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Abstract In order to characterize the complexity of a system with zero entropy we introduce
the notions of scaled topological and metric entropies. We allow asymptotic rates of the
general form eαa(n) determined by an arbitrary monotonically increasing “scaling” sequence
a(n). This covers the standard case of exponential scale corresponding to a(n) = n as well
as the cases of zero and infinite entropy. We describe some basic properties of the scaled
entropy including the inverse variational principle for the scaled metric entropy. Furthermore,
we present some examples from symbolic and smooth dynamics that illustrate that systems
with zero entropy may still exhibit various levels of complexity.

1 Introduction

Metric and topological entropies are among the main invariants of dynamics. While the
former measures the average amount of information and complexity in the system, the latter
characterizes the exponential growth rate of the number of periodic points. Furthermore,
if the topological entropy is positive, then due to the variational principle, there exists an
invariant measure whose metric entropy is positive too. By the Margulis–Ruelle inequality
one concludes that some values of the Lyapunov exponents must be positive thus indicating
on the presence of a certain level of chaotic behavior in the system. However, if entropy is
zero, little if any meaningful information about the system can be recovered.

The main point of this paper is to observe that the value of the entropy (both metric and
topological) depends on the scale in which it is computed and thus the choice of the scale
can be crucial. In fact, a system may have its own “internal” scale, which should be used in
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computing entropy as well as some other “scale sensitive” characteristics of the dynamics
such as Lyapunov exponents, dimension of invariant sets and measures, etc. The classical
notion of entropy is based on the standard exponential scale and if it happens to be the
“internal” scale of the system, then one obtains the “correct” value of the entropy. This is the
case when the computed value of the entropy is positive and finite (see Theorems 2.8, 2.10,
3.10 and 3.11). Otherwise, one may switch to a different scale (e.g., the polynomial scale)
in which the scaled entropy may be positive and/or finite. This would allow one to recover
some information and evaluate the level of complexity in the system.

We stress however, that there are systems, which inherently have zero entropy—just think
of the identity map (or more generally, of an isometry) whose entropy is zero regardless of the
scale. We also emphasize that computing entropy in the standard exponential scale may be
substantially simpler than determining the “internal” scale of the system and computing the
entropy in this scale. It is worth mentioning that some principle results about entropy such as
the Shannon–McMillan–Breiman theorem and related Brin–Katok theorem for (local) metric
entropy that hold true for the standard scaled sequence may fail for other scaled sequences
(see Example 4.7). Describing those classes of zero entropy systems (with respect to the
standard scale) for which these results hold for other scaled sequences is an interesting open
problem in the area.

Perhaps, the best way to see how entropy depends on the scale is to define entropy via
the Charathéodory-like construction described in [18]. It reveals the “dimension” nature of
entropy thus allowing different scales. More precisely, we introduce the notions of scaled
topological and metric entropies by allowing asymptotic rates of the form eαa(n) where α > 0
is a parameter and a(n) is a scaling sequence. The classical case corresponds to a(n) = n but
some other particular scaling sequences have been used. In particular, the polynomial scale
a(n) = ns was used in [3,5–8,11,14] to compute the entropy dimension in some examples
which follow Milnor’s idea [17] and the logarithmic scale a(n) = log n was used in [12,13]
to compute the topological entropy in some cases. We point out that our approach to the
notion of scaled entropy is quite general and include all the above cases.

In Sect. 2 we introduce the notion of scaled topological entropy and study its basic prop-
erties. We also describe how the entropy depends on the scale and in particular, how to
determine the “internal” scale of the system. In Sect. 3 we introduce the notion of scaled
metric entropy and discuss its basic properties. Finally, in Sect. 4 we present some examples
that illustrate the importance of scaling in computing the entropy as well as some new phe-
nomena associated with scaled entropies. The last Sect. 5 contains proofs all the main results
of the paper.

2 Scaled Topological Entropy

In this section we introduce the definitions of scaled topological entropy, lower and upper
scaled topological entropies on an arbitrary subset, and study the basic properties of these
new defined entropies. From Sects. 2.1 to 2.4, we assume that X is a compact (Hausdorff)
topological space and T : X → X is a continuous transformation.

2.1 Definition of Scaled Topological Entropy

We follow the approach described in [18]. Let U be an open cover of X . Denote by Wm(U)
the set of strings U = (Ui0 ,Ui1 , . . . ,Uim−1) of length m(U) = m with Ui j ∈ U and by
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W(U) =
⋃

m≥1

Wm(U).

For U ∈ Wm(U) define

X (U) = Ui0 ∩ T −1Ui1 ∩ · · · ∩ T −(m−1)Uim−1 .

Let Z ⊆ X be a subset of X , which need not be compact or T -invariant. We say that a
collection of strings � ⊆ W(U) covers Z if Z ⊆ ⋃

U∈� X (U).
We call a sequence of positive numbers a = {a(n)}n≥1 a scaled sequence if it is monoton-

ically increasing to infinity.
Given a subset Z ⊂ X , α ∈ R and a scaled sequence a = {a(n)}n≥1, let

M(Z , α, N ,U, a) = inf
�

∑

U∈�
exp

(−αa(m(U))
)
, (2.1)

where the infimum is taken over all covers � of Z with m(U) ≥ N for all U ∈ �.
It is easy to see that M(Z , α, N ,U, a) is monotone in N and we let m(Z , α,U, a) =
limN→∞ M(Z , α, N ,U, a). It is easy to show that there is a jump-up value

EZ (T,U, a) = inf{α : m(Z , α,U, a) = 0}
= sup{α : m(Z , α,U, a) = +∞}.

Definition 2.1 We call the quantity

EZ (T, a) = sup{EZ (T,U, a) | U is a finite open cover of X} (2.2)

the scaled topological entropy of T on the set Z (with respect to the sequence a = {a(n)}).

Given a scaled sequence a = {a(n)}n≥1, α ∈ R and Z ⊂ X , define

R(Z , α, N ,U, a) = inf
�

∑

U∈�
exp

(−αa(N )
)
, (2.3)

where the infimum is taken over all covers � of Z with m(U) = N for all U ∈ �. We set

r(Z , α,U, a) = lim inf
N→∞ R(Z , α, N ,U, a),

r(Z , α,U, a) = lim sup
N→∞

R(Z , α, N ,U, a)

and define the jump-up points of r(Z , α,U, a) and r(Z , α,U, a) as

E Z (T,U, a) = inf{α : r(Z , α,U, a) = 0} = sup{α : r(Z , α,U, a) = +∞},
E Z (T,U, a) = inf{α : r(Z , α,U, a) = 0} = sup{α : r(Z , α,U, a) = +∞}

respectively.

Definition 2.2 We call the quantities

E Z (T, a) = sup{E Z (T,U, a) | U is a finite open cover of X},
E Z (T, a) = sup{E Z (T,U, a) | U is a finite open cover of X}

the lower and upper scaled topological entropies of T on the set Z .
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Our definition of the scaled topological entropy and the lower and upper scaled topolog-
ical entropies follows the generalized Carathéodory construction described in [18] and is
associated with the Carathéodory structure in X given as follows: for a finite open cover U of
X and a scaled sequence a = {a(n)}n≥1 consider the functions ξ, η, ψ : W(U) → R

+ such
that

ξ(U) = 1, η(U) = exp
( − a(m(U))

)
, ψ(U) = m(U)−1.

Then for every subset Z ⊂ X we have that EZ (T,U, a), E Z (T,U, a) and E Z (T,U, a) are
respectively the Carathéodory dimension and lower and upper Carathéodory capacities of
the set Z (see [18] for details and notations).

Remark 2.1 It follows from (2.1) and (2.3) that the quantities EZ (T,U, a), E Z (T,U, a) and
E Z (T,U, a) are always non-negative and hence, in the definitions of M(Z , α, N ,U, a) and
R(Z , α, N ,U, a) one can replace α ∈ R with α ≥ 0.

2.2 Properties of Scaled Topological Entropy

For any subset Z ⊂ X and any open cover U of X , let ℵ(U, Z) denote the number of sets
in a finite subcover of U with the smallest cardinality. We have the following equivalent
definition of the lower and upper scaled topological entropy (the proof is similar to the proof
of Theorem 2.2 in [18]).

Proposition 2.1 For each scaled sequence a = {a(n)} we have

E Z (T,U, a) = lim inf
N→∞

1

a(N )
log ℵ

( N−1∨

i=0

T −i U, Z
)
,

E Z (T,U, a) = lim sup
N→∞

1

a(N )
log ℵ

( N−1∨

i=0

T −i U, Z
)
.

Given two open covers U and V of X , we say that U is finer than V if for every U ∈ U
there is an element V ∈ V such that U ⊂ V . We denote such an element by U 
 V . Set

U ∨ V :=
{

U ∩ V : U ∈ U, V ∈ V
}
, T −1U := {T −1U : U ∈ U}.

In what follows we use the notation E for either E or E or E . The following propositions
describe some basic properties of scaled topological and lower and upper scaled topological
entropies.

Proposition 2.2 Let U and V be two open covers of X and Z ⊂ X. If a = {a(n)} is a scaled
sequence, then the following properties hold:

(1) If U � V , then EZ (T,U, a) ≤ EZ (T,V, a);
(2) For any l ≥ 1, we have

EZ (T,U, a) ≤ EZ

(
T,

l−1∨

i=0

T −iU, a
)
. (2.4)

Furthermore, if a = {a(n)} satisfies

lim
n→∞

a(n)

a(n + 1)
= 1, (2.5)
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then

EZ (T,U, a) = EZ

(
T,

l−1∨

i=0

T −i U, a
)
; (2.6)

(3) EZ (T,U, a) ≤ E Z (T,U, a) ≤ E Z (T,U, a) and EZ (T, a) ≤ E Z (T, a) ≤ E Z (T, a).

The following proposition shows that the scaled topological entropy as well as lower and
upper scaled topological entropies are invariant under a topological conjugacy. Its proof is
similar to the proofs of Theorems 1.3 and 2.5 in [18].

Proposition 2.3 Let Ti : Xi → Xi , i = 1, 2 be two continuous transformations of compact
metric spaces and let a = {a(n)} be a scaled sequence. If there exists a continuous surjection
π : X1 → X2 such that π ◦ T1 = T2 ◦π , then for each Z ⊂ X1 and each open cover U of X2

EZ (T1, π
−1U, a) = Eπ(Z)(T2,U, a).

In particular, EZ (T1, a) ≥ Eπ(Z)(T2, a) for each Z ⊂ X1. Furthermore, if the map π is a
homeomorphism, then EZ (T1, a) = Eπ(Z)(T2, a) for each Z ⊂ X1.

We conclude this section by presenting some more basic properties of the scaled topolog-
ical entropy as well as lower and upper scaled topological entropies.

Proposition 2.4 The following statements hold:

(1) if Z1 ⊂ Z2, then EZ1(T,U, a) ≤ EZ2(T,U, a) and hence, EZ1(T, a) ≤ EZ2(T, a);
(2) if Zi ⊂ X, i ≥ 1 and Z = ⋃

i≥1 Zi , then EZ (T, a) = supi≥1 EZi (T, a), E Z (T, a) ≥
supi≥1 E Zi

(T, a) and E Z (T, a) ≥ supi≥1 E Zi (T, a);
(3) EZ (T, T −1U, a) = ET (Z)(T,U, a) and EZ (T, a) = ET (Z)(T, a);
(4) if a = {a(n)} satisfies (2.5), then EZ (T,U, a) = ET (Z)(T,U, a) and EZ (T, a) =

ET (Z)(T, a).

The following result is an immediate corollary of Statements (3) and (4) of Proposition
2.4.

Corollary 2.5 For each scaled sequence a = {a(n)} satisfying (2.5) and each open cover U
of X, we have

EZ (T,U, a) = ET (Z)(T,U, a) = EZ (T, T −1U, a).

2.3 Relations Between Scaled Topological and Lower and Upper Topological Entropies

A sequence of positive numbers a = {a(n)} is said to be sub-additive if a(n + m) ≤
a(n)+ a(m) for all n,m ∈ N.

Theorem 2.6 For any compact invariant set Z ⊂ X and any open cover U of X, if a = {a(n)}
is a sub-additive scaled sequence, then

EZ (T,U, a) = E Z (T,U, a) = E Z (T,U, a)

and hence,

EZ (T, a) = E Z (T, a) = E Z (T, a).

Remark 2.2 While for a general scaled sequence a = {a(n)} Theorem 2.6 may not be
true (see Example 4.5 in Sect. 4), sub-additivity assumption is not necessary to ensure the
coincidence of the lower and upper scaled topological entropies (see Example 4.4 in Sect. 4
for details).
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2.4 Equivalent Scaled Sequences

Let� denote the set of all scaled sequences. We call two scaled sequences a,b ∈ � equivalent
and we write a ∼ b if the following condition holds

0 < lim inf
n→∞

b(n)

a(n)
≤ lim sup

n→∞
b(n)

a(n)
< ∞.

Obviously, ∼ defines an equivalence relation on�. Given a scaled sequence a, we denote its
equivalence class by [a] := {b ∈ � : b ∼ a} and we let A := �/ ∼. Given two equivalence
classes [a], [b] ∈ A, we say that [a] � [b] if for each a = {a(n)} ∈ [a] and b = {b(n)} ∈ [b]
the following holds

lim sup
n→∞

a(n)

b(n)
= 0.

The following result is immediate.

Proposition 2.7 Let a = {a(n)} and b = {b(n)} be two scaled sequences. For every Z ⊂ X
and every open cover U of X, the following properties hold:

(1) If a(n) ≤ b(n) for all sufficiently large n, then EZ (T,U, a) ≥ EZ (T,U,b) and
EZ (T, a) ≥ EZ (T,b);

(2) For each K > 0 we have that

KEZ (T,U, K a) = EZ (T,U, a), KEZ (T, K a) = EZ (T, a),

where K a = {K a(n)};
(3) If there exists a constant C such that 1

C b(n) ≤ a(n) ≤ Cb(n) for all sufficiently large
n, then

1

C
EZ (T,U,b) ≤ EZ (T,U, a) ≤ CEZ (T,U,b)

and

1

C
EZ (T,b) ≤ EZ (T, a) ≤ CEZ (T,b).

By Statement (3) of Proposition 2.7, for each equivalence class [a] ∈ A and for each a1, a2 ∈
[a] we have that EZ (T, a1) = EZ (T, a2) = 0, or EZ (T, a1) = EZ (T, a2) = ∞ or both
EZ (T, a1) and EZ (T, a2) are positive and finite. In the first two cases, we write EZ (T, [a]) = 0
and EZ (T, [a]) = ∞ respectively and in the third case, we say that EZ (T, [a]) is positive and
finite. In this sense, entropy depends not on the scaled sequence but on its class of equivalence.
This means that we may have a sequence that does not satisfy our conditions such as (2.5),
supper-additivity and sub-additivity, but there may exist an equivalent sequence that does
satisfy these conditions.

By Statement (1) of Proposition 2.7, we have EZ (T, [a]) ≤ EZ (T, [b])whenever [a] � [b].
Theorem 2.8 If there is [a] ∈ A such that EZ (T, [a]) is positive and finite, then

EZ (T, [b]) =
{

0, if [a] � [b],
∞, if [b] � [a].

In particular, there may exist at most one element in (A,�) such that the corresponding
scaled topological entropy is positive and finite. Similar results hold for lower and upper
scaled topological entropy.
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Note that there are maps with zero scaled topological entropy with respect to any scaled
sequence, see Example 4.6 in Sect. 4. The element in (A,�) such that the scaled topological
entropy and lower and upper scaled topological entropy is finite and positive may not be the
same, see Example 4.5.

2.5 The Case of Compact Metric Spaces

In this and the next subsection, we consider the case when X is a compact metric space with
metric d and T : X → X a continuous transformation.

Let U be an open cover of X and |U | = max{diam(U ) : U ∈ U} the diameter of the
cover U . The following result shows that the supremum in the definition of (lower and upper)
scaled topological entropy can be replaced by the limit as the diameter of the cover goes to
zero. We continue to use E for either E or E or E .

Proposition 2.9 Let T : X → X be a continuous transformation on a compact metric space
X and U an open cover of X. Then the limit lim|U |→0 EZ (T,U, a) exists and is equal to
EZ (T, a).

An open cover U of X is said to be generating, if limn→∞ | ∨n−1
i=0 T −i U | = 0. By Propo-

sition 2.2 (2) and Proposition 2.9, if U is a generating open cover of X and a = {a(n)} a
scaled sequence satisfying (2.5), then EZ (T,U, a) = EZ (T, a).

Remark 2.3 In this setting, we describe another but equivalent definition of scaled topo-
logical entropy. Given ε > 0, n ∈ N and x ∈ X , denote by Bn(x, ε) = {y ∈ X :
dn(x, y) < ε} the Bowen’s ball of radius ε centered at x of length n, where dn(x, y) :=
max{d(T i (x), T i (y)) : 0 ≤ i < n}. Given a scaled sequence a = {a(n)}, for each subset
Z ⊂ X and each α, N > 0 set

M(Z , α, N , δ, a) = inf
{ ∑

i

exp
( − αa(ni )

) :
⋃

i

Bni (xi , δ) ⊃ Z , xi ∈ X and ni ≥ N for all i
}
.

Since M(Z , α, N , δ, a) is monotonically increasing with N ,

m(Z , α, δ, a) = lim
N→∞ M(Z , α, N , δ, a).

We denote the jump-up point of m(Z , α, δ, a) by

EZ (T, δ, a) = inf{α : m(Z , α, δ, a) = 0} = sup{α : m(Z , α, δ, a) = +∞}.
Let U be an open cover of X and δ(U) its Lebesgue number. Clearly, for every x ∈ X with
x ∈ X (U) for some string U we have that X (U) ⊂ Bm(U)(x, |U |). On the other hand, for
each Bowen’s all Bn(x, δ(U)) of radius δ(U) centered at x ∈ X and length n, there is a string
U of length n such that Bn(x, δ(U)) ⊂ X (U). This implies that

EZ (T, a) = lim
δ→0

EZ (T, δ, a).

Similarly, using Bowen’s balls, one can define lower and upper scaled topological entropy.
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2.6 Relations Between Scaled Topological Entropies and Box Dimension

In this section we describe how to construct scaled sequences that are naturally associated
with dynamical systems and in which the corresponding scaled entropies on a subset are
closely related to its box dimension.

Recall that given a subset Z ⊂ X of a compact metric space X , the lower and upper box
dimension of Z are defined respectively by

dimB Z = lim inf
δ→0

log Nd(Z , δ)

− log δ
, dimB Z = lim sup

δ→0

log Nd(Z , δ)

− log δ
,

where Nd(Z , δ) denotes the smallest number of balls of radius δ (in d-metric) needed to
cover the set Z . For each n ≥ 1 we set

bn := min
x,y∈X

dn(x, y)

d(x, y)
, cn := max

x,y∈X

dn(x, y)

d(x, y)
. (2.7)

Lemma 2.1 For every r > 0 and x ∈ X,

B
(

x,
r

cn

)
⊂ Bn(x, r) ⊂ B

(
x,

r

bn

)

where B(x, r) := {y ∈ X : d(x, y) < r} denotes the ball of radius r > 0 centered at x.

Proof For every y ∈ B(x, r
cn
)

dn(x, y) ≤ d(x, y) max
x,y∈X

dn(x, y)

d(x, y)
<

r

cn
cn = r

and the first inclusion follows. On the other hand, for each y ∈ Bn(x, r)

d(x, y) ≤ dn(x, y) max
x,y∈X

d(x, y)

dn(x, y)
< r

1

bn

and the second inclusion follows.

Consider the sequences {log bn} and {log cn}. If T is Lipschitz, then these sequences satisfy
(2.5).

Theorem 2.10 Let T : X → X be a continuous transformation of a compact metric space
X. Assume that the sequence {bn} is scaled and that {log bn} and {log cn} satisfy (2.5). Then
for each Z ⊂ X,

E Z (T, {log cn}) ≤ dimB Z , E Z (T, {log bn}) ≥ dimB Z .

As a manifestation of this theorem we obtain the following:

(1) If dimB Z < ∞, then by Proposition 2.2(4) and Theorem 2.10, the quantities
EZ (T, {log cn}), E Z (T, {log cn}) and E Z (T, {log cn}) are all finite but they may be
zero. On the other hand, if dimB Z > 0, then by Theorem 2.10, both E Z (T, {log bn})
and E Z (T, {log bn}) are positive but they may be infinite.

(2) Assume that EZ (T, {log cn}) > 0 and E Z (T, {log bn}) < ∞. Then by Propositions 2.2
and 2.7,

∞ > E Z (T, {log bn}) ≥ EZ (T, {log bn}) ≥ EZ (T, {log cn}) > 0.

Using Theorem 2.8 we conclude that the sequence [{log cn}] and [{log bn}] are equivalent
and that [{log cn}] is the only equivalence class with positive and finite scaled topological
entropy. This is the “built-in” scaling for the map T .
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(3) If a subset Z ⊂ X is such that dimB Z = 0, then Theorem 2.10 yields that

E Z

(
T, {log cn}

)
= 0 and hence,

EZ

(
T, {log cn}

)
= E Z

(
T, {log cn}

)
= E Z

(
T, {log cn}

)
= 0.

3 Scaled Metric Entropy

In this section we introduce different types of scaled metric entropy and we study their
properties and relations between them.

3.1 Definition of Scaled Metric Entropy

Let T be a continuous map of a compact (Hausdorff) space X . Denote by MT and ET the
set of all (respectively, ergodic) T -invariant Borel probability measures on X . We follow
the approach in [18] and introduce the notion of scaled metric entropy using the inverse
variational principle. Given a T -invariant measure μ and a scaled sequence a = {a(n)}, let

Eμ(T,U, a) = inf
{

EZ

(
T,U, a

)
: μ(Z) = 1

}

= lim
δ→0

inf
{

EZ

(
T,U, a

)
: μ(Z) ≥ 1 − δ

}

and then let

Eμ
(

T, a
)

= sup
{

Eμ
(

T,U, a
)

| U is a finite open cover of X
}
.

We call the quantity Eμ(T, a) the scaled metric entropy of T with respect to μ (and the
scaled sequence a). Let further

Eμ(T,U, a) = lim
δ→0

inf
{

E Z (T,U, a) : μ(Z) ≥ 1 − δ
}
,

Eμ(T,U, a) = lim
δ→0

inf
{

E Z (T,U, a) : μ(Z) ≥ 1 − δ
}
.

We call the quantities

Eμ(T, a) = sup
{

Eμ(T,U, a) | U is a finite open cover of X
}
,

Eμ(T, a) = sup
{

Eμ(T,U, a) | U is a finite open cover of X
}

respectively the lower and upper scaled metric entropy of T with respect toμ (and the scaled
sequence a).

By Statement (3) of Proposition 2.2,

Eμ(T,U, a) ≤ Eμ(T,U, a) ≤ Eμ(T,U, a)

and

Eμ(T, a) ≤ Eμ(T, a) ≤ Eμ(T, a).
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3.2 Properties of the Scaled Metric Entropy

We describe some basic properties of scaled metric entropy. We will use the notation Eμ for
either Eμ or Eμ or Eμ.

The following proposition is a direct consequence of the definition of scaled metric entropy,
Proposition 2.2 and Corollary 2.5.

Proposition 3.1 Let U and V be two open covers of X and μ ∈ MT . If a = {a(n)} is a
scaled sequence, then the following properties hold:

(1) If U � V , then Eμ(T,U, a) ≤ Eμ(T,V, a);

(2) If a = {a(n)} satisfies (2.5), then Eμ
(

T,U, a
)

= Eμ
(

T,
∨n−1

i=0 T −i U, a
)

and

Eμ
(

T,U, a
)

= Eμ
(

T, T −1U, a
)

.

The following proposition shows that the scaled metric entropy as well as the lower and upper
scaled metric entropies are invariant under a topological conjugacy.

Proposition 3.2 Let Ti : Xi → Xi , i = 1, 2 be two continuous transformations of compact
(Hausdorff) spaces and let a = {a(n)} be a scaled sequence. If there exists a homeomorphism
π : X1 → X2 such that π ◦ T1 = T2 ◦ π , then for each μ ∈ MT1

Eμ(T1, a) = Eπ∗μ(T2, a)

where π∗μ = μ ◦ π−1.

3.3 The Case of Compact Metric Spaces

In the rest of this section, let T : X → X be a continuous map of a compact metric space X
with metric d . In this subsection, we introduce the scaled local metric entropy following the
approach of Brin and Katok.

Lemma 3.1 Let a = {a(n)} be a scaled sequence satisfying (2.5). For any ε > 0 and any
ergodic measure μ the following two limits

hμ(T, a, x, ε) := lim inf
n→∞ − 1

a(n)
logμ(Bn(x, ε)),

hμ(T, a, x, ε) := lim sup
n→∞

− 1

a(n)
logμ(Bn(x, ε))

(3.1)

are constant almost everywhere.

Proof Given a positive number ε, note that Bn+1(x, ε) ⊂ T −1 Bn(T x, ε) for each n ∈ N and
each x ∈ X . Therefore,

μ(Bn+1(x, ε)) ≤ μ(T −1 Bn(T x, ε)) = μ(Bn(T x, ε)).

By (2.5), we have that hμ(T, a, x, ε) ≥ hμ(T, a, T x, ε) and ergodicity of μ implies that
hμ(T, a, x, ε) is constant almost everywhere. Similar argument yields the conclusion about
the second limit. ��
Remark 3.1 Since hμ(T, a, x, ε) and hμ(T, a, x, ε) are constant almost everywhere, we

denote their common values by hμ(T, a, ε) and hμ(T, a, ε) respectively. Observe that

hμ(T, a, ε) and hμ(T, a, ε) are increasing as ε goes to zero and we let

hμ(T, a) := lim
ε→0

hμ(T, a, ε) and hμ(T, a) := lim
ε→0

hμ(T, a, ε).
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These are “scaled” versions of the quantities introduced by Brin and Katok in [2].

For a general scaled sequences hμ(T, a) may not be equal to hμ(T, a), see Example 4.7
in the next section.

By Proposition 2.2, in the case of compact metric spaces we have that

Eμ(T, a) = lim|U |→0
Eμ(T,U, a).

The same conclusion holds for Eμ and Eμ.

3.4 Relations Between Different Scaled Metric Entropies

In this subsection we study the relations between various versions of scaled metric entropies.

Theorem 3.3 Let a = {a(n)} be a scaled sequence satisfying (2.5). For any T -invariant
ergodic measure μ we have

hμ(T, a) ≤ Eμ(T, a) ≤ Eμ(T, a) ≤ Eμ(T, a) ≤ hμ(T, a).

If a scaled sequence a = {a(n)} is such that the relations

hμ(T, a) = hμ(T, a) := h (3.2)

hold for an ergodic measure μ, then by Theorem 3.3, we obtain that

Eμ(T, a) = Eμ(T, a) = Eμ(T, a) = h.

This is, for example, the case when a(n) = n.
Given a number h ≥ 0 and an ergodic measure μ, define

Kh =
{

x ∈ X : lim
ε→0

hμ(T, a, x, ε) = lim
ε→0

hμ(T, a, x, ε) = h

}
. (3.3)

Theorem 3.4 Let a = {a(n)} be a scaled sequence satisfying (2.5). Assume that μ(Kh) = 1
for some h ≥ 0. Then

EKh (T, a) = E Kh
(T, a) = E Kh (T, a) = h.

The following result is a direct consequence of Theorems 3.3 and 3.4.

Corollary 3.5 Let a = {a(n)} be a scaled sequence satisfying (2.5). Assume that (3.2) holds
and let Kh be the set given by (3.3). Then

Eμ(T, a) = Eμ(T, a) = Eμ(T, a)

= EKh (T, a) = E Kh
(T, a) = E Kh (T, a) = h.

The next theorem shows that the scaled topological entropy is determined by scaled metric
entropy, which extends the result in [15] for scaled entropies.

Theorem 3.6 Let a = {a(n)} be a scaled sequence, μ a Borel probability measure on X
and L ⊂ X a Borel subset. Set hμ(T, a, x) := limε→0 hμ(T, a, x, ε). Then for any s ≥ 0
the following properties hold:

(1) If hμ(T, a, x) ≤ s for all x ∈ L, then EL(T, a) ≤ s;
(2) If hμ(T, a, x) ≥ s for all x ∈ L and μ(L) > 0, then EL(T, a) ≥ s.
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The following result is a direct consequence of Theorem 3.6 and Remark 3.1.

Corollary 3.7 Let a = {a(n)} be a scaled sequence satisfying (2.5). For any T -invariant
ergodic measure μ, let Kh be the set given by (3.3). Assume that μ(Kh) = 1 for some h ≥ 0.
Then for each set Z of positive μ-measure we have

EZ∩Kh (T, a) = hμ(T, a) = hμ(T, a) = h.

Proof Consider L = Z ∩ Kh and s = h in Theorem 3.6, the desired result immediately
follows. ��
3.5 Scaled Metric Entropy for Equivalent Scaled Sequences

Following the discussion on scaled topological entropy for equivalent scaled sequence in
Sect. 2.4, we introduce a similar notion of equivalence for scaled metric entropy.

The following proposition are direct consequences of Proposition 2.7, and it also holds if
X is a compact (Hausdorff) space.

Proposition 3.8 Let a = {a(n)} and b = {b(n)} be two scaled sequences. For every T -
invariant measure μ ∈ MT , the following properties hold:

(1) If a(n) ≤ b(n) for all sufficiently large n, then Eμ(T,U, a) ≥ Eμ(T,U,b) and
Eμ(T, a) ≥ Eμ(T,b);

(2) For each K > 0, KEμ(T,U, K a) = Eμ(T,U, a) and KEμ(T, K a) = Eμ(T, a);
(3) If there exists a constant C such that 1

C b(n) ≤ a(n) ≤ Cb(n) for all sufficiently large
n, then

1

C
Eμ(T,U,b) ≤ Eμ(T,U, a) ≤ CEμ(T,U,b)

and

1

C
Eμ(T,b) ≤ Eμ(T, a) ≤ CEμ(T,b).

In the following proposition we denote by Hμ either hμ or hμ.

Proposition 3.9 Let a = {a(n)} and b = {b(n)} be two scaled sequences. For every T -
invariant ergodic measure μ ∈ ET , the following properties hold:

(1) If a(n) ≤ b(n) for all sufficiently large n, then Hμ(T, a) ≥ Hμ(T,b);
(2) For each K > 0, KHμ(T, K a) = Hμ(T, a);
(3) If there exists a constant C such that 1

C b(n) ≤ a(n) ≤ Cb(n) for all sufficiently large
n, then

1

C
Hμ(T,b) ≤ Hμ(T, a) ≤ CHμ(T,b).

By Proposition 3.8(1), we have Eμ(T, [a]) ≤ Eμ(T, [b]) whenever [a] � [b] and by
Proposition 3.8(3), for each equivalence class [a] ∈ A and for each a1, a2 ∈ [a] we have
that Eμ(T, a1) = Eμ(T, a2) = 0 or Eμ(T, a1) = Eμ(T, a2) = ∞ or both Eμ(T, a1) and
Eμ(T, a2) are positive and finite.

Respectively, by Proposition 3.9(1), Hμ(T, [a]) ≤ Hμ(T, [b]) whenever [a] � [b] and
by Proposition 3.9(3), for each equivalence class [a] ∈ A and for each a1, a2 ∈ [a] we have
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that Hμ(T, a1) = Hμ(T, a2) = 0, or Hμ(T, a1) = Hμ(T, a2) = ∞ or both Hμ(T, a1) and
Hμ(T, a2) are positive and finite.

In the first two cases we write Eμ(T, [a]) = 0 (respectively, Hμ(T, [a]) = 0) and
Eμ(T, [a]) = ∞ (respectively, Hμ(T, [a]) = ∞) and in the third case we say that Eμ(T, [a])
(respectively, Hμ(T, [a])) is positive and finite.

The first result is clear from the definitions.

Theorem 3.10 For each T -invariant ergodic measure μ ∈ ET , if there is [a] ∈ A such that
hμ(T, [a]) is positive and finite, then

hμ(T, [b]) =
{

0, if [a] � [b],
∞, if [b] � [a].

Similar result holds for hμ.

A similar result also holds for Eμ.

Theorem 3.11 For each T -invariant measure μ ∈ ET , if there is [a] ∈ A for which
Eμ(T, [a]) is positive and finite, then

Eμ(T, [b]) =
{

0, if [a] � [b],
∞, if [b] � [a].

Similar result holds for Eμ and Eμ.

3.6 Relations Between Scaled Metric Entropy and Pointwise Dimension

In this subsection we consider some relations between pointwise dimension and the scaled
metric entropy and we describe a result which is similar to Theorem 2.10.

Recall that the lower and upper pointwise dimensions of the measureμ at the point x ∈ X
are defined respectively by

dμ(x) = lim inf
r→0

logμ(B(x, r))

log r
, dμ(x) = lim sup

r→0

logμ(B(x, r))

log r
.

Theorem 3.12 Let T : X → X be a continuous transformation of a compact metric space
X,μ a T -invariant measure, {bn} and {cn} are sequences of numbers defined in (2.7). Assume
that the sequence {bn} is scaled and that {log bn} and {log cn} satisfy (2.5). Then for each
x ∈ X we have

(1) hμ(T, {log cn}, x) ≤ dμ(x);
(2) hμ(T, {log bn}, x) ≥ dμ(x),

where hμ(T, a, x) := limε→0 hμ(T, a, x, ε) and hμ(T, a, x) := limε→0 hμ(T, a, x, ε).

Observe that if the sequences {bn}n≥1 and {cn}n≥1 satisfy the conditions of the above
theorem, then by Remark 3.1, for μ-almost every x ∈ X ,

hμ(T, {log cn}) ≤ dμ(x), hμ(T, {log bn}) ≥ dμ(x).
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4 Examples

Example 4.1 We describe a class of maps T which possess a “built-in” scaled sequence.

Let T : X → X be an expansive homeomorphism of a compact metric space X (that is
there exists ε > 0 such that if d(T n(x), T n(y) ≤ ε for any integer n and points x, y ∈ X
then x = y). Such a homeomorphism possesses a generating open cover of X that we denote
by V . Assume that a subset Z ⊂ X is such that

(1) E Z (T, {n}) = 0;

(2) There exists an open cover U of X such that ℵ
(∨n−1

i=0 T −i U, Z
)

→ ∞ as n → ∞
(without loss of generality we may assume that the partition U is finer than V).

By Proposition 2.2, in this case for each scaled sequence a = {a(n)} satisfying (2.5) we have

E Z (T, a) = lim sup
n→∞

1

a(n)
log ℵ(

n−1∨

i=0

T −i U, Z) (4.1)

E Z (T, a) = lim inf
n→∞

1

a(n)
log ℵ(

n−1∨

i=0

T −i U, Z). (4.2)

In particular, if a(n) = a(n,U) = log ℵ
(∨n−1

i=0 T −i U, Z
)

increases monotonically and

satisfies Condition (2.5), then

E Z (T, a) = E Z (T, a) = 1.

Thus a is the desired “built-in” scaled sequence. Moreover, if U ′ is a cover of X that is finer
than V and if b(n) = b(n,U ′) = log ℵ(∨n−1

i=0 T −i U ′, Z) satisfies (2.5), then

E Z (T,b) = E Z (T,b) = 1.

By Theorem 2.8, for any pair of open covers U and U ′ of X , which are finer than the generating
open cover V , if the corresponding sequences a(n,U) and b(n,U ′) satisfy (2.5), then a(n,U)
and b(n,U ′) are equivalent scaled sequences and hence, their scaled entropy is positive and
finite.

Example 4.2 We present an example of a map T whose standard topological entropy
EX (T,b) = 0 (where b = {n} is the standard scaled sequence) but its scaled topologi-
cal entropy EX (T, a) > 0 for the polynomial scaled sequence a = {a(n) = nα}.

Consider the the full shift T on the one-sided symbolic space X = �+
2 = {0, 1}N. Given

an infinite word ω ∈ X , let

In =
{
[x1x2 . . . xn] : x1x2 . . . xn occurs in ω

}
and Zn =

⋃

I∈In

I,

where [x1x2 . . . xn] is a cylinder of length n. The set

Z =
∞⋂

n=1

Zn

is a closed subset of X and is T -invariant, so that (Z , T ) is a subshift.
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Let us fix a number 0 < α < 1. By a result in [4], there is ω ∈ X whose complexity
function Lω(m) satisfies Lω(n) ∼ 2nα . Recall that Lω(n) is the number of finite words of
length n that occurs as blocks of consecutive letters in ω.

Let p(n) be the number of n-cylinders in Z . We have that p(n) ∼ 2nα and by Theorem
3.4 in [5],

E Z (T, {nα}) = lim sup
n→∞

1

nα
log p(n) = log 2.

By the choice of α, the standard topological entropy EZ (T, {n}) = 0. Since Z is compact
and invariant, the sequence {nα}n≥1 is subadditive, and by Theorem 2.6 we obtain that

EZ (T, {nα}) = E Z (T, {nα}) = E Z (T, {nα}) = log 2 > 0.

Finally, by Theorem 2.8, the class [{nα}] is the only equivalence class whose scaled sequences
generate positive and finite scaled topological entropy.

Example 4.3 For any fixed number 0 < α < 1, let (Z , T ) be the subshift constructed in
Example 4.2. Then the system (Z , T ) is uniquely ergodic, i.e., there exists only one T -
invariant measure μ supported on Z (see [1, Theorem 3.6] for the proof). Let ξ be the
generating partition of (Z , T ) induced by the zero coordinate, i.e., ξ = {A0, A1} with A0 =
{x ∈ Z : x0 = 0} and A1 = {x ∈ Z : x0 = 1}, and let Cξn (x) denote the element of the
refined partition

∨n−1
i=0 T −1ξ which contains the point x . Then, for any τ > 0 we have

lim
n→∞ − 1

nτ
logμ(Cξn (x)) = 0, μ-a.e. x ∈ Z ,

see Proposition 4.2 in [1] for the proof. This implies that

hμ(T, {nτ }) = 0

for any τ > 0. By Theorem 3.3, we obtain that

hμ(T, {nτ }) = Eμ(T, {nτ }) = Eμ(T, {nτ })
= Eμ(T, {nτ }) = hμ(T, {nτ }) = 0.

Therefore,

sup
ν

Eν(T, {nα}) = Eμ(T, {nα}) = 0 < log 2 = EZ (T, {nα}).

where the supremum is taken over all T -invariant measures (in our case the set of such
measures is reduced to the measure μ). This illustrates that the variational principle for
the scaled topological entropy may fail in general (while it holds for the standard scaled
sequence).

Example 4.4 Given a number s > 1, there exists K > 1 such that s − 1 − log(t + K ) < 0
for all t > 0. Consider a scaled sequence a = {a(n)} given by a(n) =(

log(n + K )
)s . It is

easy to check that the function a(t) =(
log(t + K )

)s satisfies the following conditions

(1) limt→+∞ log t
a(t) = 0;

(2) a is differentiable, except possibly at 0;
(3) limt→+∞ a′(t)tβ = 0 for some positive constant β > 0;
(4) a′(t) is decreasing.
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By Theorem 3 in [4], there is a word ω ∈ �2 whose complexity function Lω(n) satisfies

Lω(n) ∼ 2a(n).

Let the sets Zn, Z ⊂ �2 be defined as in Example 4.2 and consider a subshift (Z , T ). Denote
by p(n) the number of n-cylinders in Z . It is easy to see from the construction of Z that
p(n) ∼ 2a(n). Using similar arguments as in the proof of Theorem 3.4 in [5], one can show that

E Z (σ, a) = lim sup
n→∞

1
(

log(n + K )
)s log p(n) = log 2,

and

E Z (σ, a) = lim inf
n→∞

1
(

log(n + K )
)s log p(n) = log 2.

Therefore, for each s > 1 one can choose K > 1 such that the map T has positive
and finite lower and upper scaled topological entropy with respect to the scaled sequence
{( log(n + K )

)s}. This is a “built-in” sequence for T which is neither polynomial, nor log-
arithmic. Moreover, one can see that

(i) E Z (σ, a) = E Z (σ, a) = log 2 despite that fact that the scaled sequence a(n) is neither
subadditive nor superadditive (compare with Theorem 2.6);

(ii) there are systems whose scaled topological entropy is zero with respect to the scaled
sequence {nα} for any 0 < α < 1 and it is infinite with respect to the scaled sequence
{log n};

(iii) for each s > 1 there is a system with positive and finite scaled topological entropy with
respect to any scaled sequence in the class [(log n)s].

Example 4.5 We describe an example of a smooth dynamical system with zero standard
topological entropy and positive scaled topological entropy. It also illustrates that the second
statement of Theorem 2.6 may fail to be true when the scaled sequence is not subadditive and
that the particular scaled topological entropy with respect to sequence {ns} fails to clarify the
complexity of the systems.

Let (M, ω) be a 4-dimensional symplectic manifold and H : M → R a smooth Hamil-
tonian function. We denote by X H the associated vector field and by φH the associated
Hamiltonian flow. We fix a (connected component of) a compact regular energy level L of
H which is an orientable compact connected submanifold of dimension 3.

A first integral F : M → R of the vector field X H is said to be nondegenerate in the Bott
sense on L if the critical points of f := F |L form nondegenerate strict smooth submanifolds
of L, that is the Hessian ∂2 f of f is nondegenerate on the complementary subspaces to these
submanifolds. Consider the restrictions of the vector field and the flow to L, which we still
denote by X H and φH . The triple (L, φH , f ) is called a nondegenerate Bott system. It is
proved in [9] and [16] that the critical submanifolds for f may only be circles, Lagrangian
tori or Klein bottles. A non-degenerate Bott system (L, φH , f ) is said to be dynamically
coherent if the critical circle for f are either elliptic or hyperbolic periodic orbits.

Let (L, φH , f ) be a nondegenerate dynamically coherent Bott system and a = {a(n) =
log n} a scaled sequence. Denote by φ1

H the time one map of the Hamiltonian flow φH . It is
shown in [13] that

(1) EL(φ1
H , a) is 0 or 1;

(2) EL(φ1
H , a) is 0, 1 or 2; moreover, EL(φ1

H , a) = 2 if and only if φH possesses a hyper-
bolic orbit.
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See [13, Theorem 1] for the proof of Statement (1) and [13, Theorem 2] for the proof of
Statement (2).

This implies that

(i) The scaled topological and lower and upper scaled topological entropies are zero with
respect to the scaled sequence {ns} for any 0 < s ≤ 1, which means that the particular
sequence {ns} fails to describe the complexity of the system (L, φH , f );

(ii) If φH possesses a hyperbolic orbit, then EL(φ1
H , a) < EL(φ1

H , a). This demonstrates
that Statement (2) of Theorem 2.6 may fail if the scaled sequence is not subadditive,
and the equivalence class [a] is the only elements in (A,�) (see Sect. 2.4) with positive
and finite scaled topological entropy;

(iii) If φH possesses a hyperbolic orbit, then EL(φ1
H , a) = 2. However, EL(φ1

H , a) may
be zero. This means that the scaled equivalence class such that the scaled topological
entropy and upper scaled topological entropy is positive and finite may be not the same
in general.

Example 4.6 Let X be a compact metric space with metric d and T an isometry, that is
d(T (x), T (y)) = d(x, y) for any x, y ∈ X . It is easy to see that for any finite open cover U
of X and any n ∈ N there is a constant K > 0 such that

ℵ
( n−1∨

i=0

T −i U, X
)
< K .

This implies that the system (X, T ) has zero scaled topological entropy with respect to any
scaled sequence.

Example 4.7 Let T be a rotation by an irrational number θ on [0, 1) and letμ be the Lebesgue
measure. Denote by Pn the partition of [0, 1) generated by the orbit {−kθ}, 0 ≤ k ≤ n that
is Pn = ∨n−1

i=0 T −i P , where the partition P = {[0, 1−θ), [1−θ, 1)}. Further, for x ∈ [0, 1),
we denote by Pn(x) the element of the partition Pn that contains x . For an irrational number
θ ∈ (0, 1), set

η := sup{t > 0 : lim inf
j→∞ j t‖ jθ‖ = 0},

where ‖ jθ‖ denotes the distance to the nearest integer. By Theorem 1.1 in [10], for a given
irrational number θ , the following properties hold:

(i) For each x ∈ [0, 1),

1

η
≤ lim inf

n→∞ − logμ(Pn(x))

log n
≤ 1 and 1 ≤ lim sup

n→∞
− logμ(Pn(x))

log n
≤ η;

(ii) For almost all x ∈ [0, 1),

lim inf
n→∞ − logμ(Pn(x))

log n
= 1

η
and lim sup

n→∞
− logμ(Pn(x))

log n
= 1.

Now consider the full shift σ on the one-sided symbolic space �+
2 and the map φ : �+

2 →
[0, 1) given by φ(ω) = ⋂∞

i=0 T −i Pωi . This map determines a symbolic extension of the
irrational rotation, where ωi is the i-th symbol of the word ω and P0 = [0, 1 − θ), P1 =
[1 − θ, 1). Thus, we obtain an ergodic shift invariant measure m on �+

2 such that φ∗m = μ.
Furthermore, (�+

2 ,B1,m, σ ) is isomorphic via φ to ([0, 1),B2, μ, T ), where B1 and B2 are
Borel sigma algebras on �+

2 and [0, 1) respectively.
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Let ξ be the natural partition of (�+
2 , σ ) into 1-cylinders, i.e., ξ = {A0, A1} with A0 =

{ω ∈ �+
2 : ω0 = 0} and A1 = {ω ∈ �+

2 : ω0 = 1}. The isomorphism φ maps this partition
onto P . We denote by Cξn (ω) the element of the refined partition

∨n−1
i=0 σ

−1ξ which contains
the point ω.

If θ is a Liouville number, then η = ∞ and by (ii) we obtain that for m-almost every
ω ∈ �+

2 ,

lim inf
n→∞ − log m(Cξn (ω))

log n
= 0 and lim sup

n→∞
− log m(Cξn (ω))

log n
= 1.

This means that the scaled version of Brin and Katok’s entropy formula fails. On the other
hand, since η = 1 for almost every θ , we conclude that by (i),

lim
n→∞ − log m(Cξn (ω))

log n
= 1

for m-almost every ω. Hence, the scaled version of Brin and Katok’s entropy formula holds
in this case.

5 Proofs

Proof of Proposition 2.2 (1) Since U � V , each element V ∈ V is contained in
some element in U which we denote by U (V ). Therefore, for each string V =
(Vi0 , Vi1 , . . . , Vin−1) ∈ Wn(V) there exists a corresponding string U(V) = (U (Vi0),

U (Vi1), . . . ,U (Vin−1)) ∈ Wn(U). This yields that

ℵ(
n−1∨

i=0

T −i U, Z) ≤ ℵ(
n−1∨

i=0

T −i V, Z)

and hence,

E Z (T,U, a) ≤ E Z (T,V, a) and E Z (T,U, a) ≤ E Z (T,V, a).

Let � ⊂ W(V) be a collection of strings that covers Z . The corresponding collection of
strings {U(V) : V ∈ �} ⊂ W(U) also covers Z . This implies that M(Z , α, N ,U, a) ≤
M(Z , α, N ,V, a) for each α ≥ 0 and N > 0 and hence, m(Z , α,U, a) ≤ m(Z , α,V, a).
The first statement follows.

(2) Since U � ∨n−1
i=0 T −i U , the inequality (2.4) follows.

Fix k > l and let V = ∨l−1
i=0 T −i U . For U = (Ui0 ,Ui1 , . . . ,Uik−1) ∈ Wk(U)

let V(U) = (Vi0 , Vi1 , . . . , Vik−l ) ∈ Wk−l+1(V) be the corresponding string. Clearly,
X (U) = X (V(U)) and hence,

ℵ(
k−l+1∨

i=0

T −iV, Z) ≤ ℵ(
k−1∨

i=0

T −i U, Z).

The requirement that limn→∞ a(n)
a(n+1) = 1 implies that EZ (T,V, a) ≤ EZ (T,U, a), here

E is E or E .
On the other hand, if � ⊂ ⋃

j≥k W j (U) covers the set Z , then the collection of strings
{V(U) : U ∈ �} ∈ ⋃

j≥k−l+1 W j (V) also covers Z . Using again the requirement
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limn→∞ a(n)
a(n+1) = 1, for each β > 0 we can find N ′ > 0 such that for each U with

m(U) ≥ N ′

1 − β <
a(m(U))

a(m(U)− l + 1)
=

l−1∏

i=1

a(m(U)− l + i + 1)

a(m(U)− l + i)
< 1 + β.

Therefore, by Remark 2.1,

M(Z , α, N ,U, a) ≥ M(Z , α(1 + β), N − l + 1,V, a)

for all sufficiently large N . Letting N → ∞ on both sides of the above inequality yields
that m(Z , α,U, a) ≥ m(Z , α(1 + β),V, a). Therefore,

EZ (T,U, a)(1 + β) ≥ EZ (T,V, a).

The arbitrariness of β implies the third statement.
(3) The last statement follows immediately from the definitions.

��
Proof of Proposition 2.4 Statements (1) and (2) follow from Theorems 1.1 and 2.1 in [18].
To prove Statement (3) we apply Proposition 2.3 with Xi = X , π = T and Ti = T , i = 1, 2
and obtain that EZ (T, T −1U, a) = ET (Z)(T,U, a) and, consequently

EZ (T, a) ≥ ET (Z)(T, a). (5.1)

On the other hand, let � ⊂ W(U) be a collection of strings that covers T (Z), i.e.,

T (Z) ⊂
⋃

U∈�

(
Ui0 ∩ T −1Ui1 ∩ · · · ∩ T −m(U)+1Uim(U)−1

)
.

Then

Z ⊂
⋃

U∈�

(
T −1Ui0 ∩ T −2Ui1 ∩ · · · ∩ T −m(U)Uim(U)−1

)
.

Since X is compact, we can choose a finite subcover {U1, . . . ,Uk} of U that covers Z . Thus

Z ⊂
⋃

U∈�

k⋃

j=1

(
U j ∩ T −1Ui0 ∩ T −2Ui1 ∩ · · · ∩ T −m(U)Uim(U)−1

)
.

This implies that

ℵ
( N∨

i=0

T −i U, Z
)

≤ k ℵ
( N−1∨

i=0

T −i U, T (Z)
)

(5.2)

and together with the monotonicity of a(n) yields that

M(Z , α, N + 1,U, a) ≤ k M(T (Z), α, N ,U, a). (5.3)

Letting N → ∞ on both sides of (5.3) yields that

m(Z , α,U, a) ≤ k m(T (Z), α,U, a)

and hence,

EZ (T,U, a) ≤ ET (Z)(T,U, a). (5.4)
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This implies that

EZ (T, a) ≤ ET (Z)(T, a). (5.5)

By (5.1) and (5.5), we have EZ (T, a) = ET (Z)(T, a). To prove Statement (4), by Proposition
2.1, (2.5) and (5.2) we have that

E Z (T,U, a) ≤ ET (Z)(T,U, a), E Z (T,U, a) ≤ ET (Z)(T,U, a). (5.6)

Hence,

E Z (T, a) ≤ ET (Z)(T, a) and E Z (T, a) ≤ ET (Z)(T, a). (5.7)

The above inequalities together with (5.1) yield that

E Z (T, a) = ET (Z)(T, a), E Z (T, a) = ET (Z)(T, a).

To prove the other results, we let G ⊂ W(U) be a collection of strings that covers Z , i.e.,

Z ⊂
⋃

U∈G

(
Ui0 ∩ T −1Ui1 ∩ · · · ∩ T −m(U)+1Uim(U)−1

)
.

Hence,

T (Z) ⊂
⋃

U∈G

(
Ui1 ∩ · · · ∩ T −m(U)+2Uim(U)−1

)
.

This implies that

ℵ(
N−2∨

i=0

T −i U, T (Z)) ≤ ℵ(
N−1∨

i=0

T −i U, Z). (5.8)

Using (2.5), for each β > 0 there exits N ′ > 0 such that

1 − β <
a(n + 1)

a(n)
< 1 + β for all n ≥ N ′.

Hence,

M(T (Z), α(1 + β), N − 1,U, a) ≤ M(Z , α, N ,U, a) (5.9)

for all sufficiently large N . Letting N → ∞ in (5.9) yields

m(T (Z), α(1 + β),U, a) ≤ m(Z , α,U, a)

and hence, ET (Z)(T,U, a) ≤ (1 + β)EZ (T,U, a). The arbitrariness of β implies
ET (Z)(T,U, a) ≤ EZ (T,U, a) and hence, ET (Z)(T, a) ≤ EZ (T, a). This together with
(5.4) and (5.5) yield that ET (Z)(T,U, a) = EZ (T,U, a) and ET (Z)(T, a) = EZ (T, a).
Finally, by (2.5) and (5.8) we obtain that ET (Z)(T,U, a) ≤ EZ (T,U, a) and hence,
ET (Z)(T, a) ≤ EZ (T, a) (here E denotes E or E). Combing these two inequalities and (5.6)
and (5.7), yield the desired results. This completes the proof of the proposition. ��
Proof of Theorem 2.6 Observe that by Proposition 2.2 it suffices to show that EZ (T,U, a) ≥
E Z (T,U, a). Choose α > EZ (T,U, a). There are N > 0 and G ∈ ⋃

m≥N Wm(U) such that
G covers Z and

A(G) :=
∑

U∈G
exp

(
− αa(m(U))

)
< 1.
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Since Z is compact, we can choose G to be finite and hence, G ⊂ ⋃M
m=1 Wm(U) for some

M ≥ 1. Set Gn = {U1 . . .Un : Ui ∈ G} and � = ⋃∞
n=1 Gn . Since Z is invariant, � covers Z .

It is easy to check that A(Gn) ≤ A(G)n and hence,

A(�) =
∞∑

n=1

A(Gn) < ∞.

Let us fix K > 0 and a point x ∈ Z . Since � covers Z there is a string U ∈ � such that
x ∈ X (U) and K ≤ m(U) < K + M . Denote by U∗ the substring that consists of the first K
symbols of the string U. Let �K denote the collection of all substrings U∗ constructed above.
It is easy to see that

��K ≥ ℵ
( K−1∨

i=0

T −i U, Z
)
.

It follows that

exp
( − αa(K )

)ℵ
( K−1∨

i=0

T −i U, Z
)

≤
∑

U∗∈�K

exp(−αa(K )).

Since a = {a(n)} is a subadditive scaled sequence, we find that

a(m(U)) ≤ a(K )+ a(m(U)− K ) ≤ a(K )+ a(M).

Therefore,
∑

U∗∈�K

exp(−αa(K )) ≤ exp[αa(M)]A(�) < ∞.

By Proposition 2.1,

E Z

(
T,U, a

)
= lim sup

K→∞
1

a(K )
log ℵ(

K−1∨

i=0

T −i U, Z) < α.

Since α is arbitrary, we conclude that E Z (T,U, a) ≤ EZ (T,U, a). Hence,

EZ (T,U, a) = E Z (T,U, a) = E Z (T,U, a)

implying that EZ (T, a) = E Z (T, a) = E Z (T, a). ��
Proof of Theorem 2.8 We shall prove the result for the scaled topological entropy EZ (T, [a]);
the arguments for the lower and upper scaled topological entropies are similar.

Suppose there is [a] ∈ A such that EZ (T, [a]) is positive and finite. Then for each
[b] � [a],

lim sup
n→∞

a1(n)

b1(n)
= 0

for arbitrary a1 = {a1(n)} ∈ [a] and b1 = {b1(n)} ∈ [b]. Let us fix such two scaled
sequences a1 and b1. Given a small number β > 0, for all sufficiently large n we have that
a1(n) < βb1(n) and hence, m(Z , α,U, a1) ≥ m(Z , α,U, βb1). This implies that

EZ (T, a1) ≥ EZ (T, βb1) = 1

β
EZ (T,b1),
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i.e., βEZ (T, a1) ≥ EZ (T,b1). Since β is arbitrary, we conclude that EZ (T,b1) = 0 and
hence, EZ (T, [b]) = 0.

On the other hand, if [b] � [a] then

lim sup
n→∞

b2(n)

a2(n)
= 0

for arbitrary a2 = {a2(n)} ∈ [a] and b2 = {b2(n)} ∈ [b]. Given a small number β > 0,
for all sufficiently large n we have that b2(n) < βa2(n) and hence, m(Z , α,U,b2) ≥
m(Z , α,U, βa2). It follows that EZ (T,b2) >

1
β

EZ (T, a2). Again since β is arbitrary,
EZ (T,b2) = ∞ implying that EZ (T, [b]) = ∞. ��
Proof of Proposition 2.9 It follows from the definitions that

lim inf|U |→0
EZ (T,U, a) ≤ lim sup

|U |→0
EZ (T,U, a) ≤ EZ (T, a). (5.10)

On the other hand, if V is a finite open cover of X with the Lebesgue number δ and U
an open cover of X with |U | < δ, then V � U . By Proposition 2.2 (1), we obtain that
EZ (T,V, a) ≤ EZ (T,U, a). This implies that

EZ (T, a) ≤ lim inf|U |→0
EZ (T,U, a)

and together with (5.10) complete the proof of the second statement. ��
Proof of Theorem 2.10 Let dimB Z := α and dimB Z := α. By Lemma 2.1, for all small
r > 0,

Nd(Z ,
r

cn
) ≥ Ndn (Z , r) ≥ Nd(Z ,

r

bn
), (5.11)

where Ndn (Z , r) is the minimal number of balls of radius r in the dn-metric needed to cover
the set Z .

Fix a small number r > 0. Since the sequence {bn} is scaled, so is the sequence {cn} and
hence, r

cn
→ 0. Moreover, since the sequence {log cn} satisfies (2.5), we have that

log r
cn

log r
cn+1

→ 1

as n → ∞.
Claim. If a sequence of numbers {bn} is such that bn → 0 as n → ∞ and

lim
n→∞

log bn

log bn+1
= 1,

then

dimB Z = lim inf
n→∞

log Nd(Z , bn)

− log bn
, dimB Z = lim sup

n→∞
log Nd(Z , bn)

− log bn
.

��
Proof of Claim For each r > 0 there exists a positive integer n such that bn+1 ≤ r < bn . It
follows that

Nd(Z , bn) ≤ Nd(Z , r) ≤ Nd(Z , bn+1).
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This yields that

log Nd(Z , bn)

− log bn+1
≤ log Nd(Z , r)

− log r
≤ log Nd(Z , bn+1)

− log bn
.

The desired result now immediately follows from the requirement that limn→∞ log bn
log bn+1

= 1.
��

It follows from the claim that

lim sup
n→∞

log Nd

(
Z , r

cn

)

− log r
cn

= α.

Therefore, for each ε > 0 there exists K > 0 such that for all n > K

Nd(Z ,
r

cn
) <

( r

cn

)−(α+ε)
.

Combining this with the first inequality in (5.11), we find that for all n > K ,

Ndn (Z , r) <
( r

cn

)−(α+ε)
.

It follows that

lim sup
n→∞

log Ndn (Z , r)

log cn
≤ α + ε. (5.12)

Since r and ε are arbitrary, by Remark 2.3 we conclude that

E Z (T, {log cn}) < α.

The second inequality can be proven in a similar fashion. First note that

lim inf
n→∞

log Nd

(
Z , r

bn

)

− log r
bn

= α.

Hence, for each ε > 0 there exists K ′ > 0 such that for all n > K ′

Nd

(
Z ,

r

bn

)
≥

( r

bn

)−α+ε
.

Combining this with the second inequality in (5.11), we obtain that for all n > K ′,

Ndn (Z , r) ≥ (
r

bn
)−α+ε .

It follows that

lim inf
n→∞

log Ndn (Z , r)

log bn
≥ α − ε

and since r and ε are arbitrary, by remark 2.3 we conclude that E Z (T, {log bn}) > α. ��
Proof of Proposition 3.2 By Proposition 2.3, we know that

Eμ(T1, π
−1U, a) = inf

{
EZ (T1, π

−1U, a) : μ(Z) = 1
}

= inf
{

Eπ(Z)(T2,U, a) : μ(Z) = 1
}
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= inf
{

EY (T2,U, a) : π∗μ(Y ) = 1
}

= Eπ∗μ(T2,U, a)

the third equality follows from the fact that π is a homeomorphism. Hence,

Eμ(T1, a) ≥ Eπ∗μ(T2, a).

Since π−1 ◦ T2 = T1 ◦ π−1, applying the above inequality, we find that Eπ∗μ(T2, a) ≥
E
π−1∗ π∗μ(T1, a) = Eμ(T1, a) and hence, Eμ(T1, a) = Eπ∗μ(T2, a). The other two equalities

for Eμ and Eμ can be proved in a similar fashion. ��
Proof of Theorem 3.3 By Lemma 3.1, the quantities hμ(T, a) and hμ(T, a) are well-defined.

Since Eμ(T, a) ≤ Eμ(T, a) ≤ Eμ(T, a), it suffices to show that Eμ(T, a) ≤ hμ(T, a) and
Eμ(T, a) ≥ hμ(T, a).

We first prove that Eμ(T, a) ≤ hμ(T, a). We may assume that hμ(T, a) is finite. Set
h = hμ(T, a) ≥ 0 and choose δ > 0 and a small number η > 0. Let εη > 0 be such that if
ε ∈ (0, εη], then for μ-almost every x ∈ X ,

lim sup
n→∞

− 1

a(n)
logμ(Bn(x, ε)) ≤ h + η/2.

This is possible in view of Remark 3.1. It follows that for μ-almost every x ∈ X , there exists
a number N (x) > 0 such that for any n ≥ N (x),

1

a(n)
logμ(Bn(x, ε/2))+ h ≥ −η. (5.13)

Given a positive integer N , let KN = {x ∈ X : N (x) ≤ N }. We have that KN ⊂ KN+1, and⋃
N≥0 KN is a set of full μ-measure. Therefore, one can find N0 > 0 for which μ(KN0) >

1 − δ.
Fix a number N > N0. Let E be a maximal (n, ε)-separated subset of KN , i.e, E is a

maximal subset satisfying that every two distinct points x, y ∈ E imply that dn(x, y) > ε,
then KN ⊆ ⋃

x∈E Bn(x, ε). Furthermore, the balls {Bn(x, ε/2) : x ∈ E} are pairwise
disjoint and by (5.13), the cardinality of E is less than or equal to exp

[
a(n)(h + η)

]
. Let

�(Z , n, ε) denote the smallest number of Bowen’s balls {Bn(x, ε)} whose union covers the
subset Z . For all sufficiently large n we have

�(KN , n, ε) ≤ exp
[
a(n)(h + η)

]
.

It follows that

E KN (T, ε, a) := lim sup
n→∞

1

a(n)
log�(KN , n, ε) ≤ h + η.

Since μ(KN ) ≥ 1 − δ, we have

Eμ(T, ε, a) := lim
δ→0

inf{E Z (T, ε, a) : μ(Z) ≥ 1 − δ} ≤ h + η.

Letting ε → 0 in the above inequality and taken into account that η can be arbitrary, we
conclude that Eμ(T, a) ≤ h.

We shall now prove that Eμ(T, a) ≥ hμ(T, a). Set h = hμ(T, a), and assume that h > 0.
It suffices to prove that EZ (T, a) ≥ h for any subset Z ⊆ X of full μ-measure. Choose
η > 0 and δ ∈ (0, 1/2) and denote λ = h − η. Let

K =
{

x ∈ X : lim
ε→0

lim inf
n→∞

− logμ(Bn(x, ε))

a(n)
= h

}
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and K ′ = K ∩ Z . By Lemma 3.1 and Remark 3.1, we have μ(K ) = 1 and then μ(K ′) = 1.
There exists a positive number εη > 0 such that for ε ∈ (0, εη], one can find a set K1 ⊂ K ′
with μ(K1) > 1 − δ and a number N1 > 0 such that for any x ∈ K1 and n ≥ N1,

μ(Bn(x, 2ε)) ≤ exp
[ − a(n)(h − η)

]
.

We may assume further that K1 is compact since otherwise we can approximate it from
within by a compact subset. Take an open cover � = {Bni (xi , ε)}i of K1 with ni ≥ N1 for
all i . Since K1 is compact, we may assume that the cover is finite and consists of Bowen’s
balls Bn1(x1, ε), . . . , Bnl (xl , ε).

For each i = 1, . . . , l, we choose yi ∈ K1 ∩ Bni (xi , ε). Hence, Bni (xi , ε) ⊂ Bni (yi , 2ε),
and {Bni (yi , 2ε)}i form an open cover of K1 as well. Now we have

∑

Bni (xi ,ε)∈�
exp

(−λa(ni )
) ≥

l∑

i=1

exp
(−λa(ni )

) =
l∑

i=1

exp
(−(h − η)a(ni )

)

≥
l∑

i=1

μ(Bni (yi , 2ε)) ≥ 1 − δ.

Since the inequality holds for any cover � = {Bni (xi , ε)}i of K1, we conclude that
M(K1, λ, N , ε, a) ≥ 1 − δ. Hence, m(K1, λ, ε, a) ≥ 1 − δ. This implies that

EK1(T, ε, a) ≥ λ = h − η, and EK1(T, a) ≥ h − η.

Using Proposition 2.4 and the fact that η is arbitrary, we find that

EZ (T, a) ≥ EK1(T, a) ≥ h. (5.14)

So by definition, Eμ(T, a) ≥ h.
In the case when hμ(T, a) = +∞, one can slightly modify the argument in the proof

of the second inequality to obtain that Eμ(T, a) = +∞. This completes the proof of the
theorem. ��
Proof of Theorem 3.4 Fix h ≥ 0 and set K = Kh . Fix now a small number η > 0 and choose
εη as in the proof of Theorem 3.3. Since

lim
ε→0

hμ(T, a, x, ε) = lim
ε→0

hμ(T, a, x, ε) = h

for all x ∈ K and μ(K ) = 1, for some ε ∈ (0, εη] and μ-almost every x ∈ X there exists a
number N (x) > 0 such that for any n ≥ N (x)

∣∣∣∣
1

a(n)
logμ(Bn(x, ε/2))+ h

∣∣∣∣ ≤ η.

Given a positive integer N > 0, set KN = {x ∈ K : N (x) ≤ N }. We have KN ⊂ KN+1 and⋃
N≥0 KN = K . Hence, given δ > 0, we can find N0 > 0 for which μ(KN0) > 1 − δ.
Fix a number N ≥ N0, as in the proof of Theorem 3.3. We have that E KN (T, ε, a) ≤ h+2η.

Letting ε → 0 and taken into account that η is arbitrary, we obtain that E KN (T, a) ≤ h.
Letting N → ∞, we conclude that E K (T, a) ≤ h.

The inequality EK (T, a) ≥ h is contained in (5.14) since Z is an arbitrary set of full
μ-measure and in our case μ(K ) = 1. The desired result follows now from Theorem 3.3 and
Proposition 2.2. ��
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Proof of Theorem 3.6 For a fixed r > 0 and k ∈ N, let

Lk =
{

x ∈ L : lim inf
n→∞

− logμ(Bn(x, ε))

a(n)
< s + r for all ε ∈

(
0,

1

k

)}
.

Then we have L = ⋃∞
k=1 Lk , since hμ(T, a, x) ≤ s for all x ∈ L .

Now fix k ≥ 1 and 0 < ε < 1
5k . For each x ∈ Lk , there exists a strictly increasing

sequence
{
n j

}∞
j=1 (depending on the point x) such that

μ(Bn j (x, ε)) ≥ exp
( − a(n j )(s + r)

)
for all j ≥ 1.

For any N ≥ 1, the set Lk is contained in the union of the sets in the family

F = {
Bn j (x, ε) : x ∈ Lk, n j ≥ N

}
.

By Lemma 1 in [15], there exists a subfamily G = {
Bni (xi , ε)

}
i∈I ⊂ F of pairwise disjoint

balls such that

Lk ⊂
⋃

i∈I

Bni (xi , 3ε).

The subfamily is at most countable since μ is a probability measure and the elements in G
are pairwise disjoint and have positive μ-measure. Note that

μ(Bni (xi , ε)) ≥ exp
( − a(ni )(s + r)

)
for all i ∈ I.

The disjointness of
{

Bni (xi , ε)
}

i∈I yields that

M(Lk, s + r, N , 3ε, a) ≤
∑

i∈I

exp
( − a(ni )(s + r)

) ≤
∑

i∈I

μ(Bni (xi , ε)) ≤ 1.

It follows that

m(Lk, s + r, 3ε, a) = lim
N→∞ M(Lk, s + r, N , 3ε, a) ≤ 1.

Hence,

ELk (T, 3ε, a) ≤ s + r.

Since ε can be arbitrary, this implies that

ELk (T, a) ≤ s + r for all k ≥ 1.

Hence,

EL(T, a) = E⋃∞
k=1 Lk

(T, a) = sup
k≥1

ELk (T, a) ≤ s + r.

Since r can be arbitrary, this implies that EL(T, a) ≤ s.
Now we prove the second statement. Fix r > 0 and for each k ≥ 1 set

Lk =
{

x ∈ L : lim inf
n→∞

− logμ(Bn(x, ε))

a(n)
> s − r for all ε ∈ (0, 1

k
)

}
.

Since hμ(T, a, x) ≥ s for all x ∈ L , we have that Lk ⊂ Lk+1 and
⋃∞

k=1 Lk = L . Fix a

sufficiently large k ≥ 1 with μ(Lk) >
1
2μ(L) > 0. For each N ≥ 1, set

Lk,N =
{

x ∈ Lk : − logμ(Bn(x, ε))

a(n)
> s − r for all n ≥ N , ε ∈ (0, 1

k
)

}
.
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It is easy to see that Lk,N ⊂ Lk,N+1 and
⋃∞

N=1 Lk,N = Lk . Thus we can pick N∗ ≥ 1 such
that μ(Lk,N∗) > 1

2μ(Lk) > 0. For simplicity of notation, let L∗ = Lk,N∗ and ε∗ = 1
k . By

the choice of L∗, we have that

μ(Bn(x, ε)) ≤ exp
( − a(n)(s − r)

)
for all x ∈ L∗, 0 < ε < ε∗, n ≥ N∗.

Fix a sufficiently large N > N∗. For each cover F = {
Bni (yi ,

ε
2 )

}
i≥1 of L∗ with 0 < ε < ε∗

and ni ≥ N ≥ N∗ for each i ≥ 1. Without loss of generality, assume that L∗ ⋂
Bni (yi ,

ε
2 ) �=

∅ for all i . Thus, for each i ≥ 1 pick a point xi ∈ L∗ ⋂
Bni (yi ,

ε
2 ) so that

Bni (yi ,
ε

2
) ⊂ Bni (xi , ε).

It follows that
∑

i≥1

exp
( − a(ni )(s − r)

) ≥
∑

i≥1

μ(Bni (xi , ε)) ≥ μ(L∗).

Therefore ,

M(L∗, s − r, N ,
ε

2
, a) ≥ μ(L∗) > 0.

Consequently

m(L∗, s − r,
ε

2
, a) = lim

N→∞ M(L∗, s − r, N ,
ε

2
, a) ≥ μ(L∗) > 0,

which implies that EL∗(T, ε2 , a) ≥ s − r . Letting ε → 0, we find that EL∗(T, a) ≥ s − r . It
follows that

EL(T, a) ≥ EL∗(T, a) ≥ s − r.

Since r can be arbitrary, this implies that EL(T, a) ≥ s completing the proof of the theorem.
��

Proof of Proposition 3.11 Suppose there is [a] ∈ A such that Eμ(T, [a]) is finite. Then for
each [b] � [a],

lim sup
n→∞

a1(n)

b1(n)
= 0

for arbitrary a1 = {a1(n)} ∈ [a] and b1 = {b1(n)} ∈ [b]. Let us fix such two scaled
sequences a1 and b1. Given a small number β > 0, for all sufficiently large n we have that
a1(n) < βb1(n). By Proposition 3.8, we have that

Eμ(T, a1) ≥ 1

β
Eμ(T,b1),

i.e., βEμ(T, a1) ≥ Eμ(T,b1). Since β is arbitrary, we conclude that Eμ(T,b1) = 0 and
hence, Eμ(T, [b]) = 0.

On the other hand, if [b] � [a] then

lim sup
n→∞

b2(n)

a2(n)
= 0

for arbitrary a2 = {a2(n)} ∈ [a] and b2 = {b2(n)} ∈ [b]. Given a small number β > 0, for
all sufficiently large n we have that b2(n) < βa2(n). It follows that Eμ(T,b2) >

1
β
Eμ(T, a2).

Again since β is arbitrary, Eμ(T,b2) = ∞ implying that Eμ(T, [b]) = ∞. ��
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Proof of Theorem 3.12 For each x ∈ X , by Lemma 2.1, we have that for all r > 0,

B
(

x,
r

cn

)
⊂ Bn(x, r) ⊂ B

(
x,

r

bn

)
.

Fix a small number r > 0, since r
cn

→ 0 and
log r

cn
log r

cn+1

→ 1 as n approaches infinity, using

Young’s result [19, Proposition 2.1], we have that

lim sup
n→∞

logμ(B(x, r
cn
))

log r
cn

= dμ(x).

Therefore, for each ε > 0, there exists N > 0 such that for all n > N

μ
(

B(x,
r

cn
)
)
>

( r

cn

)(dμ(x)+ε)
.

Hence,

μ(Bn(x, r)) >
( r

cn

)(dμ(x)+ε)
for all n > N .

And this implies that

lim sup
n→∞

logμ(Bn(x, r))

− log cn
≤ dμ(x)+ ε.

Since r and ε can be arbitrary, this imply that

hμ(T, {log cn}, x) ≤ dμ(x).

To prove the second statement, note that

lim inf
n→∞

logμ
(

B(x, r
bn
)
)

log r
bn

= dμ(x).

Therefore, for each ε > 0, there exists N > 0 such that for all n > N

μ(B(x,
r

bn
)) <

( r

bn

)(dμ(x)−ε)
.

Hence,

μ(Bn(x, r)) <
( r

bn

)(dμ(x)−ε)
for all n > N .

Thus, it follows that

lim inf
n→∞

logμ(Bn(x, r))

− log bn
≥ dμ(x)− ε.

The arbitrariness of r and ε imply that

hμ(T, {log bn}, x) ≥ dμ(x).

This completes the proof of the theorem. ��
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