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YUN ZHAO AND YAKOV PESIN

Abstract. For symbolic dynamical systems we use the Carathéodory

construction as described in [4] to introduce the notions of q-topological

and q-metric entropies. We describe some basic properties of these en-

tropies and in particular, discuss relations between q-metric entropy and

local metric entropy. Both q-topological and q-metric entropies are new

invariants respectively under homeomorphisms and metric isomorphisms

of dynamical systems.

1. Introduction.

Since the introduction by Kolmogorov and Sinai, entropy has become one

of the most important invariants of dynamics. It comes in two incarnations:

as metric entropy and as topological entropy depending on whether ergodic

properties of invariant measure or topological properties of the system on

invariant sets are to be studied. The metric entropy measures the maximal

loss of information of the iteration of finite partitions in a measurable dy-

namical system and the topological entropy characterizes the exponential

growth rate of the number of periodic points.

For a dynamical system f acting on a measure space X with an invariant

measure µ, given a finite partition ξ of X, the classical Shannon-McMillan-

Breiman theorem claims that for almost every x ∈ X the limit

(1.1) lim
n→∞

− logµ(Cn(x))

n
= hµ(f, x, ξ)

exists. Here Cn(x) is the element of the n-th shifted partition ξn = ξ ∨
f−1ξ∨ . . .∨f−(n−1)ξ that contains x and hµ(f, x, ξ) is the local entropy of f

with respect to the partition ξ at the point x. If µ is ergodic then hµ(f, x, ξ)

is constant almost everywhere and the common value is the entropy hµ(f, ξ)
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of f with respect to the partition ξ. The latter coincides with the entropy

hµ(f) of f provided the partition ξ is generating.

Utilizing the Shannon-McMillan-Breiman theorem, one can consider the

multifractal decomposition of the set X associated to local entropies

(1.2) X = X̃
⋃(⋃

α≥0

Kα

)
,

where Kα = {x ∈ X : hµ(f, x, ξ) = α} and X̃ is the set of points for which

the limit in (1.1) does not exists – the so-called irregular part of the multifrac-

tal decomposition. 1The functions g1(α) = dimH Kα and g2(α) = h(f,Kα)

are called, respectively, the dimension and entropy spectra associated to the

multifractal decomposition (1.2). Here dimH Y is the Hausdorff dimension

of the set Y and h(f, Y ) is the topological entropy of f on the set Y .2 These

two spectra are examples of multifractal spectra, whose general concept was

introduced in [1]. Many multifractal spectra can be obtained by utilizing

a generalized Carathéodory construction described in [4], which provides

a unified approach for producing various dimension-like characteristics for

dynamical systems.

Another example of a multifractal spectrum that can be obtained in

this way is the well-known Hentschel-Procaccia spectrum for dimensions,

which has numerous applications in science. It is a one-parameter family

of dimension-like characteristics associated with a Borel measure in a given

metric space and, a prioŕı, it does not require any dynamics to be present. 3

To obtain this spectrum one starts with a reference measure µ, which gives

positive weight to any non-empty open set. One can then use it to build a

particular weight function in the Carathéodory construction to generate the

q-dimension of sets and measures (see [4, Section 8] for detailed exposition).

In this paper, using the Carathéodory construction approach, we intro-

duce, in the setting of symbolic dynamical systems4, the notion of q-entropy

in its both topological and metric incarnations, where q ≥ 0 is a parame-

ter. This actually generates what we call the Hentschel-Procaccia entropy

1While the irregular part has zero measure with respect to any invariant measure (and

hence, is completely negligible from the point of view of measure theory), its Hausdorff

dimension can be positive and indeed, as big as the Hausdorff dimension of the whole

space.
2Note that the set Y does not have to be invariant nor compact and that the topological

entropy of f on Y should be treated in the sense of Bowen, see [4].
3Of course, the most interesting applications of the Hentschel-Procaccia spectrum for

dimensions appear when the measure is invariant with respect to some dynamical system

with rich stochastic properties.
4We emphasize that in this setting the systems always possesses a generating partition.
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spectrum. We show that this spectrum is closely related to the q-topological

entropy on the support of the measure µ. Furthermore, we define the mod-

ified Hentschel-Procaccia entropy spectrum, which is related to the q-metric

entropy and local metric entropy of the measure µ.

We stress that both q-topological and q-metric entropies are new invari-

ants of dynamics. The q-topological entropy is an invariant under a class

of homeomorphisms that respect measure µ that is they satisfy some spe-

cial requirement with respect to the measure µ. The q-metric entropy is

invariant under metric isomorphisms.

Using Markov partitions one can extend the notions of q-topological and

q-metric entropies as well as of the Hentschel-Procaccia entropy spectrum

to uniformly hyperbolic systems (that is axiom A diffeomorphisms) and

in particular, to Anosov maps. Note that the q-topological and q-metric

entropies defined in this way may depend on the choice of Markov partitions.

One can show that these quantities converge to limits as the diameter of the

Markov partitions go to zero, thus producing q-topological entropies for the

corresponding smooth system.

2. q-topological entropy

Throughout this paper, let Σ+
p be the space of one-sided sequences on p

symbols and σ(ω1ω2ω3 . . . ) = (ω2ω3 . . . ) the shift map on Σ+
p . We assume

that Σ+
p is equipped with the distance

d(ω, ω′) = 2−k,

where ω = (ω1ω2 . . . ) and ω′ = (ω
′
1ω

′
2 . . . ) and k = min{n : ωn 6= ω

′
n}.

Denote by Mσ and Eσ the set of all σ-invariant respectively, ergodic σ-

invariant Borel probability measures on Σ+
p . Let µ be a Borel probability

measure on Σ+
p such that µ(U) > 0 for any non-empty open subset U ⊂ Σ+

p .

2.1. Definition of q-topological entropy. Given n ∈ N and ω ∈ Σ+
p ,

denote by Cn(ω) = {ω′ ∈ Σ+
p : ωi = ω

′
i, 1 ≤ i ≤ n} the cylinder of length n

that contains ω.

Let Z ⊂ Σ+
p be a subset of Σ+

p , which does not have to be compact or

σ-invariant. Given a collection of cylinders Γ = {Cni(ω
i) : ωi ∈ Σ+

p , ni ∈ N},
we say that Γ covers Z if Z ⊂

⋃
iCni(ω

i), and we set n(Γ) = mini{ni} to

be the smallest length of the cylinders in Γ.

For each subset Z ⊂ Σ+
p , each α ∈ R, N > 0 and each q ≥ 0, set

Mq(Z,α,N) = inf
{∑

i

µ(Cni(ω
i))q exp

(
− αni

)}
,



4 YUN ZHAO AND YAKOV PESIN

where the infimum is taken over all countable covers Γ = {Cni(ω
i)} of Z

with n(Γ) ≥ N . Since Mq(Z,α,N) is monotonically increasing with N ,

there is the limit

mq(Z,α) := lim
N→∞

Mq(Z,α,N).

It is easy to see that mq(Z,α) as a function of α (for a fix set Z) has a

critical “jump-up” point so that

hq(σ, Z) := inf{α : mq(Z,α) = 0} = sup{α : mq(Z,α) =∞}.

Definition 2.1. The quantity hq(σ, Z) is called the q-topological entropy of

σ on the set Z.

Given α ∈ R, N > 0, q ≥ 0 and Z ⊂ Σ+
p , define

(2.3) Rq(Z,α,N) = inf
{∑

i

µ(CN (ωi))q exp
(
− αN

)}
,

where the infimum is taken over all covers Γ = {CN (ωi)} of Z. We set

rq(Z,α) = lim inf
N→∞

Rq(Z,α,N),

rq(Z,α) = lim sup
N→∞

Rq(Z,α,N)

and define the “jump-up” points of rq(Z,α) and rq(Z,α) as

hq(σ, Z) = inf{α : rq(Z,α) = 0} = sup{α : rq(Z,α) = +∞},

hq(σ, Z) = inf{α : rq(Z,α) = 0} = sup{α : rq(Z,α) = +∞}

respectively.

Definition 2.2. The quantities hq(σ, Z) and hq(σ, Z) are called the lower

and upper q-topological entropies of σ on the set Z.

The above definitions of the q-topological entropy and the lower and up-

per q-topological entropies follow the generalized Carathéodory construction

described in [4]. According to this construction the space Σ+
p is endowed

with a special Carathéodory structure given as follows: 1) the collection

F of admissible sets (that are used to cover subsets in Σ+
p ) consists of all

cylinders Cn(ω); 2) given a number q ≥ 0, the functions ξ, η, ψ : F → R+

are defined by

ξ(Cn(ω)) = µ(Cn(ω))q, η(Cn(ω)) = e−n, ψ(Cn(ω)) = n−1.

Here ψ measures the size of the cylinder, η is the potential function and ξ

the weight function. Then for every subset Z ⊂ Σ+
p the quantities hq(σ, Z),

hq(σ, Z) and hq(σ, Z) are respectively the Carathéodory dimension and lower

and upper Carathéodory capacities of the set Z (see [4] for details).
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Remark 2.1. We stress that the quantities hq(σ, Z), hq(σ, Z) and hq(σ, Z)

depend on the reference measure µ which is used as a weight function in the

Carathéodory construction described in [4]. For q = 0, the weight function is

trivial and these quantities are respectively the standard topological entropy

and lower and upper topological entropies of σ on the set Z (see [2] or [4]

for details). This is why we continue to call them “q-topological entropy”.

However, to avoid any confusions in the definition of metric entropies, we

do not emphasize the dependence on µ in the notations.

2.2. Properties of q-topological entropy. We describe some properties

of the q-topological entropy and the lower and upper q-topological entropies.

They follow immediately from the definitions and Theorems 1.1, 2.1 and 2.4

in [4].

Proposition 2.1. For any q ≥ 0, the following statements hold:

(1) if Z1 ⊂ Z2, then Hq(σ, Z1) ≤ Hq(σ, Z2), where Hq denotes either hq
or hq or hq;

(2) if Zi ⊂ Σ+
p , i ≥ 1 and Z =

⋃
i≥1 Zi, then hq(σ, Z) = sup

i≥1
hq(σ, Zi),

hq(σ, Z) ≥ sup
i≥1

hq(σ, Zi) and hq(σ, Z) ≥ sup
i≥1

hq(σ, Zi);

(3) hq(σ, Z) ≤ hq(σ, Z) ≤ hq(σ, Z) for any Z ⊂ Σ+
p .

For any subset Z ⊂ Σ+
p and any q ≥ 0, set

(2.4) Λq(Z, n) = inf
{∑

i

µ(Cn(ωi))q
}
,

where the infimum is taken over all covers Γ = {Cn(ωi)} of Z. The following

equivalent description of the lower and upper q-topological entropy follows

immediately from definitions and Theorem 2.2 in [4].

Proposition 2.2. For each subset Z ⊂ Σ+
p and each q ≥ 0 we have

hq(σ, Z) = lim inf
n→∞

1

n
log Λq(Z, n),

hq(σ, Z) = lim sup
n→∞

1

n
log Λq(Z, n).

In the following we shall compute the q-topological entropy of σ on the

space Σ+
2 of one-sided sequences on 2 symbols.

Example 2.1. Consider a Bernoulli measure λ on the space Σ+
2 = {0, 1}N

given by the probability vector (κ0, κ1) where κ0, κ1 > 0 and κ0 + κ1 = 1.
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Clearly, for each q ≥ 0

Λq(Σ
+
2 , n) =

∑
Γ

λ(Cn(ωi))q =

n∑
j=0

Cjn(κj0κ
n−j
1 )q = (κq0 + κq1)n,

where Γ = {Cn(ωi)} is a disjoint cover of Σ+
2 . By Proposition 2.2, we obtain

that

hq(σ,Σ
+
2 ) = hq(σ,Σ

+
2 ) = log(κq0 + κq1).

In particular, if κ0 = κ1 = 1
2 then

hq(σ,Σ
+
2 ) = hq(σ,Σ

+
2 ) = log 2− q log 2.

Note that log 2 is the standard topological entropy of the system (σ,Σ+
2 ).

We shall now show that the q-topological entropy as well as lower and

upper q-topological entropies are invariant under a certain class of home-

omorphisms of Σ+
p associated with the measure µ. To this end consider a

continuous map π : Σ+
p → Σ+

p . It is easy to see that there exists an integer

k0 ≥ 0 such that for every ω, ω′ ∈ Σ+
p ,

d(ω, ω′) < 2−k0 ⇒ d(π(ω), π(ω′)) <
1

2
.

In the case when π commutes with the shift, i.e., π ◦ σ = σ ◦ π, this implies

that for any n > 0 and any ω ∈ Σ+
p we have

π(Cn+k0(ω)) ⊂ Cn(π(ω)).

If in addition, π is a homeomorphism we without loss of generality may as-

sume that the number k0 is chosen such that π−1(Cn+k0(ω)) ⊂ Cn(π−1(ω)).

Proposition 2.3. Let π : Σ+
p → Σ+

p be a homeomorphism such that π ◦σ =

σ ◦ π. Assume that there is K > 0 and N > 0 such that for any n ≥ N and

any ω ∈ Σp,

(2.5)

1

K
µ
(
Cn+k0(ω)

)
≤ µ

(
Cn(π(ω))

)
≤ Kµ

(
Cn+k0(ω)

)
,

1

K
µ
(
Cn+k0(ω)

)
≤ µ

(
Cn(π−1(ω))

)
≤ Kµ

(
Cn+k0(ω)

)
.

Then for every Z ⊂ Σ+
p ,

Hq(σ, Z) = Hq(σ, π(Z)),

where as before Hq denotes either hq or hq or hq.
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Proof. Given a cover Γ = {Cn(ωi)} of Z with n ≥ N , the collection of

cylinders Γ′ = {Cn(π(ωi))} covers π(Z). By (2.5), we have∑
Γ

µ(Cn+k0(ωi))q ≥ 1

Kq

∑
Γ′

µ
(
Cn(π(ωi))

)q
≥ 1

Kq
Λq(π(Z), n).

By Proposition 2.2, one has that

hq(σ, Z) ≥ hq(σ, π(Z)) and hq(σ, Z) ≥ hq(σ, π(Z)).

Furthermore, note that if the collection Γ = {Cni+k0(ωi)} covers Z with

ni ≥ N for all i, then the collection Γ′ = {Cni(π(ωi))} covers π(Z) with

n(Γ′) ≥ N . It follows that

Mq(Z,α,N + k0) ≥ e−αk0Mq(π(Z), α,N)

yielding that

hq(σ, Z) ≥ hq(σ, π(Z)).

Finally, since π is a homeomorphism, applying the above arguments to π−1,

we obtain the desired result. �

Example 2.2. Let λ be the Bernoulli measure on Σ+
p given by the probability

vector (κ0, · · · , κp−1) with κi > 0 for each i = 1, . . . , p − 1 and κ0 + · · · +
κp−1 = 1. Fix an integer N > 0 and consider a homeomorphism π : Σ+

p →
Σ+
p defined as follows: π(ω) = ω′ where ω = (ωi) and ω′ = (ω′i) are such that

ω′i = ωi for all i = N +1, N +2, . . . and (ω′1, . . . , ω
′
N ) is a given permutation

of (ω1, . . . , ωN ). Although the homeomorphism π does not satisfy π ◦ σ =

σ ◦ π, it is easy to see that π(Cn(ω)) = Cn(π(ω)) for any ω and any n ≥ N .

This means that in our case k0 = 1. Furthermore, for any n ≥ N it is easy

to check that

min
1≤i 6=j<p

{(κi
κj

)N} ≤ λ(Cn(ω))

λ(Cn(π(ω)))
≤ max

1≤i 6=j<p

{(κi
κj

)N}
.

By the same arguments as in the proof of Proposition 2.3, for any Z ⊂ Σ+
p

we have Hq(σ, Z) = Hq(σ, π(Z)).

We now obtain a formula that allows one to compute the lower and up-

per q-topological entropies for any q ≥ 1. Note that the function ω 7→
µ(Cn(ω))q−1 is measurable. Since it is bounded, it is integrable. For any

measurable set Z ⊂ Σ+
p and q ≥ 1, set

ϕq(Z, n) =

∫
Z
µ(Cn(ω))q−1 dµ(ω).

Theorem 2.4. The following statements hold:
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(1) For any q ≥ 1 and any measurable set Z ⊂ Σ+
p ,

hq(σ, Z) ≥ lim inf
n→∞

1

n
logϕq(Z, n), hq(σ, Z) ≥ lim sup

n→∞

1

n
logϕq(Z, n),

and

hq(σ, Z) ≤ lim inf
n→∞

1

n
logϕq((Z)n, n), hq(σ, Z) ≤ lim sup

n→∞

1

n
logϕq((Z)n, n),

where (Z)n =
⋃
ω∈Z Cn(ω);

(2) For any set Z of full measure and any q ≥ 1,

hq(σ, Z) = lim inf
n→∞

1

n
logϕq(Z, n), hq(σ, Z) = lim sup

n→∞

1

n
logϕq(Z, n).

Proof. For any β > 0 and n ∈ N there is a cover Γ = {Cn(ωi)}i≥1 of Z such

that ∑
i

µ(Cn(ωi))q ≤ Λq(Z, n) + β.

Using the fact that Cn(ω) = Cn(ωi) for each ω ∈ Cn(ωi), we have that

∑
i

µ(Cn(ωi))q =
∑
i

∫
Cn(ωi)

µ(Cn(ωi))q−1 dµ(ω)

=
∑
i

∫
Cn(ωi)

µ(Cn(ω))q−1 dµ(ω)

≥ ϕq(Z, n).

Since β can be chosen arbitrarily small it follows that

Λq(Z, n) ≥ ϕq(Z, n).

By Proposition 2.2, this implies that

hq(σ, Z) ≥ lim inf
n→∞

1

n
logϕq(Z, n), and hq(σ, Z) ≥ lim sup

n→∞

1

n
logϕq(Z, n).

To prove the reverse inequality given n ∈ N, choose a cover Γ = {Cn(ωi)}i
of Z whose elements are pairwise disjoint. Since Cn(ω) = Cn(ωi) for each
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ω ∈ Cn(ωi) we have

Λq(Z, n) ≤
∑
i

µ(Cn(ωi))q

=
∑
i

∫
Cn(ωi)

µ(Cn(ωi))q−1 dµ(ω)

=
∑
i

∫
Cn(ωi)

µ(Cn(ω))q−1 dµ(ω)

≤
∫

(Z)n

µ(Cn(ω))q−1 dµ(ω)

= ϕq((Z)n, n).

This yields the desired results. The second statement now is a direct conse-

quence of the first one. �

If one considers q-topological entropy and the lower and upper q-topological

entropies as functions over q ≥ 0, then we have the following proposition.

Proposition 2.5. The following statements hold:

(1) hq1(σ, Z) ≥ hq2(σ, Z), hq1(σ, Z) ≥ hq2(σ, Z), and hq1(σ, Z) ≥ hq2(σ, Z)

for any Z ⊂ Σ+
p and any 0 ≤ q1 ≤ q2;

(2) if µ(Z) = 0 then h1(σ, Z) ≤ h1(σ, Z) ≤ h1(σ, Z) ≤ 0 and hence,

hq(σ, Z) ≤ hq(σ, Z) ≤ hq(σ, Z) ≤ 0 for any q ≥ 1;

(3) if µ(Z) > 0 then h1(σ, Z) = h1(σ, Z) = h1(σ, Z) = 0 and hence,

0 ≤ hq(σ, Z) ≤ hq(σ, Z) ≤ hq(σ, Z) if 0 ≤ q ≤ 1

and

hq(σ, Z) ≤ hq(σ, Z) ≤ hq(σ, Z) ≤ 0 if q ≥ 1.

Proof. The first statement is obvious and the second one follows from Propo-

sition 2.1 and Theorem 2.4. By (2.4), for q = 1 and every n ∈ N we obtain

that

µ(Z) ≤ Λ1(Z, n) ≤ 1.

By Propositions 2.1 and 2.2, this yields that h1(σ, Z) ≤ h1(σ, Z) = h1(σ, Z) =

0. On the other hand, for any α < 0 by a direct computation we have

m1(Z,α) = +∞.

Since α can be chosen arbitrarily, this implies that h1(σ, Z) ≥ 0. Hence,

h1(σ, Z) = 0.

The last statement follows from Proposition 2.1 and the first statement. �
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2.3. The Hentschel-Procaccia entropy spectrum. We follow the ap-

proach of defining the Hentschel-Procaccia dimension spectrum in [4] and

introduce the notion of the Hentschel-Procaccia entropy spectrum.

Given the measure µ and q > 1, define

HPq(µ) =
1

q − 1
lim inf
n→∞

1

n
log

∫
X
µ(Cn(ω))q−1 dµ(ω),

HPq(µ) =
1

q − 1
lim sup
n→∞

1

n
log

∫
X
µ(Cn(ω))q−1 dµ(ω),

where X is the support of µ.

Definition 2.3. We call the one-parameter family of pairs of quantities

(HPq(µ),HPq(µ)) the HP-spectrum for entropies.

It follows from Theorem 2.4 that

HPq(µ) =
1

q − 1
hq(σ,X), HPq(µ) =

1

q − 1
hq(σ,X)(2.6)

for any q > 1. Therefore, by Proposition 2.2, we can rewrite the definition

of HP-spectrum for entropies in the following way:

HPq(µ) =
1

q − 1
lim inf
n→∞

1

n
log Λq(X,n),

HPq(µ) =
1

q − 1
lim sup
n→∞

1

n
log Λq(X,n).

It is a direct consequence of Proposition 2.5 and (2.6) that (q − 1)HPq(µ)

and (q − 1)HPq(µ) are non-increasing functions over q > 1.

2.4. q-Topological entropy with Gibbsian reference measures. We

consider the particular case of the reference measure µ to be a Gibbs mea-

sure, and we obtain a formula that connects q-topological entropy and the

classical topological pressure. Consequently, we obtain some relations be-

tween q-topological and lower and upper q-topological entropies.

Now we recall the definition of Gibbs measures. Given a continuous func-

tions ϕ : Σ+
p → R, we say that a Borel probability measure µϕ (not necessary

invariant) is a Gibbs measure with respect to ϕ on Σ+
p , if there exists a con-

stant K > 0 such that for every n ≥ 1 and every ω ∈ Σ+
p

K−1 ≤ µϕ(Cn(ω))

e−nPtop(ϕ)+Snϕ(ω)
≤ K(2.7)

where Snϕ :=
∑n−1

i=0 ϕ ◦ σi and Ptop(ϕ) is the classical topological pressure

of ϕ (see [6] for the detailed definition and properties).

Consider the reference measure µ given by its value on cylinders Cn(ω)

by the formula µ(Cn(ω)) = eSnϕ(ω). One can show that h1(σ, Z), h1(σ, Z)
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and h1(σ, Z) are respectively the topological pressure and lower and upper

topological pressure of σ on the set Z (see [4] for details). We denote them

by PZ(ϕ), CPZ(ϕ) and CPZ(ϕ) respectively.

Theorem 2.6. Assume that µϕ is a Gibbs measure with respect to a con-

tinuous function ϕ : Σ+
p → R, then for any subset Z ⊂ Σ+

p and any q ≥ 0

we have

Hq(f, Z) = PZ(qϕ)− qPtop(ϕ)

where Hq denotes either hq or hq or hq, and PZ denotes either PZ or CPZ
or CPZ respectively.

Proof. Fix N > 0 and consider a cover Γ = {Cni(ω
i)}i≥1 of Z with n(Γ) >

N . By (2.7), we have that∑
i

µ(Cni(ω
i))q exp(−αni) ≤ Kq

∑
i

exp
(
−ni(qPtop(ϕ) + α) + qSniϕ(ωi)

)
.

It follows that

Mq(Z,α,N) ≤ Kq inf
Γ

∑
i

exp
(
−ni(qPtop(ϕ) + α) + qSniϕ(ωi)

)
.

Hence,

hq(σ, Z) ≤ PZ(qϕ)− qPtop(ϕ).

Analogously, we get the following lower bound of the q-topological entropy

hq(σ, Z) ≥ PZ(qϕ)− qPtop(ϕ).

Hence,

hq(σ, Z) = PZ(qϕ)− qPtop(ϕ).

The other two equalities for hq and hq can be proven in a similar fashion. �

Under the conditions of the above theorem, and using the properties of

topological pressure on non-compact subsets (see [4]), we obtain the relations

between q-topological and lower and upper q-topological entropies. More

precisely, for any q ≥ 0 the following properties hold:

(1) if Z ⊂ Σ+
p is σ-invariant, then CPZ(qϕ) = CPZ(qϕ) yielding that

hq(σ, Z) = hq(σ, Z);

(2) if Z ⊂ Σ+
p is σ-invariant and compact, then CPZ(qϕ) = CPZ(qϕ) =

PZ(ϕ) yielding that

hq(σ, Z) = hq(σ, Z) = hq(σ, Z).

3. q-Metric Entropy

In this section we introduce different types of q-metric entropy and we

study their properties and relations between them.
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3.1. Definition of the q-metric entropy. We follow the approach in [4]

and introduce the notion of q-metric entropy using the inverse variational

principle.

Given q ≥ 0 and a Borel probability measure ν, let

hq(σ, ν) = inf{hq(σ, Z) : ν(Z) = 1}
= lim

δ→0
inf{hq(σ, Z) : ν(Z) ≥ 1− δ}.

We call the quantity hq(σ, ν) the q-metric entropy of σ with respect to ν.

Let further

hq(σ, ν) = lim
δ→0

inf{hq(σ, Z) : ν(Z) ≥ 1− δ},

hq(σ, ν) = lim
δ→0

inf{hq(σ, Z) : ν(Z) ≥ 1− δ}.

We call the quantities hq(σ, ν) and hq(σ, ν) respectively the lower and upper

q-metric entropy of σ with respect to ν. We mention that the q-topological

entropy is defined with respect to a fixed reference measure µ, which can be

different from ν.

We shall now show that the q-metric entropy as well as the lower and

upper q-metric entropies are invariant under a homeomorphism that respect

the measure µ.

Proposition 3.1. Let π : Σ+
p → Σ+

p be a homeomorphism that satisfies the

conditions of Proposition 2.3. Then for each ν ∈Mσ,

Hq(σ, ν) = Hq(σ, π∗ν),

where π∗ν = ν ◦ π−1.

Proof. By Proposition 2.3, we obtain that

hq(σ, ν) = inf{hq(σ, Z) : ν(Z) = 1}
= inf{hq(σ, π(Z)) : ν(Z) = 1}
= inf{hq(σ, Y ) : π∗ν(Y ) = 1}
= hq(σ, π∗ν).

Here the third equality follows from the fact that π is a homeomorphism.

The other two equalities for hq and hq can be proven in a similar fashion. �

3.2. Relations between different q-metric entropies. In this subsec-

tion we study the relations between various versions of q-metric entropies.

Proposition 3.2. The following statements hold:
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(1) For the reference measure µ we have h1(σ, µ) = h1(σ, µ) = h1(σ, µ) =

0;

(2) For any q ≥ 0 and any Borel probability measure ν we have

hq(σ, ν) ≤ hq(σ, ν) ≤ hq(σ, ν);

(3) For any q ≥ 0 and any σ-invariant ergodic measure ν we have that

hq(σ, ν) ≤ hν(σ),

where hν(σ) is the standard metric entropy of σ with respect to ν,

see [6] for details;

(4) 0 ≤ hq(σ, µ) ≤ hq(σ, µ) ≤ hq(σ, µ) if 0 ≤ q ≤ 1 and, hq(σ, µ) ≤
hq(σ, µ) ≤ hq(σ, µ) ≤ 0 if q ≥ 1.

Proof. The first statement is a direct consequence of statement 3 of Propo-

sition 2.5 and the definitions.

By Statement (3) of Proposition 2.1, for any Borel probability measure ν

we have

hq(σ, ν) ≤ hq(σ, ν) ≤ hq(σ, ν),

and the second statement follows. By Proposition 2.5, for any q ≥ 0 we have

hq(σ, ν) ≤ h0(σ, ν).

Recall that

h0(σ, ν) = lim
δ→0

inf{h0(σ, Z) : ν(Z) ≥ 1− δ}.

By Remark 2.1, h0(σ, Z) is the standard Bowen’s upper topological entropy

on the set Z. Since ν is ergodic, we have

lim
δ→0

inf{h0(σ, Z) : ν(Z) ≥ 1− δ} = hν(σ),

see [2] or [4, Theorem 11.6] for the proof. This gives us the third statement.

The last statement follows directly from Proposition 2.5. This completes

the proof of the proposition. �

Given a Borel probability measure ν and any point ω ∈ Σ+
p , set

hν(ω) := lim inf
n→∞

− 1

n
log ν(Cn(ω)) and hν(ω) := lim sup

n→∞
− 1

n
log ν(Cn(ω)).

These two quantities are called local lower and upper metric entropy at ω

with respect to ν respectively.

Theorem 3.3. The following statements hold:
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(1) For any q ≥ 1,

(1− q)ess infω∈Σ+
p
hµ(ω) ≤ hq(σ, µ) ≤ hq(σ, µ) ≤ (1− q)ess infω∈Σ+

p
hµ(ω);

(2) For any 0 ≤ q < 1,

(1− q)ess supω∈Σ+
p
hµ(ω) ≤ hq(σ, µ) ≤ hq(σ, µ) ≤ (1− q)ess supω∈Σ+

p
hµ(ω).

Proof. We will prove the first statement; the second one can be proven in a

similar fashion. Given a small number β > 0 and a positive integer N , we

define the set

LN =
{
ω ∈ Σ+

p : hµ(ω)− β ≤ − 1

n
logµ(Cn(ω)) ≤ hµ(ω) + β, ∀n ≥ N

}
.

For any δ > 0 there exists N1 such that µ(LN ) ≥ 1− δ for any N ≥ N1. Fix

such a positive integer N . It is easy to see that for any ω ∈ LN and n ≥ N ,

(3.8) exp
(
− n(hµ(ω) + β)

)
≤ µ(Cn(ω)) ≤ exp

(
− n(hµ(ω)− β)

)
.

To simplify our notations let

h = ess infω∈Σ+
p
hµ(ω), h = ess infω∈Σ+

p
hµ(ω).

For µ-almost every ω we have hµ(ω) ≥ h − β. Furthermore, there exists a

subset Σ̃ of positive measure such that hµ(ω) ≤ h+ β for every ω ∈ Σ̃. Let

Z ⊂ LN ∩{ω : hµ(ω) ≥ h− β} be a set of positive measure and Γ a cover of

Z by cylinders Cn(ωi) with n ≥ N . Then for q ≥ 1 we have that∑
i

µ(Cn(ωi))q =
∑
i

µ(Cn(ωi))q−1µ(Cn(ωi))

≤ exp
(
− n(h− 2β)(q − 1)

)∑
i

µ(Cn(ωi))

≤ exp
(
− n(h− 2β)(q − 1)

)
µ((Z)n)

≤ exp
(
− n(h− 2β)(q − 1)

)
.

(3.9)

In view of Proposition 2.2 this implies that hq(σ, Z) ≤ (1− q)(h− 2β) and

hence,

hq(σ, µ) ≤ (1− q)(h− 2β).

Since β can be chosen arbitrarily small, one has that hq(σ, µ) ≤ (1− q)h.

To prove the reverse inequality we choose a set Z with µ(Z) > 1 − δ for

which hq(σ, µ) ≥ hq(σ, Z)− β. If δ is sufficiently small the set

Y = Z ∩ Σ̃ ∩ LN
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has positive measure. Let Γ be a cover of Y by cylinders Cn(ωi) with n ≥ N .

We have that ∑
i

µ(Cn(ωi))q =
∑
i

µ(Cn(ωi))q−1µ(Cn(ωi))

≥ exp
(
− n(h+ 2β)

)q−1
µ(Y ).

This implies that

hq(σ, µ) ≥ hq(σ, Z)− β ≥ hq(σ, Y )− β ≥ (1− q)(h+ 2β)− β.

Since β can be chosen arbitrary small, this implies that hq(σ, µ) ≥ (1− q)h
completing the proof of the theorem. �

As a direct consequence of Theorem 3.3 we have: if the measure µ satisfies

hµ(ω) = hµ(ω) := hµ(ω)

µ-almost everywhere, e.g., µ is a σ-invariant measure, then

hq(σ, µ) = hq(σ, µ) = (1− q)ess infω∈Σ+
p
hµ(ω)

for q ≥ 1, and

hq(σ, µ) = hq(σ, µ) = (1− q)ess supω∈Σ+
p
hµ(ω)

for 0 ≤ q < 1.

For any q ≥ 0 and α ∈ R we define the lower and upper q-pointwise

entropy of a Borel probability measure ν at ω by

hν,α,q(ω) = lim inf
n→∞

α log ν(Cn(ω))

q logµ(Cn(ω))− αn
,

hν,α,q(ω) = lim sup
n→∞

α log ν(Cn(ω))

q logµ(Cn(ω))− αn
.

Given a number h ≥ 0 and the Borel probability measure µ, define

(3.10) Lh =
{
ω ∈ Σp : hµ(ω) = hµ(ω) = h

}
.

The following result is a straightforward calculation.

Proposition 3.4. Assume that the measure µ is such that µ(Lh) = 1 for

some h > 0. Choose numbers q ≥ 0, q 6= 1 and ε > 0 such that h − ε > 0

and the interval I = [h(1− q)− ε, h(1− q) + ε] does not contain 0. Then for

µ-almost every ω and every α ∈ I,

hµ,α,q(ω) = hµ,α,q(ω) = αh(hq + α)−1

(note that hq + α ≥ h− ε > 0 although α may be negative).

Theorem 3.5. Assume that the measure µ is such that µ(Lh) = 1 for some

h ≥ 0. Then for any q ≥ 0
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(1) hq(σ, µ) = hq(σ, µ) = hq(σ, µ) = h(1− q);
(2) hq(σ,Lh) = hq(σ,Lh) = hq(σ,Lh) = h(1− q).

Proof. If q = 1, the first statement is a direct consequence of Proposition

3.2 or Theorem 3.3 and the second statement follows from Proposition 2.5.

We now consider the case q 6= 1. Fix a small number η > 0. For µ-almost

every ω there exists a number N(ω) > 0 such that for any n ≥ N(ω)

(3.11) exp
(
− n(h+ η)

)
≤ µ(Cn(ω)) ≤ exp

(
− n(h− η)

)
.

Given a positive integer N , set

LN = {ω ∈ Lh : N(ω) ≤ N}.

We have that LN ⊂ LN+1 and
⋃
n≥0 LN = Lh. Hence, given δ > 0 one can

find N0 > 0 for which µ(LN0) > 1− δ.
Fix a number N ≥ N0. Let Γ = {Cn(ωi)} be a cover of LN whose elements

are pairwise disjoint. By the first inequality of (3.11), the cardinality of Γ is

less than or equal to exp[n(h+ η)] for any n ≥ N . For all sufficiently large

n we have
Λq(LN , n) ≤

∑
i

µ(Cn(ωi))q

≤ exp[−nq(h− η)] exp[n(h+ η)]

= exp[n
(
(1− q)h+ (1 + q)η

)
]

It follows that

hq(σ,LN ) ≤ (1− q)h+ (1 + q)η.

Since µ(LN ) > 1− δ, we have

hq(σ, µ) ≤ (1− q)h+ (1 + q)η.

Since η can be chosen arbitrarily small, we conclude that hq(σ, µ) ≤ (1−q)h.

We shall now prove that hq(σ, µ) ≥ h(1 − q). It suffices to prove that

hq(σ, Z) ≥ h(1 − q) for any subset Z ⊂ Σ+
p of full measure. Choose η > 0

and δ ∈ (0, 1/2) and denote λ = (h−η)(1−q) if 0 ≤ q < 1 or λ = (h+η)(1−q)
if q > 1. Let L′ = Lh ∩ Z. Clearly, µ(L′) = 1. One can find a set L1 ⊂ L′

with µ(L1) > 1 − δ and a integer N1 > 0 such that for any ω ∈ L1 and

n ≥ N1

exp
(
− n(h+ η)

)
≤ µ(Cn(ω)) ≤ exp

(
− n(h− η)

)
.

We may further assume that L1 is compact, since otherwise we can ap-

proximate it from within by a compact subset. Given any N > N1, let Γ

be a cover of L1 by cylinders Cni(ω
i) with ni ≥ N for all i. Since L1 is

compact, we may assume that the cover is finite and consists of cylinders

Cn1(ω1), · · · , Cnl
(ωl).
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Without loss of generality, we assume that ωi ∈ L1 for any 1 ≤ i ≤ l.

Now for 0 ≤ q < 1 we have

(3.12)

∑
Cni (ω

i)∈Γ

µ(Cni(ω
i))q exp(−λni) ≥

l∑
i=1

µ(Cni(ω
i))q exp(−λni)

≥
l∑

i=1

µ(Cni(ω
i)) ≥ 1− δ.

Since the inequality holds for any cover Γ of L1, we conclude thatMq(L1, λ,N) ≥
1− δ. Hence, mq(L1, λ) ≥ 1− δ > 0. This implies that

hq(σ,L1) ≥ (h− η)(1− q)

for 0 ≤ q < 1. For q > 1, using the same arguments we obtain that

hq(σ,L1) ≥ (h+ η)(1− q).

Using Proposition 2.1 and the fact that η is arbitrary, for any q ≥ 0, q 6= 1

we find that

(3.13) hq(σ, Z) ≥ hq(σ,L1) ≥ h(1− q).

Therefore, by definition, hq(σ, µ) ≥ h(1− q).
To prove the second statement, first note that the inequality hq(σ,Lh) ≥

h(1− q) is contained in (3.13), since Z is an arbitrary set of full µ-measure

and in our case µ(Lh) = 1.

Fix now a small number η > 0. For µ-almost every ω there exists a number

N(ω) > 0 such that (3.11) holds for any n ≥ N(ω). Given a positive integer

N , set

LN = {ω ∈ Lh : N(ω) ≤ N}.

We have that LN ⊂ LN+1 and
⋃
n≥0 LN = Lh. Hence, given δ > 0, we can

find N0 > 0 for which µ(LN0) > 1− δ.
Fix a number N ≥ N0. As in the proof of the first statement we have

that

hq(σ,LN ) ≤ (1− q)h+ (1 + q)η.

Since η can be chosen arbitrarily small, we conclude that hq(σ,LN ) ≤ (1−
q)h. Letting N →∞, we obtain that hq(σ,Lh) ≤ (1− q)h. This completes

the proof of the theorem. �
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3.3. The Modified Hentschel-Procaccia entropy spectrum. Follow-

ing the approach in [5], we introduce the modified HP-entropy spectrum.

Given a Borel measure µ and q > 1, define

HPMq(µ) =
1

q − 1
lim
δ→0

inf
Z

lim inf
n→∞

1

n
log

∫
Z
µ(Cn(ω))q−1 dµ(ω),

HPMq(µ) =
1

q − 1
lim
δ→0

inf
Z

lim sup
n→∞

1

n
log

∫
Z
µ(Cn(ω))q−1 dµ(ω),

where the infimum is taken over all sets Z ⊂ X with µ(Z) > 1− δ.

Definition 3.1. We call the one-parameter family of pairs of quantities

(HPMq(µ),HPMq(µ)) the modified HP-spectrum for entropies.

The following result gives the relations between modified HP-spectrum

for entropies, local lower and upper metric entropy and lower and upper

q-metric entropy.

Proposition 3.6. For any q > 1, the following statements hold:

(1) HPMq(µ) = 1
q−1hq(σ, µ) and HPMq(µ) = 1

q−1hq(σ, µ);

(2) −ess infω∈Σphµ(ω) ≤ HPMq(µ) ≤ HPMq(µ) ≤ −ess infω∈Σphµ(ω).

Proof. The first statement follows directly from definitions and Theorem

2.4. The second statement is now a direct consequence of the first result

and Theorem 3.3. �

By the second statement of Proposition 3.6, if µ satisfies that hµ(ω) =

hµ(ω) := h(ω) for µ-almost every ω, then

HPMq(µ) = HPMq(µ) = −ess infω∈Σ+
p
hµ(ω).
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