/)= 1

(2) d.(x)=T(q)+qa(q) for v -almost all xex(K,,) and d,(x) <
T(q)+ gx(q ) for all \ex(KM,

(3) dimx(K,,,) =T(g) +qxq).
Proof. Consider the functions w > log () and w— log |a(y(w))|,

where w=(i,i,...)e 27 . Since g, is ergodic, the Birkhoff ergodic theorem
yields that

lim log I'T;_, (e"(w)) —a(q)
n—o log [T5 |a( /{(Ul\(w)))l !
for u,-almost every we X2 ;. This implies the first statement.
It follows that for any e>0 and every we K, there exists N(w) such
that for any n> N(w)

(g

log I‘Inf 1 lp(a.l\(a)))
108 [T;Zo la(x(o*(w

a(q)— |_|\ alg) +e (8)

Given />0, denote Q,={wek,,: Nw)</}. It is easy to see that
0,cQ,,, and Ka((,, U7~, @, Thus, there exists /,>0 such that
u(Q)>0 if [>1,. Choose [>/,. Given 0<r<1, consider the Moran
cover U, ,, of the set Q,. It consists of cylinder sets C/ ,, j=1,.., N, ;, for
which there exist points w, € Q, such that C/ ,=C, . If r is sufficiently
small, we have n(w;) >/ for all J.

Since p,, is a Gibbs measure, we obtain that for every w = (i;i,...)e 2}
and n>0

l,uml-)

HACi i) <C
n—l |(l A(CU ))I—T(q;ll,(o_/\(w) 10

G < (9)
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It follows from (8), (9), and the properties of the Moran cover that for all
n=1Iand any xe y(Q,)

v(B(x, r)nx(Q))
M
Z rfCI )

M meny— |

<C.OZ [T la(x(a*(@)))) =" (o ()

i=0 k=0

M ntay) =1

SCI()Z H la(X(Uk(CU)))l_n‘“\qm‘“—m

j=1 k=0

s Cl | rT(q)+(/(:x(z/) —&)

where C,, >0 is a constant and M is the Moran multiplicity factor. Since
v,(x(Q,)) >0, for v -almost every x & x(Q,) there exists a number r,=r(x)
such that for every 0 <r<r, we have

v(B(x,r)) < 2v (B(x,r) 0 x(Q)))

This implies that for any />/; and almost every xex(Q))
log v (B(x, 1))

d,(x)=lim
“ r—0 log r
> lim log v (B(x,r)n x(Q)))
r—0 log r

=T(q) +q(a(q) —¢)

Since sets (, are nested and exhaust the set Q, we obtain that
d.(x)=T(q) +q(alq) —e) for v -almost every xe y( ‘,w,) Since ¢ is
arbitrary, this implies that (\') =2 T(q) +qu(q) for v, -almost every
xe(K,,,). In particular, drm,,x(KM, = T(q) + qu(q).

Fix 0 <r<1. For each w=(i,i, ---)€ Q, choose n(w) according to
(2). It follows that R;, ..., .., = B(x, 2D2r), where x = y(w). By virtue of (8)
and (9), for all we Q,

v(B(x,2D,r))
ZVAR, )

nleny =1

2Co I la(x(a" (@) =" y(c*(w))?

k=0
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nteny — 1

>C9 1—[ Ia(x(ok(w)))lAT(‘I)—I/(a((/).*.,..)

k=0

2 C‘)"T“I)_‘-‘/(x(‘/)"'}:)
It follows that for all xe x(Q,)

a,(x) = Tim 2828 1)

lim log r < T(g) +gq(a{g) +¢)
Since ¢ 1s arbitrary, this implies that 57,,,[(,\') < T(q)+qu(q) for every
xelgiw,. Therefore, drq(x)=d,.u(,\')=T(q)+qoc(q) for v, -almost every
xeK,,,. This implies the second statement of the lemma. The second state-
ment trivially implies that dim,K,,, > T(q)+qa(q). Moreover, by a
folklore theorem,™ the fact that c?,,"(x)s T(q)+qa(q) for every xeR,,,
implies that dim ,,K,dq,s T(q)+ ga(q). Combining these two estimates we
have shown that dim, K'M, < T(g)+ qa(q) and this completes the proof of
the lemma. ||

The above arguments also imply that the function a{g) =0 for all ¢.

It immediately follows from (5) that 7(1)=0 and thus g=pu,. The
first statement of the theorem now follows from Lemma 2 and the follow-
ing fundamental theorem, which says that the pointwise dimension we
compute using the symbolic model coincides with the pointwise dimension
on the repeller.

Theorem 2. (1) For every geR and every w eKlw, we have that
d(x)=0a(q), where x = y(w).

(2) Forevery geR and every x € K, there exists w e K:w) such that
7lw)=x.

In other words, for all ¢, x(K,,,) =K

) xlg).

Proof. Since g is a smooth expanding map on J, there exist positive
constants r, and g such that if x, yeJ and d(x, y)<r,, then
d(g(x), g(y))>ad(x, y). One can easily derive from Proposition 1 that
given 0 <r <r,, there exists N(r) >0 and positive constants C,, and C,;
such that if 0 <n < N(r), then for all xeJ

n—1 n—1

Cior I la(g"(x))| < diam(g"(B(x, 1)) < Cisr [] la(g“(x))l (10)

k=0 k=0
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and there exist positive constants C,, and C,5 such that for all xeJ and
any n=0

n—1 nw—1

Ciar [T la(g* (N ™' <diam(h(B(x, 1)) < Cjsr [ la(g(x)I~" (11)
k=0

= k=0

i

where /i1 denotes any branch of g ="
Fix xeJ and 0 <r<r, and choose N = N(x, r) such that

N—1

N
Ciyr H la(g*(x))| < ro, Ciyr H la(g¥(x))| > ry (12)

k=0 k=0

It easily follows that N(x, r) < N(r). By virtue of (10) and (11), we have
that

N—-1

diam(g"(B(x, 1) < Cyyr [] la(g“(x))

A=0
Lro=diam{ B{g"(x), ry)}

This immediately implies that B(x,r)<h(B(g"(x), r,)), where h is an
appropriate branch of g~ . It follows from (11) that

N-1

diam(h(B(g"(x), o)) < Cparg [T la(gF ()] !

k=0
L Cor=diam(B(x, C,r))
where C,,>0 is a constant. This implies

B(x.r)= h(B(g¥(x), ry)) = B(x, C\¢r)

Consider the special Markov partition %, ,, for the map g constructed in
Theorem 6 (see Appendix A) with diameter r,. There exist positive con-
stants C; and C,g such that

B(gN('\')a Ciiroyc R(g¥(x)) < B(gN(-\')a Ciyro)

where R(g"(x)) denotes the rectangle that contains the point g"(x). This
implies that

h(B(g"(x)), Ci779)) = h(R(g"(x))) = (B(g"(x), Ci5r0))
Since the measure v is g-invariant, we have

W(B(g"(x), Ci7ro)) S WA(R(gM(x)))) S W(B(g"(x), Cigra))-
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Using the fact that the measure v is diametrically regular (see Theorem A2
in Appendix A), we obtain

WB(g¥(x), C570)) < Cov(B(g"(x), o))
= C,v(h(B(g"(x) 2 To)))
S Ciow(B(x, Ciyr)) < Cyv(B(x, 1))
where C,,>0 and C,,> 0 are constants. Similarly, we obtain
W B(g"(x), Ci770)) = Co W(B(gV(x), o))
= Ciov(h(B(g"(x), ry)))
2 Cnv(B(x, r))
where C,, >0 and C,, >0 are constants. Thus,
CoV(B(x, 1)) S (A(R(g"(x)))) < Coo ¥ B(x, 1))

Since v is a Gibbs measure and A(R(g"(x))) is a basic set, its measure is
given via symbolic dynamics. We obtain

d,(x) = lim 28 VB 1)
r—0 log ¥

IR (- § Pt S 7 C
IV(I)—’“J log HNU)iI |a()((a CU)))I

Part (1) of the lemma immediately follows.

Now assume that 4,(x)=a(g). We need to show that the existence of
the subsequential limit as N(r) — co implies the existence of the limit as
n— oo. Consider the sequence r, =2 % It follows from the definition of
N(r) and a crude estimate of |a( y)| that there exist positive constants C,;
and C,, such that N(r,,,)— N(r.) < Cyy + Cyk. Part (2) of the lemma
immediately follows. |J

We no»\'I prove Statements 24 of Theorem 1. We first note that
dim, K, =T(q) + qa(q). Since v(K,,)=1, this is a consequence of
Lemmas 2 and 3 and the following general result.

Proposition 3. Let (X, p) be a complete separable metric space of
finite topological dimension witp metric p, and let x4 be a Borel probability
measure. If Z,={xeX|d, (x)=d (x)=p} and u(Z,)>0, then dim, Z,=p.
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Proof. 1t follows from Young’s result'* that dim,u=pg. This
immediately implies that dim,, Z,>dim,, u > §.

Fix y> 0. It follows from the definition of pointwise dimension that for
any xe Z, there exists &(x) >0 such that

u(B(x, e)) =+

for any e<e(x). Define Z,,={xeZ,|le(x)2r"'}. Clearly, Z,=
UZ, Z, .. It follows from the Frostman theorem‘®’ that dim, Z,<f+7y.
Since this inequality holds for all y > 0, the desired result follows. |

We need the following lemmas.

Lemma 3. The function 7{q) is real analytic for all geR.

Proof. Consider the function c¢:R*>— CXX},R) defined by
(g, r)=qlogy +rlogla-y|. This function is clearly real analytic and
¢,=clg, —T(q)). Since the pressure P is real analytic,** the desired
lemma follows immediately from the Implicit Function Theorem once we
verify the nondegeneracy hypothesis. For that we use Ruelle’s formula for
the derivative of pressure (see Appendix B). The nondegeneracy condition
is

dP(c(q, r))‘
a" (. —Tig))

Lemma 4. For all ¢ we have a(g)= —T'(q).

= [ loglaGz())] du, %0 1 13)

Proof. Recall that ¢, = c(q, — T(q)), where the function ¢ was defined
in Lemma 3. Since P(¢,) =0 for all g, we have

9P(c(qg, "))+5P(C(q, r)
dq or

T'(q9)=0

r=—"Tg)

d
d—qP(¢q)=

Using the formula for the derivative of pressure, we obtain that
P(c(q, 1))/0q], - 1)
C(q’ ¥ ))/a’ |r= —T(g)

SJ log(y(x)) dv,,
", log la(x)| dv,

T'(q)=—

=—alq) 1

Lemma 5. The function T{q) is convex. It is strictly convex if and
only if v#£m.
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Proof. Using the chain rule to compute the second derivative
(0°/0q%) P(c(q, r)) evaluated at the point (g, r) = (g, — T{(q)) [recalling that
P(¢,)=0], we obtain that

a P aZP T 2P o r
o= {ro (7461) (P2, (7

8 <5P(C‘, .)) :
or
evaluated at (¢, r) = (g, —T(q)).

Ruelle'** explicitly computed the second derivative of pressure for the
shift mapping on 2’} and showed that

FPlh+e fi+e:/>)
Oe, Oe,

= Q/,(fh fz)

s=n=0

where Q, is the bilinear form on C*Z'}, R) defined by

0fifd= X ([ 5 thecrdn=[ fidu [ fodu,)

and y, is the Gibbs measure for the potential /. Ruelle also shows that
Q,f, f)=0 for all f and that Q,(f, f/)>0 if and only if f is not
cohomologous to a constant function.

Applying this second derivative formula to compute the three second
partial derivatives in the expression for T"(g), we obtain that

T"(q)=Q (log Y(w) — T'(q) log |a(x(w)), log Y(w) — T'(q) log |a(x(w))|)
-1
<[] 108 la(z(e)| dufo)|

where @, is the bilinear form defined on C*( 2}, R) by

0, f1r 1 Z (fﬂf. et da, =[S, | frde,)

It follows that T"(q)>0 provided that the function logy(w)—
T'(q) log |a(¥(w))| is not cohomologous to a constant function. This can
be assured provided that the functions log Y¥(w) and C log |a(x(w)}] are not
cohomologous for any positive constant C> 0. On the other hand, if there
exists C>0 such that the functions logy(w) and Clog |a(y(w))| are
cohomologous, it follows that C=d and thus v=m. This implies that
T'(g)=d for all ge R and hence 7(q)=(1—gq) d is a linear function. |
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It follows from Lemmas 3-5 that the function a(q) is analytic and
oa'(q)=—T"{(q)<0. Hence, the range of the function a{g) contains an
interval. This implies Statements 2—4 of Theorem 1.

We now prove the final statement of the theorem. Given r >0, con-
sider the Moran cover U = { R/} of J. There are positive constants C,; and
Cs independent of r such that for every j one can find a point x; € R/
satisfying

B(x;, Cysr)c R/ < B(x;, Cyer) (14)

Since the measure v is diametrically regular, it follows from (14) that for
every geR

Z W(B(x;, Cyer))! < Cyy Z "(B(-\'j, Cysr))! < Cyy Z "(R;{)" (15)

i g i

where C,;>0 is a constant independent of j and r.

Let ¢ be a cover of the repeller J by balls B(y;, r). For each j >0,
there exists B{y,,r) €%, such that B( Vi ryn R/ # . Consider the new
cover of J by the balls B;=B(y,, 2C,r). By (14), each basic set R/ is con-
tained in at least one element of the new cover.

Define an equivalence relation on the basic sets R/ by saying that two
basic sets are equivalent if they are both contained in the same element of
the new cover. By (14), each equivalence class contains at most K elements,
where K is a constant independent of r and j. For each equivalence class
¢, determined by some ball B,, we have,by (14), that for any ¢ =0

Y w(R)?< KW B,)* (16)
R{Eﬁk
Since the measure v is diametrically regular, we obtain by (14) that for any
g<0
Y. V(RS Cuv(B,) (17)
Rle&

where C,3>0 is a constant. Exploiting again the fact that the measure v is
diametrically regular, we conclude using (16) and (17) that for all ge R,

Y. WRI'SKCY Y v(B,)
RleW, k

SC},ZV(B,\.)"<C30 Z v(B)* (18)

k Be%,

where C,3>0 and C,,>0 are constants. Statement 6 of the theorem
follows immediately from (15), and (18). |
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It follows from Statement 1 of Theorem 1 that for v-almost every xeJ

where /hv(g) is the measure-theoretic entropy of g and A,>0 is the
Lyapunov exponent of measure v, ie.,

1 do" I{—l] I ¥
A,= lim log lldeg’ll _ lim 2i= logfa(g"(x

n—w n "n— o n

)l = L log |a(x)| dv(x)

In the next theorem we summarize some refined properties of the pointwise
dimension of equilibrium measures.

Theorem 3. Let v=v. be the equilibrium measure corresponding
to a Hélder continuous function & on a conformal repeller J. Then for
every o, < a < a, we have the following:

(1) The set y(K,) =K, (Theorem 2).

(2) There is a unique equilibrium measure v, on J such that
v {K,)=1 and d, (x) =a for every point xe K,.
(3) The measure v, =v and the measure v, is the measure of maxi-
mal dimension, ie., v, is the equilibrium measure for the potential
dlog |a(x)|, where d =dim,, J.

Remarks. (1) Assume that v=m. In the proof of Lemma 5 we
showed that this implies that T(g) =(1 —¢) d. Since the pointwise dimen-
sion of m is equal to d everywhere in J, we have that f(d)=d and f,(«) =0
for all a #d.

(2) Recall that v (K,)=1 for each ae[a,, x,], where v, is an equi-
librium measure. Since equilibrium measures are fully supported on J and
assign positive measure to all open subsets, it follows that the sets K, are
dense in J.

It is a well known property of box dimension that the box dimension of
a set coincides with the box dimension of the closure of the set.'®’ Since the
sets K, are dense in J for ae[«,, a,], it follows that the box dimension of
these sets k,,are equal to the box dimension of the set J. This observation
shows that the multifractal analysis becomes trivial if Hausdorff dimension is
replaced by box dimension in the definition of the dimension spectrum.

(3) Assume that v# m. The function f,(«) is defined on the interval
[, 5], where

o, =— lim T'(q), a,=— lim T'(q)

= +L ¢ — —o
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It follows that f(«) < d=dim,, J for any « >0 and f((0)) = T(0) =d. Since
the function f,(a) is strictly convex, «(0) is the only value where this func-
tion attains its maximum d (see Fig. 2B).

Differentiating the equality f{a(g)) = T(q) + ga(g) with respect to g, we
obtain that for every ge R

Sladg))=q
This implies that
lim f'(a) = + o0, lim f(a)=—c0
Furthermore, f"(a(1))=1. Since T(1) =0 we have that f(«{1)) =a(1). Since

filo) 1s strlctly convex, we conclude that the equation f.(a)=a has the
unique root a(1). Moreover, the function f,{a) is tangent to the line of
slope 1 at (1) (see Fig. 2B).

(4) Theorem 1 can be generalized to Holder continuous expanding
and conformal maps. A continuous map g: X— X on a compact metric
space X is said to be expanding if g is a local homeomorphism and there
exist constants b >a > 1 and ,> 0 such that

B(g(x), ary c g(B(x, r)) = B(g{x), br) (19)

for every xe X and 0 <r <r,.

We say that a Holder continuous expanding map g is conformal if
there exist a Holder continuous function a(x) with |Ja(x)|>1 on X and
positive constants C,, C,, and r, such that for any 0 <r<r,, any two
points x, y € X, and any integer n >0 we have: if p(g*(x), g"(y)) < r, for all
k=0,1,..,n, then

Cy [T latg*(xnl ' < plg"(x). g"(y) < H Nl (20)

k=0 k=t

We denote by m the Gibbs measure corresponding to the function
—dlog |a(x)| on X, where d is the unique root of Bowen’s equation
P(—dlog la(x)|)=0.

Let v be the Gibbs measure corresponding to a Holder continuous
function ¢ on X. Define y =& — P(&). Clearly y is a Hoélder continuous
function on X such that P,(logy)=0 and v is the unique equilibrium
measure for log .

Define the one-parameter family of functions £, g€ ( — o0, o), on X by

q°

EAx)=—~T(q) log |a(x)| + g log ¥(x
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where T{q) is chosen such that P(,)=0. One can show that for every
ge R there exists only one number 7(g)} with the above property. It is
obvious that functions ¢, are Holder continuous on X. The following
statement effects the complete multifractal analysis of Gibbs measures sup-
ported on repellers for Holder continuous conformal expanding maps. Its
proof is similar to the proof of Theorem | and uses Theorems Al and A2
in Appendix A.

Theorem 4. Let g be a Holder continuous conformal expanding
map of a compact set X. Then for any Hoélder continuous function ¢ on X
we have the following:

(1) The pointwise dimension d,(.x) exists for v-almost every x € X and

- §rlog y(x) dv(x)
“j.\' log |a(x)| dv{x)

d(x)

where v=v, is the Gibbs measure corresponding to <.
(2) The function T(g) is real analytic for all g€ R, 7(0) =dim,, F,
and T(1)=0, T'(¢) <0, and T"(q) =0 (see Fig. 2A).

(3) The function «fg)= —T'(g) attains values in the interval
[o,, 2], where 0<a, <a,<oo. The function f(x(q))= T(q)+ qga(q). (see
Fig. 2B).

(4) 1If v is not the measure of maximal entropy or v #m, then the
functions f,(«) and T(q) are strictly convex and form a Legendre transform
pair {see Appendix C).

(5) The v-measure of any open ball centered at points in X is positive
and for any ¢ € R we have

loginf, > .., v(B)*
T4) = —lim v, 2. Be 4,
) log r

where the infimum is taken over all finite covers 4 of X by open balls of
radius r. For ¢ > 1 (actually for any g # 1, see Remark 5 after the statement
of Theorem 3) we have that

(5) For an arbitrary Borel probability measure v on a metric space
X, the HP-spectrum''! is not a priori defined for g < 1. One problem is that
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the measure of some small balls may be zero. However, if all balls have
positive measure (as in the case of equilibrium measures for conformal
repellers), the definition of HP spectrum for all ¢ # 1 makes formal sense
although the integral may be infinite.

In our proof of Statement 5 of Theorem 1, we actually show that for
all ¢ #1 (not just for g>1 as stated), the function 7(g)/{(1—q) coincides
with this extended definition of HP (g). In particular this implies that
HP,(q) is finite for all g+ 1.

The case g =1 is treated in Remark 6.

(6) We define the notion of information dimension. Let & be a finite
partition of the space X. Given a Borel finite measure v on X, the entropy
of & with respect to v is defined as

H(&)E - ¥ v(C;)log v(Cy)

where C; is an element of the partition £. Given a positive number ¢, we
set

H(e)=inf{H(&): diam ¢ <&}

where diam ¢ = max diam C..
We define the information dimension of v by

gr .. HJe)
1) = him )

provided that the limit exists.

Young'*"’ showed that if d,(x)=d.(x)=d for v-almost every xe X,
then I{v)=d and hence is equal to the Hausdorff dimension of v.

Assume that the measure v is diametrically regular. It is conjectured
that in “good” cases

Iv)= lim R(q)= lim HP(q)
g— 1+

q— I+
Since the function T{(q) is differentiable, the limit

T(q)

i 7

g—1 l—q
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exists and is equal to —T'(1)=«a(l). It follows from Statement 5 of
Theorem 1 that

loginf, > ... v(B)logv(B)
—T'(1) = lim G Be
r—0 logr

where the infinum is taken over all finite covers ¥, of J by open balls of
radius r. This implies that

Sla(1))=a(l)=—=T"'(1)=I(v)

3. EXAMPLES

Theorem 1 allows us to effect a multifractal analysis of equilibrium
measures for hyperbolic rational maps, one-dimensional Markov maps,
and conformal toral endomorphisms. We first consider rational maps.

Let R: € — € be a rational map of degree d =2, where € denotes the
Riemann sphere. The map R, being holomorphic, is clearly conformal. The
Julia set J of R is the closure of the set of repelling periodic points of R
[ recall that a periodic point p of period m is repelling if |(R") (p)| >1].
One says that R is hyperbolic (or that the Julia set is Ayperbolic) if the map
R is expanding on Jy, ie, if it satisfies conditions (1)-(3) in the definition
of smooth expanding map with respect to the spherical metric on €. It
is known that the map z — z2 + ¢ is hyperbolic provided |c| < 1/4. It is con-
jectured that a dense set of rational maps is hyperbolic. Since the Julia set
of a hyperbolic rational map is a conformal repeller, Theorem 1
immediately implies the following statement.

Corollary 1. If v is an equilibrium measure for a hyperbolic
rational map, then Statements 1-4 of Theorem 1 hold.

We now consider one-dimensional Markov maps. Let g be a Markov
map of the interval 7=[0, 1]. This means that there exists a finite family
I\, I,.., I, =1 of disjoint closed intervals such that:

(1) for every 1< <M, there is a subset K=K(/) of indices with
g(IJ) = UkeKIk mod 0.

(2) For every xe U_,f,, the derivative of g exists and satisfies
|g’'(x)| =« for some fixed o> 0.

(3) There exists A>1 and n,>0 such that if g"(x)e
0<m<n,—1, then |(g™) (x)| = A

I, for all

VA
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Let J={xe!|g"(x)el; f, for all ne N}. The set J is a repeller for the
map g. It is conformal because the domain of g is one-dimensional. Hence,
Theorem 1 immediately implies the following statement.

Corollary 2. If v is an equilibrium measure for a Markov map,
then Statements 1-4 of Theorem 1 hold.

Rand'*" carried out a partial multifractal analysis of equilibrium
measures for a cookie-cutter map. Cookie-cutter maps are a special type of
Markov map where one has only two subintervals which get mapped onto
I'under g. He studied the dimension spectrum only with respect to the sym-
bolic metric.

Another example of a conformal expanding map is a conformal toral
endomorphism defined by a diagonal matrix (m,.., m), where m is an
integer and |m| > 1.

Corollary 3. If v is an equilibrium measure for a conformal toral
endomorphism, then Statements 1-4 of Theorem 1 hold.

4. MULTIFRACTAL ANALYSIS OF EQUILIBRIUM
MEASURES ON LIMIT SETS ON MORAN-LIKE
GEOMETRIC CONSTRUCTIONS

About 50 years ago, Moran''”’ computed the Hausdorff dimension of
geometric constructions in R” given by p basic sets 4, ., satisfying the
following:

(1} Each basic set is the closure of its interior.

(2) At each level the basic sets do not overlap (their interiors are dis-
joint).

(3) A basic set §;, ..., is geometrically similar to the basic set 4, ..,
for every j and n.

(4) diam(d,, ..., ;) =4, diam(J;, .., ), where 0 <1,<1 for j=1,.., p are
the ratio coefficients.

These constructions are called Moran constructions. Moran discovered the
formula s =dim F, where s is the unique root of the equation

Moran’s major idea was to construct an optimal cover of the limit set
(Moran cover) which is determined by the ratio coefficients. Our main
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insight into the Moran approach‘?” ?®’ is that many of the strict conditions
in the definition of a Moran construction are not required to build the
Moran cover. For example, the geometric similarity of basic sets may be
greatly weakened. Furthermore, although Moran only considered construc-
tions modeled by the full shift, his approach can be generalized to construc-
tions modeled by arbitrary symbolic dynamical systems. Our approach
allows us to extend the original Moran idea to much broader classes of
geometric constructions.

In particular, we introduce the Moran-like constructions defined as
follows. Let (Q, o) be a symbolic dynamical system where QcXfisa
compact shift invariant subset. Throughout the paper we assume that alQ
is topologically transitive. We allow basic sets 4, ..., with n-tuples 7, ---i,
which are admissible with respect to Q such that:

(1) The following holds:

B, <=4, . ;,<B,. .,
where B, .., and En--- ;, are closed balls having radii r,..; and 7, .,
respectively.
(2) int B,I_,_,,,nintg,-;_.,,;;Q if ()50 £,y ({5 1)
(3) ri..,=CIIj-\4, and 7., =C,TIj_, 4, where 0<1,<1,

i=1,.,p, and C,, C, are positive constants.

We stress that the topology and geometry of basic sets may be quite
complicated. For example, they may not be connected and their boundary
may be fractal. In particular the basic sets at level n of the construction
need not be geometrically similar to the basic sets at level n— 1. Further-
more, the basic sets at a given level may intersect. This class of constructions
includes Moran geometric constructions. One very particular case is when
a geometric construction is effected by a finite collection of similarity maps
(affine contractions) A,,..., &, such that

A.

LIRERR 7

=hy o oh,(4)

where 4 denotes a ball in R” (Fig. 3).

Given wre Q, the intersection (}*_, 4, ..., consists of a single point x.
This produces a map x: O — F defined by x(w)=x. It is a Holder con-
tinuous map from Q onto F. To see this, let w,=(iji,---ij---) and
wy=(iyiy---i,k---), j#k, two points in Q. We have

px(w,), x(w H Ay < Ao < Cpl,, 05)°

i=1

8§22 86-1-2-18
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Fig. 3. Moran geometric construction with disjoint basic sets.

where C>0 and O <a <1 are constants and p(-, -} denotes the Euclidean
metric on F. Therefore, any Hoélder continuous function on F pulls back to
a Holder continuous function on Q.

We assume that basic sets of a Moran-like geometric construction
satisfy the following separation condition: for any two distinct n-tuples
(iy ---1,) and (j, ---j,) we have

d;,. ... 0d;,. ;, N"F=

1o iy Jreend

This separation condition allows significant overlaps of the basic sets on the
same level. 1f this condition holds, the coding map y is a homeomorphism
and we can consider the induced map G= x>y "' on the limit set F.

Since we consider geometric constructions which are modeled by a
subshift of finite type (X'}, ¢), the induced map G on the limit set is a local
homeomorphism. Moreover, if one builds a geometric construction
modeled by an arbitrary symbolic system (@, ) with the induced map on
the limit set being expanding, then ¢|Q must be a subshift of finite type,
ie, @=2Z7 for some transfer matrix 4. This follows from a result of
Parry.'®®

The following theorem effects a complete multifractal analysis of Gibbs
measures supported on limit sets of Moran-like geometric constructions
modeled by subshifts of finite type. It is an immediate corollary of
Theorem 4.
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Theorem 5. Let G be the induced map on the limit set F for a
Moran-like geometric construction modeled by a transitive subshift of
finite type. Assume that the separation condition holds. Assume also that
G is expanding and conformal [see (19) and (20)]. Then Statements 1-5
of Theorem 4 hold.

Consider a conformal self-similar geometric construction. Recall that
this means that the basic sets 4, ., are given by

4. ,=hyo---oh(D)

where & ..., h,: D— D are affine maps, i.e., p(h;(x), h;(y))=24,p(x, y) with
0<;<1 and x, ye D (a simply connected compact subset of R"”). Assum-
ing that basic sets 4,,i=1,.., p, are disjoint, one can easily see that the
induced map G on the limit set F is expanding and conformal [with
a(x)=);,|‘l where y(x)={(i,i, ---)]. Thus, Theorem 4 applies. For some
particular classes of measures (Bernoulli measures, self-similar measures,
etc.) this result was obtained by several authors (see, for example, refs. 2,
7, 8, 20, 21, and 32).

Remarks. (1) A geometric construction satisfies the open set con-
dition if and only if for all n e N, the interiors of all basic sets at level » are
disjoint. We consider conformal selfsimilar geometric constructions satisfy-
ing the open set condition and where the basic sets at the first step
4,=h,(D) satisfy h,(D)cinterior(D). The following simple argument
shows that Theorem 5 applies for these constructions.

Let #={xeF|#(x '(x))>2}, ie., the set of points which do not
have unique coding under y. Since the construction is given by self-similar
maps, we have

o

#<\) U h,o--- oh, (boundary (D))

n=1 i1--.iy

s

={J | (boundary(4, . ,))

n=1 i1--iy
However, our hypothesis that /,(D) < interior(D) implies that

FAn#cFn U J A - oh, (boundary (D))= &

n=1 iy---iy

This shows that all points.in the limit set F have unique codings and thus
the induced map G is defined on all of F. Hence Theorem 4 applies.
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Lau and Ngai''”' effected a type of multifractal analysis of self-similar
measures on the limit sets of self-similar constructions where some type of
overlaping of basic sets is allowed. They only work with upper Rényi
dimension and thus avoid the nontrivial issue of the limit (defining the
Rényi dimension) existing.

(2) Consider again a self-similar geometric construction modeled by
the full shift & and assume that v is the Bernoulli measure defined by the
vector (p,..., p,), where 0 < p, <1 and 3} _, p, =1. It follows from results
in ref. 27 that

Ps+(log(A;1"'p1)) =0

is equivalent to

5 spopye

k=1

An easy calculation shows directly that 7{0) =d, 7(1) =0, and that T(q)} is
either linear or strictly convex.

(3) One can obtain a more general class of geometric constructions
(more general than self-similar geometric constructions) to which Theorem
4 can be applied by considering a geometric construction effected by p
sequences of bi-Lipschitz contraction maps 4!": D — D such that

'y =hl.llohl_2)0 Oh(u)( )

HE il i iy
and for any x, ye D,
A dist(x, y) < dist(h(x), B (y)) < A dist(x, p)

where 0 < 2" <A <1 are Lipschitz constants for the maps (h!")) ' and
h'", respectively.””®" We assume that the Lipschitz constants admit the
following asymptotic estimates: there exist 0 < A, < 1 such that

l(”) h('n)
' ' —Il, %__ ‘Se—” (21)

One can check that the induced map G is expanding and conformal [with
a(x)=A;", where y(x)=(i,i,---)] and Theorem 4 applies.

Theorem 11 in ref. 27 shows there exists a geometric construction
effected by two sequences of bi-Lipschitz contraction maps which do not
satisfy the asymptotic estimates (21). Although the basic sets at each step
of the construction are disjoint and the induced map G on the limit set F
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is expanding, this geometric construction does not admit the multifractal
analysis described by Theorem 5. Theorem 11 in ref. 27 provides two sub-
sets 4 and B in F of positive measure for which the pointwise dimension
exists for almost all points and takes on two distinct values «, and «5. This
implies that f,(a;) =«;, i=1, 2, which contradicts the fact that the equation
fA{a) =a has the unique root a =o«(l). This construction yields a Holder
continuous homeomorphism of a compact metric space with an ergodic
invariant measure of positive entropy for which the dimension spectrum is
not convex, and hence the multifractal formalism fails.

It is still an open problem in dimension theory whether one can effect
the complete multifractal analysis of Gibbs measures supported on the
limit set of a Moran geometric construction modeled by a transitive sub-
shift of finite type. By Theorem 9 in ref. 27, the pointwise dimension of such
a measure exists almost everywhere.

(4) Theorem 1 is valid for any Moran geometric construction
modeled by a symbolic system on which the pressure function is smooth.
One of the reasons why we require the symbolic model (Q, o) to be a sub-
shift of finite type is that the smoothness of the pressure function is essen-
tially known only in this case.

(5) We stress again that we have not used any techniques from the
theory of large deviations to prove Theorem 1. However, Rolf Riedi
explained to us that by combining our smoothness and convexity results
for T(q) with (5), we have verified all the hypotheses needed to apply a
large-deviation theorem of Ellis and obtain an interesting formula for the
dimension spectrum.

More precisely, consider the random variable X, =log v(4”), where n
has been picked uniformly from 1,.., N,. The moment generating function
of X, is

c(q)=exp(gX,)=(1/N,) Y. w4}

/l{ €N,

Therefore, (5) implies that

log ¢,(q)

. lim —=T{(q)—T(0)

r-0 log

which by Theorem 1 is smooth and convex. Thus, the assumptions of
Theorem I1.2 in ref. 6 are met with a,=1log q{1/r).

Recall that the Legendre transform of 7(g) is the (dimension spec-
trum) function f(«). The following theorem is a corollary of Ellis’
theorem'*®’ and gives a counting approach to the multifractal analysis.



268 Pesin and Weiss

Theorem 6. Let v be the equilibrium measure on F corresponding
to a Holder continuous function &. If v#v,,, or v, #m, then

. .. logN,(a,c¢)
f"(a)_,!ﬂ,l-l_r.r}) log{1/r)

where N («, ¢) is the number of sets 4/ € A, such that « —e < v(47) <a +e.

Again we thank Rolf Riedi for supplying this remark.

(6) Consider the case when the measure m is the measure of maxi-
mal entropy m; = v,,,,. This implies that the function a(x) is cohomological
to a constant (in particular, A, = A=const for all i). If v=m, =v_,,, then
the function  is cohomological to a constant as well. This implies that
T(g)=(1—gq)d Since the pointwise dimension of m; is equal to s
everywhere in F, we have that f,(d)=d and f,(«)=0 for all a #d.

APPENDIX A. THE DR PROPERTY OF EQUILIBRIUM
MEASURES FOR CONTINUOQUS
EXPANDING MAPS

Let X be a compact metric space with metric p. We say that a con-
tinuous map g: X — X is expanding if g is a local homeomorphism and
there exist constants F>= E>1 and ry >0 such that

B{(g(x), Er) = g(B(x, r)) = B(g(x), Fr) (A1)

for every xe X and 0 <r <r,.

Without loss of generality we may assume that for any x € X, the map
g restricted to the ball B(x, r,) is a homeomorphism.

We recall that a Markov partition for an expanding map g: X — X is
a finite cover of X by elements, called rectangles, { R, ..., R,}, such that:

(1) Each rectangle R is the closure of its interior K.
(2) RnR =g fori#j.
(3) Each g(R)) is a union of rectangles R;.

We construct a special Markov partition for an expanding map such
that the rectangle containing a given point in X is almost a ball. Let R(x)
denote the rectangle in £ that contains the point x.

Theorem A1. There are positive constants C,, C,, and a positive
integer k such that for any 0 <»<r, and any x € X there exists a Markov
partition #,.={R,,.., R,} for the map g* such that diam(R,) < C,r for all
i=1,., M and B(x, C,r) = R(x).
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Proof. Let k>1 be an integer which we specify later. Fix a point
x€X and choose r such that /0r <(1/b*)r,, where b is some positive
number. Also choose a finite cover #° of X by balls BY = B(x,, r) such that
x;=xand

3 .
U B?nB(x,Z’>=Q
Given i, consider a cover %7 of the set g“(B}) by balls B} € #°. Let
= U g758)
B € /

Lemma A1. We have B} < B(x,, r+2a*r).

Proof of Lemma A1. Consider a ball Bfe¥%¥! and a point
yeB)\g* (B" Choose z € B} n g"(BY}). Clearly the dlstance plz, y)<2r. By
Al p(g=*y, g *z)<a*2r. "The lemma follows since g *zeB). |}

Consider the cover #' of X by sets { B/}. Given i, we have
g"B))=|J B} (A2)
Bjem.(’l
Let %/ be the cover of the set g(B]) by sets B; € B' with B} e Set
U g*"(B )
I:’ [ /
Lemma A2. We have B < B(x;, r+2a~*r+2a=%r).

Proof of Lemma A2. Consider a set B' €¥¢! and a point
ve Bj\g*(B!). Choose ze B n g"(B}). Clearly the distance p(z, y)<2r. By
(A2) and Lemma Al, we have p(y, z) <24 *r. The lemma follows. ||

By induction we construct covers #"={B/},n=2,3,., with the
following properties:

(1) gB=Upreun B "
(2) Bl cB(xi,r+2ryi_ A~%)

We consider the cover 4™ which consists of the sets

L
= U B!
n=0
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Lemma A3. We have that:

(1) gB7)=Upgreur B

(2) B < B(x;, {14+247*/(1—A47%))).

(3) For sufficiently large k the set B” < B(x,, (5/4) r).
(4) Uiz B nB(x,r/4)=(.

Proof of Lemma A3. This first two statements are an immediate
consequence of the above properties 1 and 2 of covers #". In. Statements
3 and 4 follow directly from them. |

The first statement of Lemma A3 means the cover #™ is a Markov
cover, 1.e., its elements satisfy properties 1 and 3 in the definition of Markov
partition. We will cut elements of this Markov cover to obtain the desired
Markov partition.

Given ye X, let s(y) = (i, ---i,) be the set of integers such that y eB,.;’*.
Set

Ry)= ) B
ijes(y}
Lemma A4. (1) For every ye X, the set R(y) is open.
(2) If ze R(y), then R(z) = R(y).
(3) Ifz¢ R(y), then R(z)nR(y)=(.
(4) For every ze X, we have R(gk(z)) < gf(R(z)).
Proof of Lemma A4. The first statement is obvious since the sets B

are open. Now assume that ze R(y). Then z eB’ for every i;es(y) and
s{y)cs(z). Hence

R()= (| Br< () By
ijes(z) fes(
Now assume that z¢ R(y). If there exists we R(z) n R(y), then by State-
ment 2 we have R(z) < R(y). Thus z € R(y) and we obtain a contradiction.
To prove the last statement, consider a point ze R(z) = ﬂ,} es(= ,B’.
Then g (7)60,15“ , 8 (B’). By Statement 1 of Lemma 3, gf(z)e
Nije st B and hence

Rig“z)e () By < () &4BY)

frestghizn ireslz)

This completes the proof of Lemma A4. ||
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Lemma A4 implies that there exists a cover %, of X by closed sets
{R;..., R,} and an integer 1 <k <M satisfying the following:

(1) For every 1 € j<k and every *eR°-we have R;= R(:z).

(2) For every k+ 1< j< N there exist finitely many points y, e X
such that for every ze R,, we have R, =R(z)\U, R( (¥;)-

We claim that the cover £, is a Markov partition for g*. We need only
check Property 3 in the definition of Markov partition, since the other
properties follow from Lemmas A3 and A4.

Given a set R; and a point = eﬁ,., assume that g*(z) ER

If 1 i<k, then R,= R(z). By Statement 4 of Lemma A4 we have that
R(g*(z)) = g"(R,;). Since R, < R(g*(z), this implies the Markov property.

If K+ 1<i<N, then R,=R(z)\U, R(y,). By Statement 4 of Lemma
A4 we have that R(g*(z)) < g"(R(z)). Since R_ R(g*(z)), this implies that
R; = g"(R(z)). Applying an appropriate branch of the inverse map g, we
have that g“R < R(z). Assume that there is a point w e g ~*r; which does
not belong to R;. Then we R( y;,) for some y, eX. This implies that
g w)e R; and hence R, =R(g kw )) By Statement 4 of Lemma A4, we
have

g XR) = g "(R(gh(w))) = R(w) = R(y,;)

This is impossible since zeg~*(R;) and the Markov property has been
verified. '

It follows directly from Statement 4 of Lemma A3 that the Markov
partition £, has the desired property with respect to the given point x. |

We use the special Markov partition constructed in Theorem Al to
prove the following statement.

Theorem A2. Let ¢ be a Holder continuous function on X. Assume
that g is conformal (see (20)). Then any equilibrium measure for ¢ with
respect to g is diametrically regular [ see condition (DR)].

Proof. Let u, be an equilibrium measure for ¢. Let also # be a
Markov partition of X. Given x€ X and a number 0 <r<r,, consider a
Moran cover U, of X and choose those elements R'",.., R'" from this
cover that intersect the ball B(x, 2r). We have that

(1) R‘”:R,-,,_,,-W,,j: 1,.., m where x;€ X is a point;

(2) diam RV'gr, j=1,..,m;

(3) m< K where K is a constant independent of x and r;
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There is an element R'” in the Moran cover that contains x. We have that

R" < B(x,ry<B(x,2r)< | J RV (A3)

i=1

Define the function s such that log y = ¢ — P(¢). Clearly, ¥ is a Hdlder con-
tinuous function on X such that P(log /) =0 and yu, is the Gibbs measure
for log . We have for any j=1,..., m, that [see Appendix B, Eq. (B1)]

()~ 1 n(\j)—l

> |1 wle pARSCy 1T wlghx)) (A4)

k=10 k=0

where C, >0 and C, >0 are constants. Since g is expanding, we also have
that

n;\'—(':\.'(')il U4 gl\('\‘j))
T wlen = (A3

where C, >0 and C, >0 are constants. It now follows from (A3)-(AS5) that

m nix) —1
U B(x, 2r))<u‘,,<U R“”)QK [T w(ghx)

G=1 k=0

S Cspu(RYV) < Cspy(B(x, 1))

where C5>0 is a constant. This completes the proof. |

APPENDIX B. FACTS ABOUT PRESSURE

This Appendix contains some essential definitions and facts from sym-
bolic dynamics and thermodynamic formalism. For details consult refs. 1
and 34. Let X denote a compact metric space and let C(X) denote the
space of real-valued continuous functions on X.

(1) Let g: X— X be a continuous map. We define the pressure P:
C(X) — R defined by

P(¢)= sup <h J‘ ¢du>
e X)

where 9(X) denotes the set of shift-invariant probability measures on X
and &,(f) denotes the Kolmogorov-Sinai entropy of the map g with
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respect to the measure u. A Borel probability measure u = u, on X is called
an equilibrium measure for the potential ¢ € C(X) if

PU$)=h,(g)+ ] ¢ du

(2) The pressure function P: CH{2'},R)— R is real analytic. We
remark that this result may not be true if 2’} is replaced by an arbitrary
symbolic system.

(3) Let ¢ CYZ}, R). The map R — R defined by t — P(t¢) is con-

vex. It is strictly convex unless ¢ is cohomologous to a constant, ie., there
exist C>0 and ge C*2'}, R) such that ¢(x)=glox)— g(x)}+ C.

(4) Let e C(Z}). A Borel probability measure y=pu, on X7 is
called a Gibbs measure for the potential ¢ if there exist constants D,, D, >0
such that

< wly yi=x. 1=?,‘...], n —kl} <D,
exp(—nP(¢) + X o ¢(a"x))
for all x=(x,x,---)eZ} and n>0. For subshifts of finite type, Gibbs

measures exist for any Holder continuous potential ¢, are unique, and
coincide with the equilibrium measure for ¢.

{5) Given two continuous functions 4, and %, on 2}, we have

d
G| P hehy)= J:: hy du,, (B1)

where u,, denotes the Gibbs measure for the potential /1.

APENDIXC. FACTS ABOUT THE LEGENDRE TRANSFORM

Let f be a C? strictly convex map on an interval I, hence, f“(x) >0
for all xe I The Legendre transform of fis the function g of a new variable
p defined by

glp) =max (px—f(x))

It is easy to show that g is strictly convex and that the Legendre transform
is involutive. One can also show that strictly convex functions f'and g form
a Legendre transform pair if and only if g(a)= f(g)+qgx, where
x(qg) = —f"(q) and g = g'(a). See ref. 33 for more details.
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