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In this paper we establish the complete multifractal formalism for equilibrium 
measures for H61der continuous conformal expanding maps and expanding 
Markov Moran-like geometric constructions. Examples include Markov maps 
of an interval, beta transformations of an interval, rational maps with hyper- 
bolic Julia sets, and conformal total endomorphisms. We also construct a 
H61der continuous homeomorphism of a compact metric space with an ergodic 
invariant w'neasure of positive entropy for which the dimension spectrum is not 
convex, and hence the multifractal formalism fails. 
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1. I N T R O D U C T I O N  

Invar ian t  sets of most  dynamica l  systems in general are n o t  self-similar in 
the strict sense. However,  part  of these sets can sometimes be decomposed 
into (perhaps uncoun t ab ly  many)  subsets each suppor t ing  a Borel prob-  
ability measure possessing a type of scaling symmetry. This means  that  the 
measure admits  a group of scale symmetries which reproduces copies of the 
set (or its sigriificant par t  of full measure)  on arbi trar i ly small scales (up to 
a given precision which decays to zero with scale). Sets that admit  such 
structure are called multifractals. The Hausdorff  d imens ion  of each subset 
can be used to characterize this structure. The detailed analysis of the 
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multifractal structure of a set invariant for a chaotic dynamical system 
allows one to obtain a more refined description of the chaotic behavior 
than the description based upon purely stochastic characteristics. 

This paper describes the multiffactal analysis of measures invariant 
under dynamical systems. The concept of a multifractal analysis was 
suggested in the seminal paper by Halsey et al., ~ ~ who where they were 
attempting to understand the scaling behavior of physical measures on 
strange attractors, diffusion-limited aggregates, etc. They were also search- 
ing for quantities to distinguish between attractors which have the same 

fi 'actal dimension, The multifractal analysis of measures has became a pop- 
ular interdisciplinary subject of s tudy--a  search of several electronic 
databases showed that there are now hundreds of related papers in the 
physical and mathematical literature. 

The first rigorous multiffactal analysis of dynamical systems was 
carried out in ref. 5 for a special class of measures invariant under some 
one-dimensional Markov maps. Lopes ~5~ studied the measure of maximal 
entropy for a hyperbolic Julia set. Recently, Simpelaere ~37~ effected a com- 
plete multifractal analysis for equilibrium measures of Axiom A surface 
diffeomorphisms. 

Our definition of multiffactal analysis is faithful to the deJhTitions in 
ref. 11 and other articles in the physical literature, and our work places 
these notions onto a solid mathematical foundation. The two major com- 
ponents of the multifractal analysis are the Hentschel-Procaccia (HP)  
spectrum for dimensions and the f (~)  spectrum for dimensions (see descrip- 
tions below). The multifractal analysis unifies these two spectra via the 
Legendre transform. 

There are many papers on multifractal analysis which treat only one 
of these two components. In a number of papers the j '(e) spectrum for 
dimensions is studied not with respect to the natural metric, but only with 
respect to the symbolic metric (i.e., the standard metric on the symbolic 
space associated with the dynamical system), which is just an intermediary 
object and not physically meaningful. In some cases the two dimension 
spectra coincide, but this is a highly nontrivial result (see Theorem 2). 
In addition, most authors restrict their analysis to Bernoulli measures or 
self-similar measures and do not include measures of actual physical 
interest, like the Bowen-Ruelle-Sinai measures (BRS) on hyperbolic 
attractors and repellers (or general Gibbs measures). Thus, very few papers 
in the mathematics literature on multifractal analysis are true to the 
original spirit of the subject and help put it on a solid mathematical 
foundation. 

During the last few years, there has been a burst of activity in studying 
the multifractal analysis for measures supported on the limit sets of 
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geometric constructions in ~". Various authors have obtained some par- 
ticular results for restricted classes of measures: they mostly studied the 
f(a) spectrum with respect to a symbolic metric and mostly considered 
Bernoulli measures. Moreover,  most authors considered only similarity 
constructions (see extended list of references in ref. 17). 

Let us say a few words for motivating the multifractal analysis. Let 
g: M ~  M be a diffeomorphism of a smooth Riemannian manifold M and 
let A c M be a compact hyperbolic at tractor for g. For  simplicity, assume 
that g is topologically mixing on A. Bowen ~ showed that the evolution of 
the Lebesgue measure in a basin of A converges to the BRS measure. From 
the physical point of view, this is the natural measure on the attractor since 
it describes the orbit distribution of points in the basin which are typical 
with respect to the Lebesgue measure. This distribution is not uniform, 
and, as computer  pictures show, there exist spots of high and low density 
of visits sometimes called hot and cold spots (see Fig. 1 ). 

This phenomenon also has been observed for a more general class of 
attractors (hyperbolic attractors with singularities), which includes the 
Lorenz attractor, the Lozi attractor, etc. Attempts to analyze this measure 
in computer  simulations are based on partitioning the basin into a very fine 
grid and estimating the measure of each box by the frequency with which 
a typical orbit visits it. This leads to an enormous amount  of data. 

An approach to encoding all this data was suggested in ref. 11, which 
who utilized the R~nyi spectrum ./'or dimensions, defined as follows. Cover 
the at tractor by a grid of mesh size r, i.e., a partition of the repeller such 
that each partition element contains a ball of radius 1/2r and is contained 

O . ~ . 

cold spot . o  ~ 

hot spot Q "  

Fig. I. Hot and cold spots on an attractor. 
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in a ball of radius r, where both balls are centered at the same point. Given 
a family of grids parametrized by mesh size r, define 

l �9 'r"~ N[ r ) i q 
R,.(q) = lim l ~  v(C,.) 

1 - q ,.-. o log r 

provided the limit exists, ~38" 391 where v is a Borel probability measure and 
N(r) is the number  of partition elements C~. of the grid with v(Ci . )>0.  A 
priori, the limit may depend on the family of grids. We will show that for 
a large class of measures (diametrically regular measures), the limit is inde- 
pendent of  the family of grids. The result is also true if the number  1/2 in 
the definition of  grid is replaced by any positive number. 

Another approach involves the study of correlations of  the distribu- 
tions of  q-tuples along a typical orbit for q = 2, 3 ..... More precisely, let 
g: X ~ X be a map on a metric space (iV, p) preserving a Borel probability 
measure v. We set 

C(x, q, r, n) = 1 card{(it ..- i,,): p(giJx, gi~x) <~ r for all 0 ~</i ~< ik < n} 

We define the correlation dimension of order q by 

C,l(x)= 1 lim lim log C(x, q, r, n) 
1 - q , - ~  o . . . . . .  log r 

provided the limits exist. If  v is ergodic, it was shown in ref. 24 (see also 
ref. 26) that for v almost every x 

lim C(x, q, r, n) = f  v(B(y,  r)) 'l- t dv(y)  

where B(y,  i") denotes the bali of radius r centered at the point y. Thus, for 
q = 2 , 3  ..... 

1 lira l ogJxv(B(y ,  r ) ) " -  i dv(y)  
C'l( x ) = 1 -- q ,. - ~J log r 

provided the limit exists. In general, one does not expect this limit to exist. 
In ref. 26 the authors constructed an example of a continuous map on an 
interval that preserves a measure absolutely continuous with respect to the 
Lebesgue measure, for which the above limit does not exist for almost 
every x in a large interval in q. Combining this with results in ref. 12, one 
can construct a diffeomorphism of the two-torus preserving an ergodic 
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measure that is absolutely continuous with respect to the Lebesgue 
measure, having positive topological entropy, and for which the above 
limit does not exist for almost every x in a large interval in q. In this paper, 
we show that this limit exists for a broad class of measures including equi- 
librium measures for conformal repellers. This unifies and extends almost 
all cases in the literature. 

The natural extension of the correlation dimension of order q = 2, 3 .... 
to all real values q > 1 was introduced by Hentschel and Procaccia. ~ ~ol Let 
v be a Borel probabili ty measure on a metric space (X, p). For  q >1  we 
define the HP-spectrum for dimensions by 

HP,.(q) = 1 lim log IA-v(B(Y, r)) '~- t dv(y) (HP)  
1 - q , . -  o l o g  r 

provided the limit ex&ts. In some cases the HP  spectrum can be defined 
formally for all q ~ 1 (see Remark 5 after the statement of Theorem 3). The 
R6nyi spectrum was a precursor to the H P  spectrum where one replaces 
the coverings by partitions. 

We work with a class of measures which incorporate the metric struc- 
ture of  the underlying metric space. Namely, a measure v is diametrically 
regular or a Federer measure ~9) if for each A > 1 there exists K > 0 such that 
for any sufficiently small r > 0 and every x we have 

v(B(x, Ar)) <~ Kv(B(x, r) ) (DR) 

In the harmonic analysis literature such a measure is sometimes called a 
doubling measure. To show that a measure v is diametrically regular, it is 
clearly enough to establish (DR) for a single value of A > 1. 

We show in Theorem A2 that Gibbs measures concentrated on 
repellers for expanding maps are diametrically regular. This fact plays a 
crucial role in our multifractal analysis. 

In ref. 25, Pesin showed that if v is diametrically regular, then for any 
q > l  

1 l o g i n f ~ Y ~ v ( B )  'l 
HP,,(q) = lim 

1 - q  , - ~ o  l o g  r 

where the infinum is taken over all covers ~3,. of X by balls B of radius r, 
provided the limit exists. We will use this definition of H P  spectrum for 
dimensions in our proofs. 

Pesin ~-'5~ showed that the R6nyi spectrum coincides with the H P  spec- 
trum. In general, even good measures may not be diametrically regular. One 
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can construct a smooth ergodic measure for a diffeomorphism of a compact  
manifold which is not diametrically regularJ -'5~ 

In this paper, we introduce and systematically study H61der continuous 
conformal expanding maps on compact  metric spaces. One of our main 
results is that any Gibbs measure corresponding to a H61der continuous 
function is diametrically regular (Theorem A2). Our  main tool is a con- 
struction of a Markov partition for continuous expanding maps. This con- 
struction is geometrically natural and simpler than other constructions for 
smooth expanding maps that we are aware of. This construction is specially 
adapted to a given point (or any finite collection of points) such that the 
partition element containing this point also contains a "large" ball centered 
at the point. The same approach can be used to construct special Markov  
partitions for Axiom A diffeomorphisms and their continuous analogs. 
Hence, Gibbs measures for Axiom A diffeomorphisms are diametrically 
regular. 

We turn to the second ingredient in our multifractal analysis and 
define the f,.(a) spectrum for dimensions. Given x e X, we consider the 
upper and lower pointwise dimensions of v at x, 

d,.(x) = lim sup log v(B(x, r)) and _d,,(x) = lim inf log v(B(x, 1")) 
, .- o log I" ' ,-- o log I" 

If c_l,.(x)= d,.(x), we call the common value the pointwise d#nension at x and 
denote it by d,.(x). We call v exact dimensional if 

d,.(x) =_d,.(x)= d,,(x)=d 

for v-almost every x, where d is a nonnegative constant. In general one 
does not expect the pointwise dimension of v to exist at a typical point even 
for nice measures which are invariant under dynamical systemsJ ~c,. 2v~ Even 
when the pointwise dimension of v does exist it is not necessarily exact 
dimensional.C 3.2v~ 

Nevertheless, measures which are invariant under smooth dynamical 
systems with hyperbolic behavior often turn out to be exact dimensional. 
Eckmann and Ruelle have conjectured that hyperbolic measures (i.e., 
ergodic measures with nonzero Lyapunov exponents almost everywhere) 
are exact dimensional. This has been established for hyperbolic measures in 
the two-dimensional case in ref. 41 and for hyperbolic BRS measures and 
equilibrium measures for Axiom A diffeomorphisms in refs. 14 and 30. 

The multifractal analysis is a description of the fine-scale geometry of 
the set X whose constituent components  are the sets 

K~ = { x e Xld,.(x) =~}  
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for ~z e R. The f,.(cz) spectrum for dimensions is defined by 

f,.(cz) = dimH K~ 

where d im/ /K ,  denotes the Hausdorff dimension of the set K~. A priori, 
one may consider the box dimension instead of the Hausdorff dimension in 
this definition. In Remark 2 after Theorem 3 we observe that in the cases 
we consider in this paper, this replacement leads to a trivial spectrum of 
dimensions. 

We obtain a natural decomposition of the set X as 

X =  U K~ u {x ~ X] d,.(x) does not exist} 

If v is exact dimensional, then v(K<l) = 1. It is important to emphasize 
that the union of the sets K~ may not be all of X. Shereshevsky ~36t showed 
that for a class of C 2 Axiom A surface diffeomorphisms, the set x \ u ~  K~ 
is dense and has positive Hausdorffdimension for any equilibrium measure v. 
His proof  can be modified for conformal repellers. 

For the maps we consider in this paper (H61der continuous conformal 
expanding maps) there exists an open interval of values of ~ such that the 
sets K~ are dense. Thus for the maps we consider this decomposition of the 
space X is quite complicated from the topological point of view. 

In ref. 11 the authors presented a heuristic argument showing that the 
HP spectrum for dimensions and the J'(o0 spectrum for dimensions form a 
Legendre transform pair. For  this to make sense one must first establish 
that the two spectra are smooth and strictly convex on some interval. A 
priori this seems quite amazing since in general one expects the functions 
Ji.(00 and HP,,(q) to be only measurable. Furthermore, it is not at all clear 
whether, even in the exact dimensional case, the pointwise dimension 
attains any values besides d. Once the Legendre transform relation between 
the two dimension spectra is established, one can compute the delicate and 
seemingly intractable f,.(0() spectrum through the HP spectrum, which is 
completely determined by the statistics of a typical trajectory. See also 
Theorem 6. 

Recently," Simpelaere ~371 effected a multifractal analysis of equilibrium 
measures for Axiom A surface diffeomorphisms. Simpelaere's approach can 
presumably be modified to work for (multidimensional) conformal 
repellers of (noninvertible) expanding maps. In ref. 29 we give an alter- 
native proof of his result using the methods introduced in this paper as well 
as compare and contrast the two approaches. Simpelaere uses methods 
from large-deviation theory to obtain upper estimates of the Hausdorff 
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dimension of the level sets K~, while our approach is based on the equality 
of the symbolic pointwise dimension and pointwise dimension. Simpelaere 
established the Legendre transform relation only for a special type of R6nyi 
spectrum defined with respect to a special family of grids which is adapted 
to the hyperbolic splitting. Our approach handles the general R6nyi spec- 
trum (which we show coincides with the HP spectrum) with the help of the 
diametrically regular property of equilibrium measures that we establish in 
Theorem A2. 

In Remark 3 in Section 4 we construct a H61der continuous 
homeomorphism of a compact metric space with an ergodic invariant 
measure of positive entropy for which the dimension spectrum is not con- 
vex, and hence the multifractal formalism fails. 

In this paper we effect a thorough multifractal analysis of equilibrium 
measures for H61der continuous conformal expanding maps. Examples 
include Markov maps of an interval, hyperbolic Julia sets, and conformal 
toral endomorphisms. We prove that the functions Ji,(~) and ( l - q ) ;  
HP,,(q) are analytic, strictly convex on an interval, and form a Legendre 
transform pair, provided the measure is not the measure of maximal 
entropy (see Theorem 1). In particular this implies that the set of values 
attained by the pointwise dimension contains an open interval ( ~ ,  ~2)- 
Furthermore for each 0cE [ ~ ,  0~2], the set Ks is dense. 

Our results generalize and extend all known results related to the mul- 
tifractal analysis of smooth conformal expanding maps. We do not use any 
techniques from the theory of large deviations in our analysis as do refs. 5, 
15, and 37. However, after effecting the multifractal analysis, we can apply 
a large-deviation result of Ellis ~'~ to obtain an interesting counting formula 
for the dimension spectrum f,,(00 (Theorem 6). 

The HP spectrum of dimensions HP,.(q) is not a priori defined for 
q = 1. It is conjectured that in "good" cases, limu~ ~+ HP,.(q) = l(v), where 
l(v) is the information dimension (see Remark 4 after Theorem 3 for the 
definition). It immediately follows from our analysis that this conjecture is 
true for equilibrium measures for H61der continuous conformal expanding 
maps. 

Another class of examples that we consider are Moran-like symbolic 
geometric constructions where the basic sets comply with a given symbolic 
dynamical system. Moran first studied a special class of these constructions 
and computed the Hausdorff dimension of the limit set. In refs. 27 and 28 
we extended the original Moran idea to much broader classes of geometric 
constructions. 

In this paper we undertake a complete multifractal analysis ofequilibrium 
measures for a large class of Moran-like geometric constructions which 
satisfy the separation condition introduced in Section 4. This separation 
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condition allows for large intersections of the basic sets at each level. Our 
analysis is based upon the dynamical properties of the map on the limit set 
induced by the shift map on symbolic space, and we require that this map 
is expanding and conformal. In general, it need not be either expanding nor 
conformal even when the Moran-like construction is modeled by the full 
shift. Whether the induced map is expanding and conformal strongly 
depends on the symbolic dynamics and its embedding into Euclidean 
space, i.e., the gaps between-the basic sets. Our multifractal analysis of 
these e,x'panding and conJormal geometric constructions is intimately related 
to our analysis for conformal expanding maps. 

We conclude this introduction by previewing a few new ideas and 
results that we develop in this paper. We construct a new Markov partition 
for repellers (see Theorem A1 in Appendix A). This construction is 
geometrically natural and simpler than other constructions for smooth 
expanding maps that we are aware of. This construction is specially 
adapted to a given point (or any finite collection of points) such that 
the partition element containing this point also contains a "large" ball 
centered at the point. The same approach can be used to construct special 
Markov partitions for Axiom A diffeomorphisms and their continuous 
analogs. 

Using Markov partitions, we prove that equilibrium measures on con- 
formal repellers are diametrically regular (see Theorem A2 in Appendix A). 
In the harmonic analysis literature such measures are sometimes called 
doubling measures. These measures strongly encode the metric structure of 
the underlying metric space. We exploit this important property many 
times in our analysis. 

Theorem 2 is one of the major results in the paper. This theorem 
allows us to compute pointwise dimensions using the symbolic model and 
then to conclude that the pointwise dimensions computed on the symbolic 
level coincide with the pointwise dimensions on the repeller. The proof of 
Theorem 2 uses, in particular, the fact that equilibrium measures are 
diametrically regular. 

Finally, we show that for equilibrium measures, the HP spectrum, 
which is a priori only defined for q >  1, is well defined (and finite) for all 
q ~ E. See Remark 5 after the statement of Theorem 3. 

For physical motivations for the multifractal analysis, along with a 
complete multifractal analysis of equilibrium measures on two-dimensional 
hyperbolic sets based on the methods developed in this paper, we refer the 
reader to ref. 29. Weiss 14~ gives an interesting application of the multifrac- 
tal analysis to the spectrum of Lyapunov exponents. Pesin ~25~ provides a 
comprehensive and systematic treatment of dimension theory in dynamical 
systems. 
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2. C O N F O R M A L  REPELLERS 

In this section we undertake a multifractal analysis for smooth 
expanding maps. Let M be a smooth Riemannian manifold and g: M--. M 
a C I§ map. Let J be a compact subset of M such that (i) g(J)=J, (ii) 
there exists C > 0  and ~ > 1  such that IldgiZull>~fo~"llull for all x e J ,  
u e T,.M, and 17 >/1 (for some Riemannian metric on M), and that (iii) g 
is topologically transitive on J. In this case we say that g is a smooth 
expanding map on J. If, in addition, one assumes that there exists an open 
neighborhood V of J (a basin) such that J =  {x~ V: g"e V for all n>~0}, 
we call J a repeller. The results in this paper do not require this extra con- 
dition on J. We will call J a repeller even if it does not possess an open 
basin. 

We recall some facts about expanding maps. For simplicity we assume 
that the map g on J is topologically mixing. (tt Bowen (~ and Ruelle (~4~ 
show that for any H61der continuous function ~ on J there exists a unique 
equilibrium measure v=  vr on J. It is well known that expanding maps 
have Markov partitions consisting of partition elements called rectangles 
{R~ ..... Rp} of (arbitrarily small) diameter fi such that: 

(1) Each rectangle R is the closure of its interior/~ 

(2) J =  UiR~ 

(3) k i ~ / ~ = ~  for i ~ j  
(4) Each g(R~) is a union of rectangles Rj 

(See refs. 34 and 35 and Appendix A.) A Markov partition ~ = {R~ ..... Re} 
generates a symbolic model of the repeller by a subshift of finite type 
~ + ,  ( .j a), where A =(aii) is the transfer matrix of the Markov partition, i.e., 

a0.= 1 if/~ac~g-~(/~i) 4: 2~ and aii=O otherwise. This defines a coding map 
Z" _r~ ---, j such that the following diagram commutes: 

~ , 

J "~ ,  J 

The map Z is H61der continuous and injective on the set of points whose 
trajectories never hit the boundary of any element of the Markov partition. 

Let ~ be a H61der continuous function on J. The pullback by Z of 
is a H61der continuous function ~0 on Z..~, i.e., cp=Z,~d.  Let p,p be the 
Gibbs measure corresponding to ~0. Its push forward is a measure on J 
which is the equilibrium measure corresponding to d (see Appendix B). We 
denote it by v~. 
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A Markov partition .~. = {R~ ..... R~,} allows one to set up a complete 
analogy between repellers of expanding maps and limit sets of Moran 
geometric constructions (see ref. 27 and Section 4). Define the basic sets 

Ri , . . . i ,=Ri ,  n g-t(Ri,_)c~ . . .  c~ g-"+t(Ri, , )  (1) 

where g-~ is a branch of the inverse of g". By the Markov property, every 
basic set r~,...~,= ri, c~h(r~,,) for some branch h o f g  -''+~ 

We need the following well-known estimates of the Jacobian of C z+~ 
expanding maps. c TM ~8~ 

Proposition 1. There ezist positive constants Ct, C2 such that for 
any n-tuple (6 "'" i,,) and any x, y �9 R~... i,, 

IJac g"(x)] 
Ci ~< ~< C2 

[Jac g"(y)] 

where Jac g denotes the Jacobian of g. 

A smooth map g is called conjormal if dg.,. = a(x) Isom.,., where Isom,. 
denotes an isometry of the tangent space T,.M. A smooth conformal map 
g is called an e.x'panding map if la(x)l > 1 for all points x. The repeller J for 
a conformal expanding map g is called a conJbrmal repeller. Examples of 
conformal repellers include one-dimensional Markov maps and hyperbolic 
Julia sets (see below). Ruelle ~35~ showed that the Hausdorff dimension d of 
a conformal repeller J is given by Bowen'sJormula P ( - d  log [a[)= 0, where 
P is the thermodynamic pressure, and that the d-Hausdorff measure is 
equivalent to the equilibrium measure m corresponding to - d  log la[. The 
measure m plays a special role in the multifractal analysis and is called the 
measure o f  maximal dimension. 

Using the basic sets, one can construct a special Moran covet" 1.I,. of the 
repeller. Given and a point co�9 X-~, let n(co) denote the unique positive 
integer such that 

n [ o J ) -  I n ( . ~ )  

]--I la(x(crk(c~ -~ >" ,  H ]a(x(ak(c~ - '  ~<r (2) 
k = 0 k = 0 

It is easy to see that n (co)~  c~ as r--*0 uniformly in co. Fix co~Z'~- and 
consider the cylinder set Ci,...i,,,,.,, c .S .~ .  We have ~oe Ci, .... ,,,,.,,, and if 
o~'e Ct, ...~,,,,.,, with n(co') >~ n(co), then 

C i l  "'" imm'~ ~ C i l  "'" inl.,I 
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Let C(o)) be the largest cylinder set containing o) with the property that 
C(e))=Cil...~,,,,.~ for some og"eC(o))  and Ci,...~,,,,,.cC(o)) for any 
oY E C(o)). The sets C(co) corresponding to different o9 e Z~  either coincide 
or are disjoint. We denote these sets by C~, j = 1,..., N,.. There exist points 
o)j~ Z.,~ such that C,/= C,.,...~,c ," These sets form a disjoint cover of Z +A 
which we denote by 91,.. The"Vsets R { = x ( C , O , j = I  ..... N,., may overlap 
along their boundaries. They comprise a cover of J (which we will denote 
by the same symbol 9.1 R if it does not cause any confusion). We have that 
R{ = Ri~ i,,,, , for some xj e J. . . .  ., + 

Let Q c Z A be a subset. One can repeat the above arguments to con- 
struct a special Moran cover of the set x(Q) ~ J. It consists of cylinder sets 
C{, j = 1 ..... Nr, for which there exist points o9; e Q such that C{ = %...,-,,,, 
and the intersection C~ c~ CIj~ c~ Q is empty i f j r  i. We denote this special 
cover by 9.I,.. o' 

The Moran cover has the following crucial property. Given a point 
x e J and a positive number r, the number of basic sets R;! in the Moran 
cover 9.I,. that have nonempty intersection with the ball B(x,  r) is bounded 
from above by a number M, which is independent of x and r. We call this 
number the Moran multiplicity factorJ 27~ 

In order to verify this property of the Moran cover let r o =  
max{diam R~: i =  1 ..... p}. Since the sets R~ are the closure of their interiors, 
there exists a number 0 < r~ < r o such that each R~ contains a ball of radius 
rz. The following proposition shows that each basic set R{ in the Moran 
cover contains a ball of radius Cr, where C > 0 is a constant independent 
of r and j. This implies the desired property of the Moran cover. 

Proposition 2. There exist positive constants D t and D 2 such that 
for every x ~ J 

n 1 / 
B x , D ,  ~I la(gk(x))l  -I  

k = 0  

Ri, ...~,,(x) c B (x ,  D~ n- -  I I 
I-I la(gk(x))l  - '  

k ~ 0  

where R;,...;,,(x) is a basic set containing x [ see (1)] and B(x, a) is the ball 
of radius a centered at the point x. 

Proof. Since g is conformal and expanding on J, we have 

it-- [ 
I[dg'~. = I-I la(gk(x))l = IJac g"(x)l 

k = O  
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This fact and Proposition 1 imply 

diam Ri, ... i,,(x) 

~<diam Ri,, x max Ildg,7"ll 
.t' E RI .  

= d i a m  Ri,, • max IJac g-"(Y)l  
y ~ R t .  

{maXyr e_,,, [Jac g - " (y ) [~  IJac g -" (g ' (x ) ) l  diam 
R;,,\ IJac g-"(g"(x)) l  J 

I i -  ! 

<~C, I-[ la(g~(x))l - '  
k = 0 

where C~ > 0 is a constant. Since each R i is the closure of its interior, we 
have that for the intrinsic diameter of Re, ... ~,,(x) 

int diam R~,...~,,(x) 

>~ diam Rs,, x min Ildg,-"ll 
.V ~ R i  n 

= d i a m  R~,, x min IJac g-"(Y)l 
.V ~ R i  n 

(min,.~R ' IJac g-"(Y)l'~ IJac g-"(g"(x)  
= d i a m R i , , \  ] - ~ a c g - ' ~ ~  J 

n - -  I 

>1 C,_ 1-I la(gk(x))l -i  
k = 0  

where C_, > 0 is a constant. This completes the proof of Proposition 2. II 

Let ~ be a H61der continuous function on J and v = v~ the correspond- 
ing equilibrium measure for g. Denote by ~p the pull back of ~_ under the 
coding map Z and by/~ =l~,~ the Gibbs measure corresponding to ~. We 
have that v=z . l t .  

Let ~b be the function such that l og~ ,= (p -P ( rp ) .  Clearly ~b is a 
H61der contiriuous function on s such that P( log~b)=0  and /1 is the 
Gibbs measure for log ~b. 

Define the one-parameter family of functions ~b u, q ~ ( - o e ,  cr.~) on X, + 
by ~bq(co) = -- T(q) log la(x(co))[ + q log ~(co), where T(q) is chosen such 
that P(~u)= 0 [one can show that T(q) exists for every q e I~; see Lemma 4 
in the proof of Theorem 1 below]. It is obvious that the functions ~b,/are 
H61der continuous. 
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We now state our main theorem for C/§ conformal expanding maps. 

T h e o r e m  1. The following conditions hold. 

(1) The pointwise dimension d,.(x) exists for v-almost every x~J and 

d,.(x)=[Is.?l~176176176176 ] 

(2) The function T(q) is real analytic for all q~R,  T(0)=d imnJ ,  
T(1)=0, T'(q) ~<0, and T"(q)>~O (see Fig. 2A). 

(A)  ~ope-- -~r 

slope = - c t ( -oa )  - - .  _ .  

T(q) 

t=dim H F 
K..j q 
~ ~ .  ~ . .  ~ slope = -o~(*o) 

slope = -cx(-o~) 

(B) 
fv (Or) 

info. dim. = HP v ( 1 ) 

f(Ot(-~)) 

f(ct ( ~ ) )  

tangent to the curve at c~(1), with slope = 1 
/ 

/ 
. . . . . . . .  ~ i . _ ~  s=dimn J 

vertical tangent 

~ vertical , 
, tangent' I 

a(oo) a(l) or(0)  o~(-oo) ot 
I i I 
I I I 
, q > 0  , q < 0  , 
I I I 

Fig. 2. ~ A )  T(q), ( B ) J ; , ( ~ ) .  
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(3) The function ~(q) = - T'(q) attains values in the interval [0q. ~_,], 
where 0 ~<0~ ~<~z < ~ .  The function f,.(0c(q)) = T(q) +qo~(q) (see Fig. 2B). 

(4) If v r  then the functions f,.(00 and T(q) are strictly convex and 
form a Legendre transform pair (see Appendix C). 

(5) The v-measure of 
and for any q ~ lt~ we have 

any open ball centered at points in J is positive 

T ( q ) =  - l i m  
,-- o log r 

log inL,~ r Y'.B ~ ~.~r v(B) '1 

where the infimum is taken over all finite covers .~,. of J by open balls B of 
radius r. For  any q > 1 (actually for any q 4: 1; see Remark 5 after the state- 
ment of Theorem 3) we have 

T(q) 
= HP,.(q) = R,.(q) 

1 - q  

where R,.(q) denotes the ROnyi spectrum. 

Proof. Fix any q ~ 1~. Let p,~ denote the Gibbs measure corresponding 
to cp, and let v, denote the push forward of p ,  to J. Clearly, 
T(0) = d i m / / J  = d. 

To prove Statement 1, we need the following lemma. 

I _ e m m a  1. There exist constants C~ > 0 and C2 > 0 such that for all 
basic sets R~, ... t,,, 

Ci <~ vq(Ri, ...i,,) <~ C2 (3) 
m( Ri, .. . ~,,) r,~,..a v( Ri, ... ~,,),1 

Proof. Since the measures/.t and pq are Gibbs measures correspond- 
ing to the HOlder continuous functions log ~k(o9) and -T(q)  log [a(z(co))l + 
q log ~(~o), respectively, and m is the equilibrium measure corresponding to 
function - d l o g ( l a ( x ) J ) ,  it follows from the definition of Gibbs measure 
[see (B I) in Appendix B] that the ratios 

v(R~, .. ~,,(x) 
I - In  I k=o ff(ga(x)) 

v ,~( R,, ...~,,(x) ) 
H , , - ,  la((gk(x)))l-r, , , ,  ~k(gk(x)),, k = O  

m(Ri,. . ,  i,,(x)) 
i - i , , - i  la(gk(x))[-,i  k = O  

82286 I-2-17 
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are bounded from below and above by constants independent of n. The 
lemma easily follows. | 

Given 0 < r < 1, consider the Moran cover ~,. of the repeller J by basic 
- / -  with radii approximately equal to r. Let N(x, r) denote sets R,. - R 6 . . .  i,,c,?) 

the number of sets R{ that have a non-empty intersection with a given ball 
B(x, r) centered at x of radius r. We have that N(x, r)<~ M, uniformly in 
x and r, where M is the Moran multiplicity factor. 

Since the measure m is an equilibrium measure and P ( - d l o g  la(x)l) 
= O, there exist positive constants C~ and C~ such that 

_ m ( R i l . . . i , , ( x ) )  
Ct ~-  ~ - - -  ~ _ d <~ C,  

1-[k =o la(g . )1 

(see Appendix B). 
It follows from properties of the Moran cover [see (2)] that there 

exist positive numbers C 5 and C6 such that for every R / ~ ~,. 

Csrd <~ m(R{) <~ C6 rd (4) 

Since ~2I,. is a disjoint cover of J, we have 

v.(R,.)- 1 
R Jr E ~lr 

Summing (4) over the cover 9.1. we obtain that there exist positive con- 
stants C7 and C8 such that 

c~ < r T''' Z v(R,!)', < c~ 
R/r E: ~-~l r 

Taking logs and dividing by log r yields 

- l i r a  log ~ t~,.,tr v( R;() q = T( q) 
,.- o log r 

We now prove Statement 1 of the theorem. Given a number ~ ~> O, let 

R~={COES+[A 

Define the spectrum 

x?,,-I log i~(o-*(co)) } 
,lira ~*  = o 

~ XT, n I �9 - I  = ~ "  ,.-k =o log la(z(ak(o~)))] 

(5) 

(6) 

f,,(0q = dimH/~, (7) 
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Given q e ~, set 

I2:.~ log{ ~p ( . , ) ) t i l t  q 

~ ( q ) = [  + log la(x(og))l -~ d~,, 

We will show that this definition of ~(q) coincides with Statement 3 in 
Theorem 1 (see Lemma 4). 

The following lemma will help us to compute the Hausdorff dimension 
of the set K,~q~. 

L e m m a  2. For  every q e  R, we have: 

(1) v,,(X( R~,,,} = 1. 

(2) d,,,,(x)= T(q)+qo~(q) for v,,-almost all xe;((R=~,~) and d,,,,(x)~< 
T(q) + qo~(q) for all x e X(R=~ql). 

(3) dimHx(R=~q ~) = T(q) + qo~(q). 

Proof. Consider the functions o9~---~ log @(o9) and coy-+ log la(x(o9)) I, 
where 09 = (i~ i2. . . )e  Z...+,. Since l% is ergodic, the Birkhoff ergodic theorem 
yields that 

lo-  "-~" ~b(ak(og)) g l l k = l  
lim logM~=l  [a(z(a*(og)))] I --~ 

for/%-almost every o9 e2",]-. This implies the first statement. 
It follows that for any e > 0 and every o9 e R~,o there exists N(og) such 

that for any n > N(og) 

n I log ]-L=o q/(crk(o9)) 
~(q) - e ~< log l-I~ 2 I~ ]a(z(ak(o9)))l -a <~ ~(q) + e (8) 

Given l > 0 ,  denote Ql={ogeR,~,~:N(o9)<~l}.  It is easy to see that 
QIcQ~+~ and =r Thus, there exists 10>0 such that 
/%(Q/)>0  if l>~10. Choose l>~10. Given 0<1"<1 ,  consider the Moran 
cover ~, .  Q~ of the set Q/. It consists of cylinder sets C;(, z, j = 1 ..... N,.. l, for 
which there exist points cat e Q~ such that C;.( ~ = C~,...i,,,,,,?. If r is sufficiently 
small, we have n(cofl >/1 for all j. 

" ')  ~ A Since pq is a Gibbs measure, we obtain that for every 09 (ifi2. Z + 
and n > 0 

/~,,( C i ,  . . .  i,,) 

c~ ~ FI~ =~o la(z(crk(og)))l - T.,. ~(~ -(o9)), 
(9) 
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It follows from (8), (9), and the properties of the Moran cover that for all 
n>_,l and any x e x ( Q I )  

v,,( B(x, r ) n x ( Q i ) )  

M 

~< Z ~,,(C,{~) 
j =  I 

31 n ( - ~ j ) -  I 

<C,oE FI 
j = I k = 0 

M n ( . ~ , ) -  I 

<c,,, E H 
j =  I k = O  

[ ( . / ( z ( 6 r k ( c . O ) ) ) l  - T(q) i / ] ( o . k ( ( . o ) ) q  

la(z(o.k(co)))l - TUt,- ql~l,,~ - ~.~ 

CI i rT(q) + q(~q q )  - i : )  

where C~z > 0 is a constant and M is the Moran multiplicity factor. Since 
vq(x( Q/))> 0, for v,j-almost every x ~ x(Q~) there exists a number rq,---ro(x) 
such that for every 0 < r~< ro we have 

vq(B(x, r)) <~ 2v,,(B(x, r) c~ z(Qi))  

This implies that for any l > l  o and almost every x ez(Q~) 

log vq(B(x ,  r)) 
cl,. ~( x ) = lira 

,-- o log r 

log v q( B( x, r)c~z(QI))  
>/lira 

,. - o l o g  r 

>I T(q) + q(oc(q) -- e) 

Since sets Q/ are nested and exhaust the set Q, we obtain that 
d_,.(x)>~T(q)+q(oc(q}-e) for vq-almost every xez(R~u~O. Since e is 
arbitrary, this implies that d_, . (x))T(q)+qoc(q)  for v,Kalmost every 
x e (/~,~,~)). In particular, dimHz(~u~, ) >~ T(q) + qoc(q). 

Fix 0 < r <  1. For each co=(i~i 2 . . . ) e Q i  choose n(co) according to 
(2). It follows that R~,-..s,,c,,,~ ~ B(x, 2D2r), where x =Z(CO). By virtue of (8) 
and (9), for all o ) e Q i  

v u(B(x, 2D2r)) 

/> v,/(Rl, ... ;,,,,,,,) 

n ( ~ , ) -  ! 

>~ C9 1-I la(x(cr~.(co)))l-run qj(tyk(co))u 
k = O  
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. ' : ( o ~ ) -  I 

~>C9 I I  
k = O  

la(z(crk(og)))l-n,~-,,~=~,l~+~ 

>~ C9 rTlq)+q(xlq)+t:| 

It follows that for all xez(Qt)  

d,.,,(x) = 1-~ log vq(B(x, r)) <~ T(q)+q(a(q) +e) 
, - o l o g  r 

Since e is arbitrary, this implies that cT,.,,(x)~< T(q)+qo~(q) for every 
.x-~/~ql. Therefore, d,.,,(x)=d,,,,(x)=T(q)+qoL(q) for vq-almost every 
x a/~,~q~. This implies the second statement of the lemma. The second state- . ^ 

ment trivially implies that dlm~iK,~u~>>.T(q)+qo~(q). Moreover, by a 
folklore theorem, ~ the fact that d,,,,(x)~< T(q)+ q~(q) for every x e I~,~q~ 
implies that dimH/~,~,t~ ~< T(q)+qo~(q). Combining these two estimates we 
have shown that d i m ,  l~,tq~ <~ T(q)+ qo~(q) and this completes the proof of 
the lemma. | 

The above arguments also imply that the function c~(q)~> 0 for all q. 
It immediately follows from (5) that T ( 1 ) = 0  and thus lz=It ~. The 

first statement of the theorem now follows from Lemma 2 and the follow- 
ing fundamental theorem, which says that the pointwise dimension we 
compute using the symbolic model coincides with the pointwise dimension 
on the repeller. 

T h e o r e m  2. (1) For every q e R  and every o9E/~, l  ~ we have that 
d,.(x) = ~(q), where x = Z(o9). 

^ 

(2) For  every q ~ R and every x ~ K~,I~ there exists o9 ~ K~q~ such that 
Z(o9) = x. 

In other words, for all q, X(R~,I~)=Kx, q). 

Proof. Since g is a smooth expanding map on J, there exist positive 
constants r o. and a such that if x, y ~ J  and d(x,y)<ro,  then 
d(g(x), g(y))>ad(x, y). One can easily derive from Proposition 1 that 
given 0 < i" <ro ,  there exists N(r)> 0 and positive constants C~2 and C~3 
such that if 0~<n ~<N(r), then for all x ~ J  

It I it- I 

C,2r ]-[ [a(gk(x))l ~<diam(g"(B(x, ,')))~< C,3," ]-I la(gk(x))l 
A- = 0  k = O  

(10) 
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and there exist positive constants C~4 and C~ such that for all x e J and 
any n>~O 

. - -  I n -  I 

C,ar 1-I la(g*(x))l-' <~diam(h(B(x,")))<~ C,sr l-I la(g*(x))l-' ( l l )  
k = O  k = O  

where h denotes any branch of g-" .  
Fix x r J and 0 < r .%< ro and choose N = N(x, r) such that 

N - I  N 

C,3r l-I la(g*(x))l<~"o, C,3r rI la(gk(x))l>ro (12) 
k = O  k = O  

It easily follows that N(x, r)~N(r).  By virtue of (10) and (11), we have 
that 

N - - 1  

diam(gN(B(x, r)) <.% C,~r ]--I la(g*(x))l 
k = O  

-%< ro = diam(B(gN(x), ro)) 

This immediately implies that B(x,r)ch(B(gN(x),ro)),  where h is an 
appropriate branch of g - U  It follows from (11) that 

N - I  

diam(h(B(gU(x) , 1"o))) ~< Ct-~ro I--[ la(gk(x))l- '  
,=o 

<% Cj(,r = diam(B(x, Ct6r)) 

where Cb6 > 0 is a constant. This implies 

B(x, r) c h(B(g'V(x), ro)) c B(x, Ci6r ) 

Consider the special Markov partition .~.~,~,) for the map g constructed in 
Theorem 6 (see Appendix A) with diameter ro. There exist positive con- 
stants C,7 and C~s such that 

B(gN(x), Ci7ro) c R(g'V(x)) ~ B(gN(x), Clsro) 

where R(g/V(x)) denotes the rectangle that contains the point gN(x). This 
implies that 

h(B(gN(x)), Ci7ro)) = h(R(gU(x))) ~ h(B(g'V(x), Cisro)) 

Since the measure v is g-invariant, we have 

v(B(gN(x), Civro)) ~< v(h(R(gN(x)))) <% v(B(gN(x), Ctsro)). 
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Using the fact that the measure v is diametrically regular (see Theorem A2 
in Appendix A), we obtain 

v(B(gU(x), Cisro)) ~ CI9Y(B(gN(x), ro)) 

= Ci7v(h(B(gU(x), ro))) 

<~ C,9v(B(x, C,4r)) ~< C2ov(B(x, r)) 

where C~9 > 0 and C20 > 0 are constants. Similarly, we obtain 

v(B(gN(x), CiTro)) ~> C21 v(B(gN(x), ro)) 

= Ci9v(h(B(gU(x), r0))) 

>~ C22v(B(x, r)) 

where C2~ > 0 and C= > 0 are constants. Thus, 

C2,_v(B(x, r)) ~ v(h( R(gU(x)))) <~ C20v(B(x, r)) 

Since v is a Gibbs measure and h(R(gN(x))) is a basic set, its measure is 
given via symbolic dynamics. We obtain 

d,.( x ) = lim log v( B( x, r ) ) 
,-~ 0 log r 

�9 T-rN(r)-- I 
= lim IOgl lk=o  0(ak(CO)) 

lo,~ 1-l,v~,.I t lat,,itykto~l~l - ,  N(r) c j  A ~ I l k = 0  i ~ l ,  l, J l / l  

Part (1) of the lemma immediately follows. 
Now assume that d,,(x)= ct(q). We need to show that the existence of 

the subsequential limit as N(r)--* oo implies the existence of the limit as 
n--* 00. Consider the sequence r k = 2 - k .  It follows from the definition of 
N(r) and a crude estimate of [a(y)[ that there exist positive constants C23 
and C24 such that N(rk+ i)--N(rk)<~ C23 + C24k. Part  (2) of the lemma 
immediately follows. I 

We now prove Statements 2-4 of Theorem 1. We first note that 
dimtiK~,,~=T(q)+qo~(q). Since v,~(K~lq~)= 1, this is a consequence of 
Lemmas 2 and 3 and the following general result. 

Propos i t ion  3. Let (X, p) be a complete separable metric space of 
finite topological dimension with metric p, and let # be a Borel probabili ty 
measure. If Z # =  {xeXI  d_t,(x) = tt~,(x) =fl} and #(Z#) >0 ,  then dim H Z# = ft. 
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Proof. It follows from Young's result ~4~ that d i m . p = f l .  This 
immediately implies that dimt~ Z/~/> dim. /1  >~ ft. 

Fix ), > O. It follows from the definition of pointwise dimension that for 
any x �9 Z/~ there exists e ( x ) >  0 such that 

p(B(x ,  e) ) >~e/~+ r 

for any e ~ e ( x ) .  Define Z / ~ . , . = { x ~ Z / r  Clearly, Z/~= 
U,.~ ~ z/~. ,.. It follows from the Frostman theorem ~8~ that dimH Z/~ ~ fl + 7. 
Since this inequality holds for all 7 > 0, the desired result follows. | 

We need the following lemmas. 

L e m m a  3. The function T(q) is real analytic for all q ~ R. 

Proof. Consider the function c" ~2 ~ C ~ t r +  •) defined by 
c(q, r ) = q l o g  ~k+rlog la'~zl. This function is clearly real analytic and 
ck ,~=c(q , -T (q ) ) .  Since the pressure P is real analytic, ~34~ the desired 
lemma follows immediately from the Implicit Function Theorem once we 
verify the nondegeneracy hypothesis. For that we use Ruelle's formula for 
the derivative of pressure (see Appendix B). The nondegeneracy condition 
is 

OP(c(q,gr r)) ,~. - n,~,~ =f'-..7 log la(z(co))l d/~,, =~0 I (13) 

L e m m a  4. For all q we have 0~(q)= - T ' ( q ) .  

Proof. Recall that ~q = c(q, - T(q)), where the function c was defined 
in Lemma 3. Since P ( ~ q ) =  0 for all q, we have 

d P(rkq) OP(c(q, i")) OP(c(q, r)) , .=-r.n T'(q) = 0  
- Oq -t 01" 

Using the formula for the derivative of pressure, we obtain that 

T' (q)  = 
OP( c( q, r) )/Oql,.= - n,n 
OP(c(q. r))/Orl r = -v.n 

I j  log(~(x)) dv q = -o:( q) 
IJ log [a(x)l dvq 

Lemma 5. The function T(q) is convex. It is strictly convex if and 
only if v ~ m. 
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Proof. Using the chain rule to compute the second derivative 
(82/0q 2) P(c(q, r)) evaluated at the point (q, r) = (q, - T(q)) [recalling that 
P(~bq)=0], we obtain that 

T"(q) = I T'(q)'- \ ~ - 2T'(q) \ Oq &" \ 8q- 

x \ N "  I 

e v a l u a t e d  at  (q,  r )  = (q,  - T ( q ) } .  
Ruelld 34~ explicitly computed the second derivative of pressure for the 

shift mapping on Z'. + and showed that 

OsP( h + e t Jl + esJs) ,:, = Qh(fl ,  f2) 

x + where Qh is the bilinear form on C (Z A , ~) defined by 

Q,,(f,,f~)= L (~_ ft'(fs'~ak)dPh--i f, dPhf f2dPh) 
k = o .; "-.t '-:.t 

and p~, is the Gibbs measure for the potential h. Ruelle also shows that 
Qh(f , f )~>0 for all f and that Q h ( f f ) > O  if and only if f is not 
cohomologous to a constant function. 

Applying this second derivative formula to compute the three second 
partial derivatives in the expression for T"(q), we obtain that 

T"(q) = Qq(log ~(o9)-  T'(q) log [a(z(co)) 1, log r T'(q) log [a(z(~o))[) 

x [ f j  log [a(z(o.~)) [ dp,,((.o)] - '  

+ where Qq is the bilinear form defined on C (Z" i , R) by 

It follows "that T " ( q ) > 0  provided that the function l og r  
T'(q) log [a(z(o~)) [ is not cohomologous to a constant function. This can 
be assured provided that the functions log r and C log [a(z(co)) [ are not 
cohomologous for any positive constant C >  0. On the other hand, if there 
exists C > 0  such that the functions logr and Clog[a(z(co)) [ are 
cohomologous, it follows that C = d  and thus v=m.  This implies that 
T'(q) = d for all q ~ ~ and hence T(q) = ( 1 - q) d is a linear function. | 
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It follows from Lemmas 3-5 that the function ~(q) is analytic and 
o~'(q)=-T"(q)<O. Hence, the range of the function ~(q) contains an 
interval. This implies Statements 2-4 of Theorem 1. 

We now prove the final statement of the theorem. Given r >  0, con- 
sider the Moran cover ~ = { R;!} of J. There are positive constants C2s and 
C_~6 independent of r such that for every j one can find a point X/~ R~ 
satisfying 

B(Xi, C25r) c R~ c B(xj, C26 r) (14) 

Since the measure v is diametrically regular, it follows from (14) that for 
every q e R 

~ v ( B ( x ,  C2,, , ' )I"<C27Yv(B(x,  C25r))"<~C,~v(R~O" (15) 
j .i i 

where C27 > 0 is a constant independent o f j  and r. 
Let ~,. be a cover of the repeller J by balls B(yi, r). For each j>~0, 

there exists B(yij, i") ~ ~. such that B(yij, r) ~ R,( v ~ ~j. Consider the new 
cover of J by the balls Bj=B(y~,, 2C26r ). By (14), each basic set R;{ is con- 
tained in at least one element of the new cover. 

Define an equivalence relation on the basic sets R;! by saying that two 
basic sets are equivalent if they are both contained in the same element of 
the new cover. By (14), each equivalence class contains at most K elements, 
where K is a constant independent of r and j. For  each equivalence class 
~. determined by some ball B k, we have,by (14), that for any q >/0 

v( R~) 't <~ Kv( B~.) '~ (16) 

Since the measure v is diametrically regular, we obtain by (14) that for any 
q < 0  

v(R;0 q ~< C28v(B~.) 't (17) 

where C~ 8 > 0 is a constant. Exploiting again the fact that the measure v is 
diametrically regular, we conclude using (16) and (17) that for all q e R. 

Y. v(R,!l" < KC~ ~ v(Sk)" 
Rtrr 6" ~lr k 

<~C,_,,~v(B~.)"<~C3o ~ v(B)" (18) 
k B ~  ':at 

where C29>0 and C3o>0 are constants. Statement 6 of the theorem 
follows immediately from (15), and (18). II 



Multifractal Analysis of Equilibrium Measures 257 

It follows from Statement 1 of Theorem 1 that for v-almost every x ~ J 

h ,(g) 
d,,(x) = 

where hv(g) is the measure-theoretic entropy of g and 2 , .>0  is the 
Lyapunov exponent of measure v, i.e., 

log I[dg~,'.[I lim Y")~=' log la(gk(x))l ( 2,.= lim t - log la(x)l dv(x) : j  

In the next theorem we summarize some refined properties of the pointwise 
dimension of equilibrium measures. 

Theorem 3. Let v =  vr be the equilibrium measure corresponding 
to a H61der continuous function ~ on a conformal repeller J. Then for 
every ct I ~< ct ~< c% we have the following: 

(1) The set X(/s  (Theorem 2). 

(2) There is a unique equilibrium measure v~ on J such that 
v~(K~) = 1 and d,.(x) = ct for every point x ~ K~. 

(3) The measure v~ = v and the measure Vo is the measure of maxi- 
mal dimension, i.e., Vo is the equilibrium measure for the potential 
d log la(x)l, where d =  d i m ,  J. 

R e m a r k s .  (1) Assume that v=m. In the proof  of Lemma 5 we 
showed that this implies that T(q)= ( 1 - q )  d. Since the pointwise dimen- 
sion o f m  is equal to d everywhere in J, we have thatf,.(d)= d and f , . (~)= 0 
for all ~ :~ d. 

(2) Recall that v~(K~) = 1 for each ct ~ [ ~ ,  ct2], where v~ is an equi- 
librium measure. Since equilibrium measures are fully supported on J and 
assign positive measure to all open subsets, it follows that the sets K~ are 
dense in J. 

It is a well known property of box dimension that the box dimension of 
a set coincides with the box dimension of the closure of the set. c8~ Since the 
sets K~ are dense in J for cte [cq, ct2], it follows that the box dimension of 
these sets k~,are equal to the box dimension of the set J. This observation 
shows that the multifractal analysis becomes trivial if Hausdorff  dimension is 
replaced by box dimension in the definition of the dimension spectrum. 

(3) Assume that veto.  The function f,.(ct) is defined on the interval 
[~l ,  ~2 ], where 

~ l = -  lim T'(q), ~ 2 = -  lim T'(q) 
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It follows that  f(cr ~< d =  dimH J for any ~ >~ 0 and f ( e ( 0 ) )  = T(0) = d. Since 
the function f,.(e) is strictly convex,  e(0) is the only value where this func- 
tion at tains its m a x i m u m  d (see Fig. 2B). 

Differentiating the equali ty f(c~(q) ) = T(q) + qe(q) with respect to q, we 
obtain  that  for every q ~ 

This implies that  

f'~( oL( q ) ) = q 

lim f ' ( ~ ) =  +o~,  lira f ' ( ~ ) =  - c o  
: c ~  I : r  2 

Fur thermore ,  f'~(~( 1 )) = 1. Since T( 1 ) = 0 we have that  f (~(  1 )) = ~( 1 ). Since 
Ji.(~) is strictly convex, we conclude that  the equat ion J].(c~)=c( has the 
unique root  ~(1). Moreover ,  the function Ji.(0c) is tangent  to the line of  
slope 1 at ~(1) (see Fig. 2B). 

(4) Theo rem 1 can be generalized to H61der cont inuous  expanding  
and conformal  maps.  A cont inuous  m a p  g:  X--* X on a compac t  metr ic  
space X is said to be expanding if g is a local h o m e o m o r p h i s m  and there 
exist constants  b > a > 1 and o > 0 such that  

B(g(x),  ar) c g(B(x,  r) ) = B(g(x),  br) (19) 

for every x ~ X and 0 < r < r0. 
We say that  a H61der cont inuous  expanding m a p  g is conformal if 

there exist a H61der cont inuous  function a(x) with la(x)l > 1 on X and 
positive constants  C~, C2, and ro such that  for any 0 < r ~ < r  o, any two 
points  x, y ~ X, and any integer n ~> 0 we have: if p(gk(x) ,  gk(y))  ~< r~ for all 
k = 0, 1 ..... n, then 

C, ( I  la(gk(x)) l -  ' "<~p(g''(-'),' g"'t.v'~" <~ C2 (-I la(g*(x))l  ' 
k = ( l  k = 0 

(20) 

We denote  by m the Gibbs  measure  cor responding  to the function 
- d l o g  [a(x)l on X, where d is the unique root  of  Bowen's  equa t ion  
P ( - d l o g  l a ( x ) [ ) = 0 .  

Let v be the Gibbs  measure  cor responding  to a H61der cont inuous  
function ~ on X. Define $ = ~ - P ( ~ ) .  Clearly ~, is a H61der cont inuous  
function on X such that  P x ( l o g  t ) ) = 0  and v is the unique equi l ibr ium 
measure  for log ~,. 

Define the one -pa ramete r  family of  functions d_,t, q ~ ( - ~ ,  wJ ), on X by 

~q(x) = - T(q) log [a(x)l + q log q/(x) 
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where T(q) is chosen such that P(~q)=0. One can show that for every 
q ~  there exists only one number  T(q) with the above property. It is 
obvious that functions ~,~ are H61der continuous on X. The following 
statement effects the complete multifractal analysis of Gibbs measures sup- 
ported on repellers for H61der continuous conformal expanding maps. Its 
proof  is similar to the proof  of Theorem 1 and uses Theorems A1 and A2 
in Appendix A. 

T h e o r e m  4. Let g be a H61der continuous conformal expanding 
map of a compact  set X. Then for any H61der continuous function ~ on X 
we have the following: 

( 1 ) The pointwise dimension d,.(x) exists for v-almost every x ~ X and 

~FlOg ~b(X) dv(x) 
d,.(x) = - ~ x  log [a(x)[ dr(x) 

where v = v: is the Gibbs measure corresponding to ~.. 

(2) The function T(q) is real analytic for all q e R ,  T ( 0 ) = d i m u F ,  
and T ( 1 ) = 0 ,  T'(q)<~O, and T"(q) )O (see Fig. 2A). 

(3) The function ~ ( q ) = - T ' ( q )  attains values in the interval 
[ a t ,  ~2 ], where 0 ~< ~ ~ ~< ~2 < or. The function f,.(~(q) ) = T(q) + q~(q }. (see 
Fig. 2B ). 

(4) If v is not the measure of maximal entropy or v # m ,  then the 
functionsJi.(a) and T(q) are strictly convex and form a Legendre transform 
pair (see Appendix C). 

(5) The v-measure of any open ball centered at points in X is positive 
and for any q ~ • we have 

log inf:,, r Z t ~  :,,'r v(B) '1 
T(q) = - lim 

,.-. t~ log r 

where the infimum is taken over all finite covers ~. of X by open balls of 
radius r. For q > 1 (actually for any q 4: 1; see Remark 5 after the statement 
of Theorem 3) we have that 

T( q) 
= HP,.(q)= R,.(q) 

1 - q  

(5) For an arbitrary Borel probability measure v on a metric space 
X, the HP-spectrum ~ ~0~ is not a priori defined for q < I. One problem is that 
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the measure of some small balls may be zero. However, if all balls have 
positive measure (as in the case of equilibrium measures for conformal 
repellers), the definition of HP spectrum for all q :~ 1 makes formal sense 
although the integral may be infinite. 

In our proof of Statement 5 of Theorem 1, we actually show that for 
all q # 1 (not just for q > 1 as stated), the function T(q) / (1 -  q) coincides 
with this extended definition of HP,,(q). In particular this implies that 
HP,,(q) is finite for all q 4: 1. 

The case q = 1 is treated in Remark 6. 

(6) We define the notion of information dimension. Let ~ be a finite 
partition of the space X. Given a Borel finite measure v on X, the entropy 
oJ'~ with respect to v is defined as 

dcf 
H,,(r - - ~ v(C~) log v(Cr 

where C: is an element of the partition ~. Given a positive number e, we 
set 

H,,(e) = infr H,.(~) : diam ~ ~< e} 

where diam ( = max diam Cr 
We define the injbrmation dimension of v by 

d~r H,,(~) 
l(v) =- l i m -  

,: - o l o g (  1 / e )  

provided that the l#nit exists. 
Young (41~ showed that if d_,,(x)=d,.(x)=d for v-almost every x e X ,  

then I(v)= d and hence is equal to the Hausdorff dimension of v. 
Assume that the measure v is diametrically regular. It is conjectured 

that in "good" cases 

I (v )=  lim R,.(q)= lim HP,,(q) 
q ~ l +  q ~ l +  

Since the function T(q) is differentiable, the limit 

lim T(q) 
q~l 1 - q  
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exists and is equal to - T ' ( l ) = c t ( 1 ) .  It follows from Statement 5 of 
Theorem 1 that 

- - T ' ( 1 )  = lim 
,-~ o log r 

log inf,,,, ~ : , , ,  v(B) log v(B) 

where the infinum is taken over all finite covers ~. of J by open balls of 
radius r. This implies that 

f,.(~x(1 )) = o~(1 ) = - T ' ( 1 ) = I ( v )  

3. E X A M P L E S  

Theorem 1 allows us to effect a multifractal analysis of equilibrium 
measures for hyperbolic rational maps, one-dimensional Markov maps, 
and conformal toral endomorphisms. We first consider rational maps. 

Let R: (2--, (2 be a rational map of degree d>~ 2, where C denotes the 
Riemann sphere. The map R, being holomorphic, is clearly conformal. The 
Julia set JR of R is the closure of the set of repelling periodic points of R 
[recall that a periodic point p of period m is repelling if [(R"')' (p)] > 1]. 
One says that R is hyperbolic (or that the Julia set is hyperbolic) if the map 
R is expanding on JR, i.e., if it satisfies conditions (1)-(3) in the definition 
of smooth expanding map with respect to the spherical metric on (2. c41 It 
is known that the map z -+ z 2 + c is hyperbolic provided [c[ < 1/4. It is con- 
jectured that a dense set of rational maps is hyperbolic. Since the Julia set 
of a hyperbolic rational map is a conformal repeller, Theorem 1 
immediately implies the following statement. 

C o r o l l a r y  1. If v is an equilibrium measure for a hyperbolic 
rational map, then Statements 1-4 of Theorem 1 hold. 

We now consider one-dimensional Markov maps. Let g be a Markov 
map of the interval I =  [0, 1 ]. This means that there exists a finite family 
I~, 12 ..... I r c I of disjoint closed intervals such that: 

(1) for "every 1 <~ j <<, M, there is a subset K =  K(j) of indices with 
g(Ij) = U~. ~ K/ ,  mod 0. 

(2) For every x e U j [ i ,  the derivative of g exists and satisfies 
Ig'(x)] ~>~ for some fixed 0c>0. 

(3) There exists 2 > 1  and n , > 0  such that i f g ' " ( x ) ~ U i  ~, for all 
O<~m<~no- 1, then [(g'"')' (x)[ >~2. 
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Let J =  { x e l I  g"(x) e U i[i for all n e N}. The set J is a repeller for the 
map g. It is conformal because the domain of g is one-dimensional. Hence, 
Theorem 1 immediately implies the following statement. 

C o r o l l a r y  2. If v is an equilibrium measure for a Markov map, 
then Statements 1-4 of Theorem 1 hold. 

Rand c3~) carried out a partial multifractal analysis of equilibrium 
measures for a cookie-cutter map. Cookie-cutter maps are a special type of 
Markov map where one has only two subintervals which get mapped onto 
I under g. He studied the dimension spectrum only with respect to the sym- 
bolic metric. 

Another example of a conformal expanding map is a conformal toral 
endomorphism defined by a diagonal matrix (m ..... m), where m is an 
integer and Iml > 1. 

C o r o l l a r y  3, If v is an equilibrium measure for a conformal toral 
endomorphism, then Statements 1-4 of Theorem 1 hold. 

4. MULTIFRACTAL ANALYSIS OF EQUILIBRIUM 
MEASURES ON LIMIT SETS ON MORAN-LIKE 
GEOMETRIC CONSTRUCTIONS 

About 50 years ago, Moran ~9) computed the Hausdorff dimension of 
geometric constructions in R" given by p basic sets A i~...i,, satisfying the 
following: 

Each basic set is the closure of its interior. 

At each level the basic sets do not overlap (their interiors are dis- 

(1) 

(2) 
joint). 

(3) 
for every 

(4) 
the ratio 

A basic set d;, ...,.,,/. is geometrically similar to the basic set Ai~ ...;, 
j and n. 

diam(fi~, ...~,,j) = )~. diam(fii,...~,,), where 0 < ,~/< 1 f o r j  = 1,..., p are 
coefficients. 

These constructions are called Moran constructions. Moran discovered the 
formula s = d i m H F ,  where s is the unique root of the equation 

p 

L A'~=I 
i = l  

Moran's major idea was to construct an optimal cover of the limit set 
(Moran cover) which is determined by the ratio coefficients. Our main 
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insight into the Moran approach ~27- 2s~ is that many of the strict conditions 
in the definition of a Moran construction are not required to build the 
Moran cover. For example, the geometric similarity of basic sets may be 
greatly weakened. Furthermore, although Moran only considered construc- 
tions modeled by the full shift, his approach can be generalized to construc- 
tions modeled by arbitrary symbolic dynamical systems. Our approach 
allows us to extend the original Moran idea to much broader classes of 
geometric constructions. 

In particular, we introduce the Moran-like constructions defined as 
follows. Let (Q,~r) be a symbolic dynamical system where Q c - r  7 is a 
compact shift invariant subset. Throughout the paper we assume that a[ Q 
is topologically transitive. We allow basic sets A;, ...i, with n-tuples i~ ..-i,, 
which are admissible with respect to Q such that: 

( 1 ) The following holds: 

B-i l  . . .  6, c ,4  il . . .  i. C Bil  . . .  i ,  

where _Bi, ...i,, and /~i, ...;,, are closed balls having radii r;, ...;, and fl, ...i,,, 
respectively. 

(2) int _&, ...i,, ca int _Bi; ...;; = ~ if (i~ ..... i,,) r (i'~ ..... i;,). 

(3) fi,...i,=C~l-lj~=~2~ and fi,...i,,=C_,l-lj~=12~, where 0 < 2 i < 1 ,  
i =  1 ..... p, and C,,  C2 are positive constants. 

We stress that the topology and geometry of basic sets may be quite 
complicated. For example, they may not be connected and their boundary 
may be fractal. In particular the basic sets at level n of the construction 
need not be geometrically similar to the basic sets at level n -  1. Further- 
more, the basic sets at a given level may intersect. This class of constructions 
includes Moran geometric constructions. One very particular case is when 
a geometric construction is effected by a finite collection of similarity maps 
(affine contractions) h~ . . . . .  h p  such that 

Ai, ...i,, =hi, . . . . .  hi.(A) 

where A denotes a ball in R" (Fig. 3). 
Given o.re Q, the intersection N,,'~ ~ A i,... i, consists of a single point x. 

This produces a map X: Q ~ F  defined by Z(o9)=x. It is a H61der con- 
tinuous map from Q onto F. To see this, let o9~=(i~i,_ . . . i , d . . . )  and 
o92= (i I i,_.., i , k . . .  ), j r  two points in Q. We have 

p(z( og, ), x( o9~) ) ~ ~ ~0 <- 2'~.x ~ Cp( o9, , o9._)~ 
j = l  

822 86. I -2-18 
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Moran geometric construction with disjoint basic sets. Fig. 3. 

where C > 0 and 0 < 0c < 1 are constants and p( . ,  - ) denotes the Euclidean 
metric on F. Therefore, any H61der continuous function on F pulls back to 
a H61der continuous function on Q. 

We assume that basic sets of a Moran-like geometric construction 
satisfy the following separation condition: for any two distinct n-tuples 
(il . . .  i,,) and ( J l "  "J,,) we have 

A~, .../,, n zlj~ ....i,, c ~ F = ~  

This separation condition allows significant overlaps of  the basic sets on the 
same level. If this condition holds, the coding map Z is a homeomorphism 
and we can consider the induced map G = Z o a o z  -~ on the limit set F. 

Since we consider geometric constructions which are modeled by a 
subshift of finite type ( ~ + ,  or), the induced map G on the limit set is a local 
homeomorphism. Moreover,  if one builds a geometric construction 
modeled by an arbitrary symbolic system (Q, a) with the induced map on 
the limit set being expanding, then a lQ must be a subshift of finite type, 
i.e., Q =  Z't + for some transfer matrix A. This follows from a result of 
Parry.~22 

The following theorem effects a complete multifractal analysis of Gibbs 
measures supported on limit sets of Moran-like geometric constructions 
modeled by subshifts of finite type. It is an immediate corollary of 
Theorem 4. 
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T h e o r e m  5. Let G be the induced map on the limit set F for a 
Moran-like geometric construction modeled by a transitive subshift of 
finite type, Assume that the separation condition holds. Assume also that 
G is expanding and conformal [see (19) and (20)]. Then Statements 1-5 
of Theorem 4 hold. 

Consider a conformal self-similar geometric construction. Recall that 
this means that the basic sets Ai, ...;,, are given by 

Ai ' ...;,=hi, . . . . .  hi,,(D) 

where h t ..... he: D ~ D are affine maps, i.e., p(hi(x), hi(y)) = 2;p(x, y) with 
0 < 2; < 1 and x, y e D (a simply connected compact subset of R'"). Assum- 
ing that basic sets Ai, i =  1 ..... p, are disjoint, one can easily see that the 
induced map G on the limit set F is expanding and conformal [with 
a ( x ) = 2 ; ,  t where 2"(x)=(i,i,_ .. .  )]. Thus, Theorem 4 applies. For some 
particular classes of measures (Bernoulli measures, self-similar measures, 
etc.) this result was obtained by several authors (see, for example, refs. 2, 
7, 8, 20, 21, and 32). 

R e m a r k s .  (1) A geometric construction satisfies the open set con- 
dition if and only if for all n e N, the interiors of all basic sets at level n are 
disjoint. We consider conformal selfsimilar geometric constructions satisfy- 
ing the open set condition and where the basic sets at the first step 
Ai=hi(D)  satisfy h;(D)cinterior(D).  The following simple argument 
shows that Theorem 5 applies for these constructions. 

Let ~ = { x E F [  #(Z- ' (x) )>~2},  i.e., the set of points which do not 
have unique coding under 2'. Since the construction is given by self-similar 
maps, we have 

r s  

~ ' c  0 U h;, . . . . .  h;. (boundary (D)) 
n = I i l  " " ' i n  

= U 0 (boundary (As,...;,,)) 
Pt  = I i l  - �9 �9 i n  

However, otrr hypothesis that h i ( D ) c  interior(D) implies that 

, : r  

F ~ M c F c 3  U U hi, . . . . .  h i , , (boundary (D) )=~ 
n = 1 i l  �9 �9 �9 i n  

This shows that all points.in the limit set F have unique codings and thus 
the induced map G is defined on all of F. Hence Theorem 4 applies. 
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Lau and Ngai ~7~ effected a type of multifractal analysis of self-similar 
measures on the limit sets of self-similar constructions where some type of 
overlaping of basic sets is allowed. They only work with upper R6nyi 
dimension and thus avoid the nontrivial issue of the limit (defining the 
R6nyi dimension) existing. 

(2) Consider again a self-similar geometric construction modeled by 
the full shift a and assume that v is the Bernoulli measure defined by the 
vector (Pt ..... p,.), where 0 < Pk < 1 and Y'~. = ~ Pk = 1. It follows from results 
in ref. 27 that 

is equivalent to 

P• = 0 

i 2n" tpT= 1 
k = l  

An easy calculation shows directly that T ( 0 ) = d ,  T (1 )=  0, and that T ( q )  is 
either linear or strictly convex. 

(3) One can obtain a more general class of geometric constructions 
(more general than self-similar geometric constructions) to which Theorem 
4 can be applied by considering a geometric construction effected by p 
sequences of bi-Lipschitz contraction maps h~"~:D--- ,  D such that 

Ai , . . . i ,  = h~t I~ o n'12~i,_ . . . .  . h~"~(D).,, _ _ 

and for any x, y e D, 

2~"' dist(x, y )  < ~ d i s t ( h T " ( x ) ,  h~"'(y)) -%< ].~"' dist(x, y) 

where 0 < 2c"1 -N< 2~"1 < 1 are Lipschitz constants for the maps (h 7'~) - t and 
h~/'~, respectivelyJ 28~ We assume that the Lipschitz constants admit the 
following a s y m p t o t i c  e s t ima te s :  there exist 0 < 2i < 1 such that 

27" 2~'"' ~ e -  (21) 

One can check that the induced map G is expanding and conformal [with 
a ( x )  --- 2~ t , where X ( x )  = ( i l  i,_ . . .  )] and Theorem 4 applies. 

Theorem 11 in ref. 27 shows there exists a geometric construction 
effected by two sequences of bi-Lipschitz contraction maps which do n o t  
satisfy the asymptotic estimates (21). Although the basic sets at each step 
of the construction are disjoint and the induced map G on the limit set F 
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is expanding, this geometric construction does not admit the multifractal 
analysis described by Theorem 5. Theorem 11 in ref. 27 provides two sub- 
sets A and B in F of positive measure for which the pointwise dimension 
exists for almost all points and takes on two distinct values ~ and ~2. This 
implies that Ji.(~i)= ~i, i =  1, 2, which contradicts the fact that the equation 
f,.(a) = a  has the unique root a = ~(1). This construction yields a H61der 
continuous homeomorphism of a compact metric space with an ergodic 
invariant measure of positive entropy for which the dimension spectrum is 
not convex, and hence the multifractal formalism fails. 

It is still an open problem in dimension theory whether one can effect 
the complete multifractal analysis of Gibbs measures supported on the 
limit set of a Moran geometric construction modeled by a transitive sub- 
shift of finite type. By Theorem 9 in ref. 27, the pointwise dimension of such 
a measure exists almost everywhere. 

(4) Theorem 1 is valid for any Moran geometric construction 
modeled by a symbolic system on which the pressure function is smooth. 
One of the reasons why we require the symbolic model ( Q, a) to be a sub- 
shift of finite type is that the smoothness of the pressure function is essen- 
tially known only in this case. 

(5) We stress again that we have not used any techniques from the 
theory of large deviations to prove Theorem 1. However, Rolf Riedi 
explained to us that by combining our smoothness and convexity results 
for T(q) with (5), we have verified all the hypotheses needed to apply a 
large-deviation theorem of Ellis and obtain an interesting formula for the 
dimension spectrum. 

More precisely, consider the random variable X, = log v(A',~), where n 
has been picked uniformly from 1,..., N,.. The moment generating function 
of X,, is 

c,.(q) = exp(qX,,) = (l/N,.) ~, 
/ |1 r E ~[r 

Therefore, (5) implies that 

v(~,'.)*' 

lim log c, . (q)_ T(q) - T(O) 
,-- o log r 

which by Theorem 1 is smooth and convex. Thus, the assumptions of 
Theorem II.2 in ref. 6 are met with a,  = log q(1/r). 

Recall that the Legendre transform of T(q) is the (dimension spec- 
trum) function f,,(00. The following theorem is a corollary of Ellis' 
theorem c32) and gives a counting approach to the multifractal analysis. 
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Theorem 6. Let v be the equilibrium measure on F corresponding 
to a H61der cont inuous function ~. If v ~a v ..... or  v ..... ~ m, then 

log N,.(o~, ~) 
f,.(~) = lira lim 

,: ~ 0 ,.- o log(1/r) 

where N,.(0q e) is the number  of  sets A~ ~ 9I,. such that  ~ - ~  < v(A-~)<~o~ +~. 

Again we thank Rolf  Riedi for supplying this remark. 

(6) Consider  the case when the measure m;. is the measure of  maxi- 
mal entropy m~ = v . . . .  . This implies that  the function a(x) is cohomologica l  
to a constant  (in particular, 2i, = 2 = c o n s t  for all i). If  v = m ~ =  v ..... then 
the function ~ is cohomological  to a constant  as well. This implies that 
T ( q ) = ( 1 - q ) d .  Since the pointwise dimension of  ma is equal to s 
everywhere in F, we have that f , . ( d ) = d  and f, .(0c)=0 for all c~r 

A P P E N D I X  A. THE DR PROPERTY OF E Q U I L I B R I U M  
M E A S U R E S  FOR C O N T I N U O U S  
E X P A N D I N G  M A P S  

Let X be a compact  metric space with metric p. We say that  a con-  
t inuous map  g:  X ~  X is expanding if g is a local h o m e o m o r p h i s m  and 
there exist constants  F >/E > 1 and r0 > 0 such that  

B(g(x), Er) c g(B(x, i")) c B(g(x), Fr) ( h i )  

for every x e X and 0 < r < r 0. 
Without  loss of  generality we may assume that  for any x e X, the map  

g restricted to the ball B(x, r0) is a homeomorphism.  
We recall that  a Markov partition for an expanding map g:  X ~  X is 

a finite cover of  X by elements, called rectangles, { R~ ..... Rp}, such that: 

( 1 ) Each rectangle R is the closure of  its interior/~.  

(2) / ~ i c ~ / ~ / = ~  for i ~ j .  

(3) Each g(R i) is a union of  rectangles R/. 

We construct  a special Markov  part i t ion for an expanding map  such 
that the rectangle containing a given point  in X is ahnost a ball. Let R(x) 
denote the rectangle in '~. that  contains the point x. 

Theorem A1. There are positive constants  CI,  C~, and a positive 
integer k such that  for any 0 < r ~< ro and any x e X there exists a M a r k o v  
part i t ion .'~..,. = {RI ..... R/, } for the map  gk such that  diam(Ri) ~< C,_r for all 
i --- 1 ..... M and B(x, C~ r) c R(x). 
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ProoL Let k > 1 be an integer which we specify later. Fix a point  
x E X  and choose r such that  lOr<(1/bk)ro, where b is some positive 
number .  Also choose a finite cover  ,~o of  X by balls B ~ = B(x~, r) such that  
x l = x and 

i > 2  

Given i, consider  a cover  rgo of  the set gl"(B~ by balls B ~ E ~  ~ Let .] 

B}= U g-k(B~ 

Lemma A1. We have B] c B ( x ~ , r + 2 a - k r ) .  

Proof  o f  Lemma A1. Consider  a ball B~ ~Erg o and a point  ./ i 
o k ,) _ B o y E B~ \ g  (B;).  Choose  ~ E i n g~(B~ Clearly the distance p(z, y) ~< 2r. By 

A1, p(g-~y,  g -kz )  ~ a k2r. The l emma follows since g - k z  E Bt~). I 

Consider  the cover  ~ t  of  X by sets {B~}. Given i, we have 

gk(B])  = U B~ (A2) 

Let rg] be the cover  of  the set gk(Bl)  by sets B! E M '  with B ~ erg  ~ Set 
.! J 

Iemma A2. We have B~ cB(x;, r+3a-kr+2a-2kr). 

Proof  o f  Lemma A2. Consider  a set B) Erg~ and a point  
y E B) \gk(B]  ). Choose  z E B) n gk(Bl ). Clearly the distance p(z,  y)  -%< 2r. By 
(A2) and L e m m a  A1, we have p (y ,  z)-%< 2A-kr .  The l emma follows. I 

By induct ion we construct  covers , ~ " = { B T } , n = 2 , 3  ..... with the 
following propert ies:  

( I )  gk(B'/) = I I . . . . .  B': - t  �9 ,., rs; ~ '4 ,  1 

( 2 )  B ,  i, c B ( x i ,  r + 2r Z,/= t A -tk). 

We consider  the cover  M "  which consists of  the sets 

B i = B i 
n ~ O  
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Lemma A3. 

( l )  

(2) 
(3) 
(4) 

We have that: 

gk(B?) = U 8} ~,~-',' B ; .  

Bf cB(xi, r(1 + 2A-k/(1 --A-k))) .  

For sufficiently large k the set B; ~- ~ B(x~, (5/4) r). 

U;>~2 g ?  c~ g(x, r/4) = ;3. 

Proof o f  Lemma A3. This first two statements are an immediate 
consequence of the above properties 1 and 2 of covers ~". In. Statements 
3 and 4 follow directly from them. | 

The first statement of Lemma A3 means the cover ~ -  is a Markov 
cover, i.e., its elements satisfy properties 1 and 3 in the definition of Markov 
partition. We will cut elements of this Markov cover to obtain the desired 
Markov partition. 

Given y �9 X, let s(y) = (i~ ... i,,) be the set of integers such that y �9 B~-. 
Set 

R { y ) =  ~ B~'- 
9 

ii e .*'( v 

Lamina A4. (1) For every y e X ,  the set R(y) is open. 

(2) If z e R ( y ) ,  then R ( z ) c R ( y ) .  

(3) If zq~R(y), then R ( z ) n R ( y ) = ; Z j .  

(4) For every z � 9  we have R(g~(z))cgk(R(z)) .  

Proof o f  Lemma A4. The first statement is obvious since the sets Bi'- 
are open. Now assume that z eR(y) .  Then zeB~- for every (j � 9  and 
s(y) ~ s(z). Hence 

R(z)=  0 B~ c ~ B~,j 
i je  s(zl  ije.':(.v) 

Now assume that z r R(y). If there exists w �9 R(z) c~ R(y), then by State- 
ment 2 we have R ( z ) c  R(y). Thus z �9 R(y) and we obtain a contradiction. 

B , x -  To prove the last statement, consider a point z � 9  R(z )=  0,>~s(:) #.  
Then gk(z) �9 Oij~.(.) -k 'B~ " . g t (1- By Statement 1 of Lemma 3, gk(z) �9  
A/,~.,'(~(:, BiT- and hence 

R(gk(z ) )c  ~ B.~_ (~ gk(Bij~.=_ ) 
i ~ s t g ~ i z ) )  i ,~  .v(zJ 

This completes the proof of Lemma A4. | 
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Lemma A4 implies that there exists a cover .~,. of  X by closed sets 
{ R  I ..... Rp} and an integer 1 ~<k ~<M satisfying the following: 

(I)  For every 1 <~j<~k and every z e ~ j  we have Rj=R(z). 
(2) For  every k + l ~ < j ~ < N  there exist finitely many points Yh e X  

such that for every z e/~i, we have Rj = ~ \ 0 / R ( ) ~ - , ) .  

We claim that the cover ~,. is a Markov partition for gk. We need only 
check Property 3 in the definition of Markov partition, since the other 
properties follow from Lemmas A3 and A4. 

Given a set R; and a point z ~/~,., assume that g~(z)~ t~. 
If 1 ~< i<~k, then R~= R(z). By Statement 4 of Lemma A4 we have that 

R(gk(z)) ~ gk(Rt). Since Rj c R(gh(z), this implies the Markov property. 
If k + 1 ~< i ~< N, then R; = R--~z)\0t R(y;~). By Statement 4 of Lemma 

A4 we have that R(gk(z))~ gk(R(z)). Since R= R(gk(z)), this implies that 
Rj ~ gk(R(z)). Applying an appropriate branch of the inverse map g.k, we 
have that g-kRi c R(z). Assume that there is a point w~g-kri which does 
not belong to R;. Then w~R(yi~) for some 3%~X. This implies that 
g~(w)ERi and hence Ri =R(gk(w)). By Statement 4 of Lemma A4, we 
have 

g-k(Rj) c g-k(R(gk(w))) c R(w) ~ R(yi) 

This is impossible since z~g-k(Ri) and the Markov property has been 
verified. 

It follows directly from Statement 4 of Lemma A3 that the Markov 
partition .~,. has the desired property with respect to the given point x. | 

We use the special Markov partition constructed in Theorem A1 to 
prove the following statement. 

Theorem A2. Let ~b be a H61der continuous function on )(. Assume 
that g is conformal (see (20)). Then any equilibrium measure for ~b with 
respect to g is diametrically regular [see condition (DR)].  

Proof. Let p,~ be an equilibrium measure for 4. Let also .~ be a 
Markov partition of X. Given x ~ X and a number 0 < r <  re, consider a 
Moran cover /I,. of  X and choose those elements R ~t> ..... R c'''t from this 
cover that intersect the ball B(x, 2r). We have that 

(1) R~J~= Ri~...j,,,.,~,j= 1,..., m where x j e X  is a point; 

(2) diam R Ij~<~r,j= 1 ..... m; 

(3) m < K where K is a constant independent of x and r; 
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There is an element R ~'~ in the Moran cover that contains x. We have that 

R(')c B(x, r) ~ B(x, 2r) ~ ~) R (j) (A3) 
. i =  I 

Define the function ~ such that log ~ = ~b - P(~b). Clearly, ~b is a H61der con- 
tinuous function on X such that P(log qJ) = 0 and pj, is the Gibbs measure 
for log 4. We have for any j =  1 ..... m, that [see Appendix B, Eq. (B1)] 

n( .x  7) - I n ( a T ) -  I 

C2 l-[ O(gk(xi))<~P,~(R(i)) <~C, 1--I O(g~(xfl) (A4) 
k = 0 k = 0 

where C~ > 0 and C2 > 0 are constants. Since g is expanding, we also have 
that 

- I n l x D  I k=(, ~(g~'(x/)) 
C4 ~ ~ -i " ~ C5 

�9 . = o  4 ' ( gk (x ) )  
(AS)  

where C3 > 0 and C4 > 0 are constants. It now follows from (A3)-(A5) that 

~,~(B(x, 2r))~p,/, R ~-i~ <~K 1-[ ~J(gk(x)) 
j I k = 0 

<~ Csp,~(R IJ~) <~ Csp,/,(B(x, r)) 

where C5 > 0  is a constant. This completes the proof. | 

A P P E N D I X  B. F A C T S  A B O U T  P R E S S U R E  

This Appendix contains some essential definitions and facts from sym- 
bolic dynamics and thermodynamic formalism. For details consult refs. 1 
and 34. Let X denote a compact  metric space and let C(X) denote the 
space of real-valued continuous functions on X. 

(1) Let g: X ~  X be a continuous map. We define the pressure P" 
C(X) ~ • defined by 

P(~b)= sup (h~,(g)+Ixc)dp) 
p ~ 9Jl(J t ' )  

where 93l(X) denotes the set of shift-invariant probability measures on X 
and h~,(f) denotes the Kolmogorov-Sinai  entropy of the map g with 
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respect to the measure p. A Borel probabili ty measure p =p,~ on X is called 
an equilibrium measure for the potential r e C(X) if 

P(r = hl'(g) + fx r dp 

(2) The pressure function P: ~ + C (Z'.,f, R ) ~  R is real analytic. We 
remark that this result may not be true if s is replaced by an arbitrary 
symbolic system. 

( '~tZ '+ ff~). The map E--* R defined by t--* P(tr is con- (3) L e t C e ~ ,  A, 
vex. It is strictly convex unless ~ is cohomologous to a constant, i.e., there 
exist C > 0  and g e  C~(X + , R) such that r  = g(ax) - g(x) + C. 

+ (4) Let CeC(Z" A ). A Borel probability measure p=/, t+ on Z "+.~ is 
called a Gibbs measure for the potential r if there exist constants D~, D ,  > 0 
such that 

p { y :  yt=x~,  i=0,.. . ,  n - -  1} 
D, < e x p ( - n P ( r  + Z~ 2-I~ r ~ D2 

for all x = ( x ~ x 2  . . . ) E X  + and n~>0. For  subshifts of finite type, Gibbs 
measures exist for any H61der continuous potential r are unique, and 
coincide with the equilibrium measure for r 

(5) Given two continuous functions h~ and h, on X + _ ..f, we have 

d ~.=oP(hl q_~h2)=f• ]12dllh, (BI )  

where Ph, denotes the Gibbs measure for the potential h~. 

APENDIXC.  FACTS ABOUT THE LEGENDRE TRANSFORM 

Let f be a C 2 strictly convex map on an interval /, hence, f " ( x )  > 0 
for all x e I. The Legendre transform of f is the function g of a new variable 
p defined by 

g(p) = max ( p x -  f ( x )  ) 
:~e I 

It is easy to show that g is strictly convex and that the Legendre transform 
is involutive. One can also show that strictly convex functions f and g form 
a Legendre transform pair if and only if g(o~)=f(q)+qo~, where 
~(q) = - f ' ( q )  and q = g'(00. See ref. 33 for more details. 
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