AREA PRESERVING SURFACE DIFFEOMORPHISMS WITH POLYNOMIAL DECAY OF CORRELATIONS ARE UBIQUITOUS

Y. PESIN, S. SENTI, AND F. SHAHIDI
Dedicated to the memory of Anatole Katok, our friend and mentor

Abstract

We show that any smooth compact connected and oriented surface admits an area preserving $C^{1+\beta}$ diffeomorphism with non-zero Lyapunov exponents which is Bernoulli and has polynomial decay of correlations. We establish both upper and lower polynomial bounds on correlations. In addition, we show that this diffeomorphism satisfies the Central Limit Theorem and has the Large Deviation Property. Finally, we show that the diffeomorphism we constructed possesses a unique hyperbolic Bernoulli measure of maximal entropy with respect to which it has exponential decay of correlations.

1. Introduction

A classical problem in smooth dynamics known as the smooth realization problem asks whether there is a diffeomorphism f of a compact smooth manifold M which has a prescribed collection of ergodic properties with respect to a natural invariant measure μ such as the Riemannian volume (or a more general smooth measure, i.e., a measure that is equivalent to volume). Other interesting measures to consider include the measure of maximal entropy. A yet more interesting but substantially more difficult version of the smooth realization problem is to construct a volume preserving diffeomorphism f with prescribed ergodic properties on any given smooth manifold M. Starting with the basic ergodic property - ergodicity - Anosov and Katok [1] constructed an example of a volume preserving ergodic C^{∞} map with some additional metric properties. Katok [12] gave an example of area preserving C^{∞} diffeomorphism with non-zero Lyapunov exponents on any surface which is Bernoulli (see the definitions in the next section). Later Brin,

Date: July 8, 2023.
1991 Mathematics Subject Classification. 37D25, 37D35, 37A25, 37E30.
Y.P. is supported by the NSF grant DMS-2153053.

Feldman, and Katok [4] and then Brin [3] extended this result by constructing a volume preserving C^{∞} diffeomorphism, which is Bernoulli, on any Riemannian manifold of dimension ≥ 5. In this example the map has all but one non-zero Lyapunov exponents. Finally, Dolgopyat and Pesin [6] constructed a volume preserving C^{∞} Bernoulli diffeomorphism with non-zero Lyapunov exponents on any Riemannian manifold of dimension ≥ 2.

It is natural to ask if a compact smooth manifold admits a volume preserving Bernoulli diffeomorphism with non-zero Lyapunov exponents that enjoys other important statistical properties such as exponential or polynomial decay of correlations (that is rate of mixing), the Central Limit Theorem, and the Large Deviations property (all three with respect to a natural class of observables, e.g., functions which are Hölder continuous).

In one dimensional dynamics the famous Mauneville-Pomeau map [19] (with some modifications) provide some examples of a map with an indifferent fixed point preserving a measure which is absolutely continuous with respect to the (one-dimensional) Lebesgue measure. With respect to this measure the decay of correlations is polynomial, the Central Limit Theorem is satisfied, and the map has Large Deviation (with respect to the class of Hölder continuous observables; see [8, 10, 15]).

In the two dimensional case several examples have been constructed of area preserving maps on the 2-torus with polynomial decay of correlations (and in some cases with sharp polynomial lower and upper bounds), see [5, 7, 16, 15]. Also, starting from the work of Young, [24, 25], some general techniques for obtaining polynomial decay of correlations for maps admitting Young tower have been developed by Gouëzel [8] and Sarig, [22], see also [18, 23]. Also in [11] polynomial lower and upper bounds were obtained for almost Anosov diffeomorphisms. This class of diffeomorphisms was introduced by Hu in [10] and they preserve the Sinai-Ruelle-Bowen measure (which may not be volume) and the local dynamics of these maps is quite different than the one of the Katok map.

In the present paper we show that any surface admits an area preserving $C^{1+\beta}$ diffeomorphism with non-zero Lyapunov exponents which is Bernoulli and has polynomial decay of correlations - more precisely, it allows polynomial lower and upper bounds. It also satisfies the Central Limit Theorem and has Large Deviation.

Interestingly enough the map we construct also has the unique measure of maximal entropy with exponential decay of correlations. Thus we show that any surface allows a $C^{1+\beta}$ diffeomorphism with the unique
measure of maximal entropy with respect to which it has non-zero Lyapunov exponents, is Bernoulli, has exponential decay of correlations, and satisfies the Central Limit Theorem.

While our proof follows the basic scheme of Katok construction in [12], we have to make many substantial changes which we outline here. Starting with a linear automorphism of the 2-torus T^{2} which has 4 fixed points, we slow down trajectories in sufficiently small neighborhoods of these points and then correct the resulting map to obtain an area preserving diffeomorphism $f_{T^{2}}$. We stress that while in the Katok construction the slow down function can be chosen to be infinitely and arbitrarily flat at 0 (guaranteeing that $f_{T^{2}}$ is C^{∞}), to ensure that $f_{T^{2}}$ has polynomial decay of correlations, we have to choose the slow down function to be polynomial at 0. T This results in $f_{T^{2}}$ to be of class $C^{2+2 \kappa}$. It also has non-zero Lyapunov exponents and is Bernoulli.

To show that $f_{T^{2}}$ has polynomial decay of correlations we represent this map as a Young diffeomorphism and study the symbolic map on the corresponding Young tower (see Section 5). This map preserves the measure that is the lift of the area (see [23, 24]). The decay of correlations of this symbolic map has been studied extensively (see for example, [8, [18, 22, 23, 24, 25]) and is tied to the decay of the tail of the return time (see Proposition 10.2). Thus to establish polynomial upper and lower bounds on the decay of correlations we need to obtain both upper and lower bounds on decay of the tail. This requires a deep understanding of the behavior of trajectories in the slow down domain and is done in Sections 6-8 which constitute the technically most difficult part of the work.

Our next step is to carry over the map of the torus to a map on a given surface. To achieve this we follow the approach in [12] and obtain a $C^{2+2 \kappa}$ area preserving Bernoulli diffeomorphism $f_{D^{2}}$ of the two dimensional disk with non-zero Lyapunov exponents which is identity on the boundary of the disk. In the original Katok's construction the $\operatorname{map} f_{D^{2}}$ is C^{∞} and is infinitely and arbitrarily flat at the boundary of the disk ${ }^{2}$, which allows one to apply some standard results to carry over $f_{D^{2}}$ to a diffeomorphism f_{M} of a surface M. In our case $f_{D^{2}}$ is only finitely flat at the boundary of the disk and we develop a specific construction of a diffeomorphism from the interior of the disk onto an open simply connected and dense subset of M, which extends to a

[^0]homeomorphism from the closed disk onto M and is area preserving. This diffeomorphism moves $f_{D^{2}}$ to an area preserving Bernoulli diffeomorphism f_{M} of the surface with non-zero Lyapunov exponents, see Section 9.

Our next step is to use the conjugacy map and a representation of $f_{T^{2}}$ as a Young diffeomorphism to obtain a similar representation for f_{M}, see Section 10. Now to obtain an upper polynomial bound for decay of correlation we use the results in [25] and [18] to choose an appropriate class of observables, which includes all Hölder continuous functions on the surface. To obtain a lower bound we use the result in [23] (which is a hyperbolic version of the result in [8]) and the class of Hölder continuous observables on the surface which vanish inside small neighborhoods of the fixed points, see Section 10.

We stress that the exponents in our polynomial lower and upper bounds are different. This is a result of our estimates on the behavior of trajectories of the Katok map in the slow down domain (see Section 6) and may be an artifact of our techniques. However, there is a particular class of observables for which our method gives the same exponent in the polynomial lower and upper bounds, see Statement 3(b)(ii) of the Main theorem 3.1.

Representing the map f_{M} as a Young tower also allows us to establish the Central Limit Theorem using results in [8, 14] as well as Polynomial Large Deviation using results in [17].

The paper is organized as follows. After we provide some definitions in the next section we state our Main Theorem in Section 3. In Section 4 we construct the map $f_{T^{2}}$ on the 2 -torus and state some of its properties including its class of smoothness. In Section 5 we recall the definition of Young diffeomorphisms and describe a representation of $f_{T^{2}}$ as a Young diffeomorphism. The proof of the main result, Theorem 3.1, occupies Sections 6 through 10. In Section 6, we prove some technical results that establish new crucial properties of the slow down map. In Sections 7 and 8 we obtain polynomial respectively lower and upper bounds on the tail of the return time for the Katok map $f_{T^{2}}$. In Section 9 we show how to carry over the Katok map of the torus to a diffeomorphism of a given surface. Finally, in Section 10 we complete the proof of the main result.

Acknowledments. The first and the second authors would like to thank Bernoulli Center (CIB, Lausanne, Switzerland) where part of the work was done for their hospitality. S.S. was supported by the CNPQ grant. The authors also would like to thank the referee for valuable comments and suggestions.

2. Definitions and notations

Let X be a measurable space and $T: X \rightarrow X$ a measurable invertible transformation preserving a measure μ. For reader's convenience we recall the definitions of some properties of the map which are of interest to us in the paper.
2.1. The Bernoulli property. We say that (T, μ) has the Bernoulli property if it is metrically isomorphic to the Bernoulli shift (σ, κ) associated to some Lebesgue space (Y, ν), so that ν is metrically isomorphic to the Lebesgue measure on an interval together with at most countably many atoms and κ is given as the direct product of \mathbb{Z} copies of ν on $Y^{\mathbb{Z}}$.
2.2. Decay of correlations. Let \mathcal{H}_{1} and \mathcal{H}_{2} be two classes of realvalued functions on X called observables. For $h_{1} \in \mathcal{H}_{1}$ and $h_{2} \in \mathcal{H}_{2}$ define the correlation function

$$
\operatorname{Cor}_{n}\left(h_{1}, h_{2}\right):=\int h_{1}\left(T^{n}(x)\right) h_{2}(x) d \mu-\int h_{1}(x) d \mu \int h_{2}(x) d \mu
$$

We say that T has polynomial decay of correlations (more precisely, polynomial upper bound on correlations) with respect to classes \mathcal{H}_{1} and \mathcal{H}_{2} if there exists $\gamma_{1}>0$ such that for any $h_{1} \in \mathcal{H}_{1}, h_{2} \in \mathcal{H}_{2}$, and any $n>0$,

$$
\left|\operatorname{Cor}_{n}\left(h_{1}, h_{2}\right)\right| \leq C n^{-\gamma_{1}},
$$

where $C=C\left(h_{1}, h_{2}\right)>0$ is a constant.
We say that T admits a polynomial lower bound on correlations with respect to classes \mathcal{H}_{1} and \mathcal{H}_{2} of observables if there exists $\gamma_{2}>0$ such that for any $h_{1} \in \mathcal{H}_{1}, h_{2} \in \mathcal{H}_{2}$, and any $n>0$,

$$
\left|\operatorname{Cor}_{n}\left(h_{1}, h_{2}\right)\right| \geq C^{\prime} n^{-\gamma_{2}}
$$

where $C^{\prime}=C^{\prime}\left(h_{1}, h_{2}\right)>0$ is a constant.
We say that T has exponential decay of correlations with respect to classes \mathcal{H}_{1} and \mathcal{H}_{2} if there exists $\gamma_{3}>0$ such that for any $h_{1} \in \mathcal{H}_{1}$, $h_{2} \in \mathcal{H}_{2}$, and any $n>0$,

$$
\left|\operatorname{Cor}_{n}\left(h_{1}, h_{2}\right)\right| \leq C^{\prime \prime} e^{-\gamma_{3} n},
$$

where $C^{\prime \prime}=C^{\prime \prime}\left(h_{1}, h_{2}\right)>0$ is a constant.
2.3. The Central Limit Theorem. We say that T satisfies the Central Limit Theorem (CLT) with respect to a class \mathcal{H} of observables on
X if there exists $\sigma>0$ such that for any $h \in \mathcal{H}$ with $\int h d \mu=0$ the sum

$$
\frac{1}{\sqrt{n}} \sum_{i=0}^{n-1} h\left(f^{i}(x)\right)
$$

converges in law to a normal distribution $N(0, \sigma)$.
2.4. Large Deviation. We say that T has Polynomial Large Deviation with respect to a class \mathcal{H} of observables on X if there is $\beta>0$ such that for any $h \in \mathcal{H}$, any $\varepsilon>0$, and any sufficiently large $n>0$

$$
\mu\left(\left|\frac{1}{n} \sum_{i=0}^{n-1} h\left(T^{i}(x)\right)-\int h\right|>\varepsilon\right)<K n^{-\beta}
$$

where $K=K(\varepsilon, \beta, h)>1$ is a constant.
2.5. Lyapunov exponents. Let $f: M \rightarrow M$ be a diffeomorphism of a compact smooth Riemannian manifold M. Given a point $x \in M$ and a vector $v \in T_{x} M$, the number

$$
\chi(x, v):=\limsup _{n \rightarrow \infty} \frac{1}{n} \log \left\|d f_{x}^{n} v\right\|
$$

is called the Lyapunov exponents of v at x. One can show that for every $x \in M$ the function $\chi(x, \cdot)$ takes on finitely many values which we denote by $\chi_{1}(x) \leq \cdots \leq \chi_{p}(x)$, where $p=\operatorname{dim} M$. The functions $\chi_{i}(x), i=1, \ldots, p$ are Borel measurable and f-invariant.

If μ is an f-invariant measure, then for μ-almost every $x \in M$ and any $v \in T_{x} M$,

$$
\chi(x, v)=\lim _{n \rightarrow \infty} \frac{1}{n} \log \left\|d f_{x}^{n} v\right\| .
$$

We say that f has nonzero Lyapunov exponents with respect to μ or that μ is hyperbolic if for μ-almost every x we have that $\chi_{i}(x) \neq 0$, $i=1, \ldots, p$ and that $\chi_{1}(x)<0$ while $\chi_{p}(x)>0$.

Note that if μ is ergodic, then $\chi_{i}(x)$ is a constant for all $i=1, \ldots, p$ and μ-almost every $x \in M$, which we denote by $\chi_{i}(\mu)$.

3. Main Results

Let M be a smooth compact connected oriented surface with area m. Without loss of generality we assume that $m(M)=1$. Given $\rho>0$, let $C^{\rho}:=C^{\rho}(M)$ be the class of all Hölder continuous functions on M with exponent ρ.

Consider a nested sequence of subsets $\left\{M_{j}\right\}$ that exhausts M that is $M_{1} \subset M_{2} \subset \cdots \subset M$ and $\bigcup_{j \geq 1} M_{j}=M$. Given such a sequence,
let $\mathcal{G}=\mathcal{G}\left(\left\{M_{j}\right\}\right)$ be the class of observables $h \subset C^{\rho}$ for which there is $k=k(h)$ such that $\operatorname{supp}(h) \subset M_{k}$.

Theorem 3.1. Let M be a compact smooth connected and oriented surface. There are numbers $\beta>0, \rho>0, \gamma_{2}>\gamma_{1}>0$, and a $C^{1+\beta}$ diffeomorphism f of M preserving area m and satisfying:
(1) f has the Bernoulli property with respect to m;
(2) f has non-zero Lyapunov exponents almost everywhere with respect to m;
(3) f admits polynomial upper and lower bounds on correlations with respect to m; more precisely:
(a) for any $h_{i} \in C^{\rho}, i=1,2$

$$
\left|\operatorname{Cor}_{n}\left(h_{1}, h_{2}\right)\right| \leq C_{1} n^{-\gamma_{1}},
$$

where $C_{1}=C_{1}\left(\left\|h_{1}\right\|_{C^{\rho}},\left\|h_{2}\right\|_{C^{\rho}}\right)>0$;
(b) if $\int h_{1} d m \int h_{2} d m>0$, then there is a nested sequence of subsets $\left\{M_{j}\right\}$ which exhausts M such that for any $h_{i} \in$ $\mathcal{G}\left(\left\{M_{j}\right\}\right), i=1,2$,

$$
\left|\operatorname{Cor}_{n}\left(h_{1}, h_{2}\right)\right| \geq C_{2} n^{-\gamma_{2}},
$$

where $C_{2}=C_{2}\left(\left\|h_{1}\right\|_{C^{\rho}},\left\|h_{2}\right\|_{C^{\rho}}\right)>0$;
(4) the map f satisfies the CLT for the class of observables $h \in C^{\rho}$, $\int h d m=0$ with $\sigma=\sigma(h)$ given by

$$
\sigma^{2}=-\int h^{2} d m+2 \sum_{n=0}^{\infty} \int h \cdot h \circ f^{n} d m
$$

where $\sigma>0$ if and only if h is not cohomologous to zero, i.e., $h \circ f \neq g \circ f-g$ for any measurable function g;
(5) the map f has Polynomial Large Deviation with respect to the class C^{ρ} of observables with the constant K of the form $K=$ $K\left(\|h\|_{C^{\rho}}\right) \varepsilon^{-2 \beta}$. In addition, for an open and dense subset of observables in C^{ρ} and sufficiently small $\varepsilon>0$

$$
n^{-\beta}<m\left(\left|\frac{1}{n} \sum_{i=0}^{n-1} h\left(f^{i}(x)\right)-\int h\right|>\varepsilon\right)
$$

for infinitely many n;
(6) f has a unique measure of maximal entropy (MME) with respect to which it has the Bernoulli property, non-zero Lyapunov exponents almost everywhere, exponential decay of correlations and satisfies the CLT with respect to the class C^{ρ} of observables.

4. A SLOW DOWN map of the 2-TORUS

4.1. The definition of a slow down map. Consider the automorphism of the two-dimensional torus $\mathbb{T}^{2}=\mathbb{R}^{2} / \mathbb{Z}^{2}$ given by the ma$\operatorname{trix} A:=\left(\begin{array}{cc}5 & 8 \\ 8 & 13\end{array}\right)$. It has four fixed points $x_{1}=(0,0), x_{2}=\left(\frac{1}{2}, 0\right)$, $x_{3}=\left(0, \frac{1}{2}\right)$, and $x_{4}=\left(\frac{1}{2}, \frac{1}{2}\right)$. For $i=1,2,3,4$ consider the disk $D_{r}^{i}=\left\{\left(s_{1}, s_{2}\right): s_{1}{ }^{2}+s_{2}{ }^{2} \leq r^{2}\right\}$ of radius r centered at x_{i} and set $D_{r}=\bigcup_{i=1}^{4} D_{r}^{i}$. Here $\left(s_{1}, s_{2}\right)$ is the coordinate system obtained from the eigendirections of A and originated at x_{i}. Let $\lambda>1$ be the largest eigenvalue of A. There are $r_{2}>r_{1}>r_{0}$ such that

$$
\begin{equation*}
D_{r_{0}}^{i} \subset A\left(D_{r_{1}}^{i}\right), \quad A\left(D_{r_{1}}^{i}\right) \cup A^{-1}\left(D_{r_{1}}^{i}\right) \subset D_{r_{2}}^{i} \tag{1}
\end{equation*}
$$

and the disks $D_{r_{2}}^{i}$ are pairwise disjoint. Fix i and consider the system of differential equations in $D_{r_{1}}^{i}$

$$
\begin{equation*}
\frac{d s_{1}}{d t}=s_{1} \log \lambda, \quad \frac{d s_{2}}{d t}=-s_{2} \log \lambda \tag{2}
\end{equation*}
$$

Observe that $\left.A\right|_{D_{r_{1}}}$ is the time-1 map of the local flow generated by this system.

We choose a number $0<\alpha<1,0<r_{0}<1$, and a function ψ : $[0,1] \rightarrow[0,1]$ satisfying:
(K1) ψ is of class C^{∞} everywhere on $(0,1]$ but at the origin;
(K2) $\psi(u)=1$ for $r_{0} \leq u \leq 1$;
(K3) $\psi^{\prime}(u)>0$ for $0<u<r_{0}$;
(K4) $\psi(u)=\left(u / r_{0}\right)^{\alpha}$ for $0 \leq u \leq \frac{r_{0}}{2}$.
Using the function ψ, we slow down trajectories of the flow by perturbing the system (2) in $D_{r_{1}}^{i}$ as follows

$$
\begin{align*}
\frac{d s_{1}}{d t} & =s_{1} \psi\left(s_{1}^{2}+s_{2}^{2}\right) \log \lambda \tag{3}\\
\frac{d s_{2}}{d t} & =-s_{2} \psi\left(s_{1}^{2}+s_{2}^{2}\right) \log \lambda .
\end{align*}
$$

This system of differential equations generates a local flow g_{t}^{i} and we denote by g^{i} the time- 1 map of this flow. The choices of ψ, r_{0} and r_{1} (see (1)) guarantee that the domain of g^{i} contains $D_{r_{1}}^{i}$. Furthermore, g^{i} is of class C^{∞} in $D_{r_{1}}^{i} \backslash\left\{x_{i}\right\}$ and it coincides with A in some neighborhood of the boundary $\partial D_{r_{1}}^{i}$. Therefore, the map

$$
G(x)= \begin{cases}A(x) & \text { if } x \in \mathbb{T}^{2} \backslash D_{r_{1}}, \tag{4}\\ g^{i}(x) & \text { if } x \in D_{r_{1}}^{i}\end{cases}
$$

defines a homeomorphism of the torus \mathbb{T}^{2}, which is a C^{∞} diffeomorphism everywhere except at the fixed points x_{i}. Since $0<\alpha<1$, we
have that

$$
\int_{0}^{1} \frac{d u}{\psi(u)}<\infty
$$

This implies that the map G preserves the probability measure

$$
\begin{equation*}
d \nu=q_{0}^{-1} q d m \tag{5}
\end{equation*}
$$

where m is the area and the density q is a positive C^{∞} function that is infinite at x_{i} and is defined by

$$
q\left(s_{1}, s_{2}\right):= \begin{cases}\left(\psi\left(s_{1}^{2}+s_{2}^{2}\right)\right)^{-1} & \text { if }\left(s_{1}, s_{2}\right) \in D_{r_{1}}^{i} \\ 1 & \text { in } \mathbb{T}^{2} \backslash D_{r_{1}}\end{cases}
$$

and

$$
q_{0}:=\int_{\mathbb{T}^{2}} q d m
$$

We further perturb the map G by a coordinate change ϕ in \mathbb{T}^{2} to obtain an area preserving map. To achieve this, define a map ϕ in $D_{r_{1}}^{i}$ by the formula

$$
\begin{equation*}
\phi\left(s_{1}, s_{2}\right):=\frac{1}{\sqrt{q_{0}\left(s_{1}^{2}+s_{2}^{2}\right)}}\left(\int_{0}^{s_{1}{ }^{2}+s_{2}{ }^{2}} \frac{d u}{\psi(u)}\right)^{1 / 2}\left(s_{1}, s_{2}\right) \tag{6}
\end{equation*}
$$

and set $\phi=\operatorname{Id}$ in $\mathbb{T}^{2} \backslash D_{r_{1}}$. Clearly, ϕ is a homeomorphism and is a C^{∞} diffeomorphism outside the points $x_{1}, x_{2}, x_{3}, x_{4}$. One can show that ϕ transfers the measure ν into the area and that the map $f_{\mathbb{T}^{2}}=$ $\phi \circ G \circ \phi^{-1}$ is a homeomorphism and is a C^{∞} diffeomorphism outside the points $x_{1}, x_{2}, x_{3}, x_{4}$. It is called a slow down map (see [12] and also [2]). The following proposition describes some basic properties of this map.

Proposition 4.1 ([12, $[2]$). The map $f_{\mathbb{T}^{2}}$ has the following properties:
(1) It is topologically conjugated to A via a homeomorphism H.
(2) It admits two transverse invariant continuous stable and unstable distributions $E^{s}(x)$ and $E^{u}(x)$ and for almost every point x with respect to area m it has two non-zero Lyapunov exponents, positive in the direction of $E^{u}(x)$ and negative in the direction of $E^{s}(x)$. Moreover, the only invariant measure with zero Lyapunov exponents is the atomic measure supported on the fixed points x_{i}.
(3) It admits two continuous, uniformly transverse, invariant foliations with smooth leaves which are the images under the conjugacy map of the stable and unstable foliations for A respectively.
(4) For every $\varepsilon>0$ one can choose $r_{0}>0$ such that

$$
\left|\int_{D_{r_{0}}^{i}} \log \right| D f_{\mathbb{T}^{2}}\left|E^{u}\right| d m-\log \lambda \mid<\varepsilon
$$

(5) It is ergodic with respect to the area m.

The following proposition establishes regularity of the map $f_{\mathbb{T}^{2}}$.
Proposition 4.2. The map $f_{\mathbb{T}^{2}}$ is of class of smoothness $C^{2+2 \kappa}$, where $\kappa=\frac{\alpha}{1-\alpha}$.

Proof. Fix $i \in\{1,2,3,4\}$ and consider the vector field in $D_{r_{1}}^{i}$ given by the right-hand side of (2). It is Hamiltonian with respect to the area and the Hamiltonian function $H_{1}\left(s_{1}, s_{2}\right)=s_{1} s_{2} \log \lambda$. The vector field given by (3) is obtained from (22) by a time change and hence, is also Hamiltonian with respect to the measure ν (see (5)) and the same Hamiltonian function. The map $f_{\mathbb{T}^{2}}$ is conjugate via φ (see (6)) to the time-1 map of the flow generated by (3). Since $\phi_{*} \nu=m, f_{\mathbb{T}^{2}}$ is the time-1 map of the flow which is Hamiltonian with respect to the area and the Hamiltonian function $H_{2}=H_{1} \circ \phi^{-1}$. Using (6), we find that H_{2} can be given in $D_{r_{1}}^{i}$ as follows (see [12]):

$$
H_{2}\left(s_{1}, s_{2}\right)=\frac{s_{1} s_{2} h\left(\sqrt{s_{1}^{2}+s_{2}^{2}}\right)}{s_{1}^{2}+s_{2}^{2}} \log \lambda
$$

where by $(K 4), h(u)=u^{\frac{2}{1-\alpha}}$ and $u=s_{1}^{2}+s_{2}^{2}$. To prove that $f_{\mathbb{T}^{2}}$ is of the desired class of smoothness we will show that the Hamiltonian H_{2} has Hölder continuous partial derivatives of second order with Hölder exponent 2κ. To this end we consider the function $g(x, y)=x y\left(x^{2}+\right.$ $\left.y^{2}\right)^{\kappa}$ with $\kappa=\frac{\alpha}{1-\alpha}$ and show that g has Hölder continuous partial derivatives of second order with Hölder exponent 2κ. Note that g is of class C^{∞} except for $(x, y)=(0,0)$, so we only need to show Hölder continuity of partial derivatives at the origin. Note also that the function g is symmetric, so we only show that $\frac{\partial^{2} g}{\partial x^{2}}$ and $\frac{\partial^{2} g}{\partial x \partial y}$ are Hölder continuous. Since $\frac{\partial g}{\partial x}(0,0)=\lim _{\Delta x \rightarrow 0} \frac{g(\Delta x, 0)-g(0,0)}{\Delta x}=0$, we have that

$$
\frac{\partial g}{\partial x}= \begin{cases}y\left(x^{2}+y^{2}\right)^{\kappa}+2 \kappa x^{2} y\left(x^{2}+y^{2}\right)^{\kappa-1}, & (x, y) \neq(0,0) \\ 0 & (x, y)=(0,0)\end{cases}
$$

Note that

$$
\frac{\partial^{2} g}{\partial x \partial y}(0,0)=\lim _{\Delta y \rightarrow 0} \frac{\frac{\partial g}{\partial x}(0, \Delta y)-\frac{\partial g}{\partial x}(0,0)}{\Delta y}=\lim _{\Delta y \rightarrow 0} \frac{\Delta y(\Delta y)^{2 \kappa}-0}{\Delta y}=0
$$

and hence,

$$
\frac{\partial^{2} g}{\partial x \partial y}= \begin{cases}(1+2 \kappa)\left(x^{2}+y^{2}\right)^{\kappa}+ & \\ +4(\kappa-1) x^{2} y^{2}\left(x^{2}+y^{2}\right)^{\kappa-2} & (x, y) \neq(0,0) \\ 0 & (x, y)=(0,0)\end{cases}
$$

Since the function $\frac{\partial^{2} g}{\partial x \partial y}$ is differentiable for all $(x, y) \neq(0,0)$, it is Hölder continuous for all pairs of nonzero points (x, y). It remains to show Hölder continuity for pairs of points one of which is zero. It is easy to see that

$$
\left|\frac{\partial^{2} g}{\partial x \partial y}(x, y)-\frac{\partial^{2} g}{\partial x \partial y}(0,0)\right| \leq K\left(x^{2}+y^{2}\right)^{\kappa}=K d((x, y),(0,0))^{2 \kappa}
$$

where $K>0$ and d denotes the usual distance. Thus $\frac{\partial^{2} g}{\partial x \partial y}$ is Hölder continuous with Hölder exponent 2κ.

Now we consider $\frac{\partial^{2} g}{\partial x^{2}}$. Observe that $\frac{\partial^{2} g}{\partial x^{2}}(0,0)=0$ and

$$
\frac{\partial^{2} g}{\partial x^{2}}= \begin{cases}6 \kappa x y\left(x^{2}+y^{2}\right)^{\kappa-1}+4(\kappa-1) x^{3} y\left(x^{2}+y^{2}\right)^{\kappa-2} & (x, y) \neq(0,0) \\ 0, & (x, y)=(0,0)\end{cases}
$$

It is easy to see that

$$
\left|\frac{\partial^{2} g}{\partial x^{2}}(x, y)-\frac{\partial^{2} g}{\partial x^{2}}(0,0)\right| \leq K\left(x^{2}+y^{2}\right)^{\kappa}=K d((x, y),(0,0))^{2 \kappa}
$$

Hence, $\frac{\partial^{2} g}{\partial x^{2}}$ is Hölder continuous with Hölder exponent 2κ.

5. Proof of Theorem 3.1: Representing $f_{\mathbb{T}^{2}}$ AS A Young DIFFEOMORPHISM

5.1. Young diffeomorphisms. Let $f: M \rightarrow M$ be a $C^{1+\epsilon}$ diffeomorphism of a compact smooth Riemannian manifold M. Following [24] we describe a collection of conditions on the map f. ${ }^{3}$

An embedded C^{1}-disk $\gamma \subset M$ is called an unstable disk (respectively, a stable disk) if for all $x, y \in \gamma$ we have that $d\left(f^{-n}(x), f^{-n}(y)\right) \rightarrow$ 0 (respectively, $\left.d\left(f^{n}(x), f^{n}(y)\right) \rightarrow 0\right)$ as $n \rightarrow+\infty$. A collection of embedded C^{1} disks $\Gamma^{u}=\left\{\gamma^{u}\right\}$ is called a continuous family of unstable disks if there exists a homeomorphism $\Phi: K^{s} \times D^{u} \rightarrow \cup \gamma^{u}$ satisfying:

- $K^{s} \subset M$ is a Borel subset and $D^{u} \subset \mathbb{R}^{d}$ is the closed unit disk for some $d<\operatorname{dim} M$;

[^1]- $x \rightarrow \Phi \mid\{x\} \times D^{u}$ is a continuous map from K^{s} to the space of C^{1} embeddings of D^{u} into M which can be extended to a continuous map of the closure $\overline{K^{s}}$;
- $\gamma^{u}=\Phi\left(\{x\} \times D^{u}\right)$ is an unstable disk.

A continuous family of stable disks is defined similarly.
We allow the sets K^{s} to be non-compact in order to deal with overlaps which appear in most known examples including the Katok map.

A set $\Lambda \subset M$ has hyperbolic product structure if there exists a continuous family $\Gamma^{u}=\left\{\gamma^{u}\right\}$ of unstable disks γ^{u} and a continuous family $\Gamma^{s}=\left\{\gamma^{s}\right\}$ of stable disks γ^{s} such that

- $\operatorname{dim} \gamma^{s}+\operatorname{dim} \gamma^{u}=\operatorname{dim} M$;
- the γ^{u}-disks are transversal to γ^{s}-disks with an angle uniformly bounded away from 0;
- each γ^{u}-disks intersects each γ^{s}-disk at exactly one point;
- $\Lambda=\left(\cup \gamma^{u}\right) \cap\left(\cup \gamma^{s}\right)$.

A subset $\Lambda_{0} \subset \Lambda$ is called an s-subset if it has hyperbolic product structure and is defined by the same family Γ^{u} of unstable disks as Λ and a continuous subfamily $\Gamma_{0}^{s} \subset \Gamma^{s}$ of stable disks. A u-subset is defined analogously.

We define the s-closure $\operatorname{scl}\left(\Lambda_{0}\right)$ of an s-subset $\Lambda_{0} \subset \Lambda$ by

$$
\operatorname{scl}\left(\Lambda_{0}\right):=\bigcup_{x \in \overline{\Lambda_{0} \cap \gamma^{u}}} \gamma^{s}(x) \cap \Lambda
$$

and the u-closure $u \operatorname{cl}\left(\Lambda_{1}\right)$ of a given u-subset $\Lambda_{1} \subset \Lambda$ similarly:

$$
u c l\left(\Lambda_{1}\right):=\bigcup_{x \in \overline{\Lambda_{1} \cap \gamma^{s}}} \gamma^{u}(x) \cap \Lambda .
$$

Assume the map f satisfies the following conditions:
(Y1) There exists $\Lambda \subset M$ with hyperbolic product structure, a countable collection of continuous subfamilies $\Gamma_{i}^{s} \subset \Gamma^{s}$ of stable disks and positive integers $\tau_{i}, i \in \mathbb{N}$ such that the s-subsets

$$
\begin{equation*}
\Lambda_{i}^{s}:=\bigcup_{\gamma \in \Gamma_{i}^{s}}(\gamma \cap \Lambda) \subset \Lambda \tag{7}
\end{equation*}
$$

are pairwise disjoint and satisfy:
(a) invariance: for every $x \in \Lambda_{i}^{s}$

$$
f^{\tau_{i}}\left(\gamma^{s}(x)\right) \subset \gamma^{s}\left(f^{\tau_{i}}(x)\right), f^{\tau_{i}}\left(\gamma^{u}(x)\right) \supset \gamma^{u}\left(f^{\tau_{i}}(x)\right)
$$

where $\gamma^{u, s}(x)$ denotes the (un)stable disk containing x;
(b) Markov property: $\Lambda_{i}^{u}:=f^{\tau_{i}}\left(\Lambda_{i}^{s}\right)$ is a u-subset of Λ such that for all $x \in \Lambda_{i}^{s}$

$$
\begin{aligned}
f^{-\tau_{i}}\left(\gamma^{s}\left(f^{\tau_{i}}(x)\right) \cap \Lambda_{i}^{u}\right) & =\gamma^{s}(x) \cap \Lambda, \\
f^{\tau_{i}}\left(\gamma^{u}(x) \cap \Lambda_{i}^{s}\right) & =\gamma^{u}\left(f^{\tau_{i}}(x)\right) \cap \Lambda .
\end{aligned}
$$

(Y2) The sets Λ_{i}^{u} are pairwise disjoint.
For any $x \in \Lambda_{i}^{s}$ define the inducing time by $\tau(x):=\tau_{i}$ and the induced $\operatorname{map} \tilde{f}: \bigcup_{i \in \mathbb{N}} \Lambda_{i}^{s} \rightarrow \Lambda$ by

$$
\left.\tilde{f}\right|_{\Lambda_{i}^{s}}:=\left.f^{\tau_{i}}\right|_{\Lambda_{i}^{s}} .
$$

(Y3) There exists $0<a<1$ such that for any $i \in \mathbb{N}$ we have:
(a) For $x \in \Lambda_{i}^{s}$ and $y \in \gamma^{s}(x)$,

$$
d(\tilde{f}(x), \tilde{f}(y)) \leq a d(x, y)
$$

(b) For $x \in \Lambda_{i}^{s}$ and $y \in \gamma^{u}(x) \cap \Lambda_{i}^{s}$,

$$
d(x, y) \leq \operatorname{ad}(\tilde{f}(x), \tilde{f}(y))
$$

For $x \in \Lambda$ let $\operatorname{Jac} f(x)=\operatorname{det}|D f|_{E^{u}(x)} \mid$ and $\operatorname{Jac} \tilde{f}(x)=\operatorname{det}|D \tilde{f}|_{E^{u}(x)} \mid$ denote the Jacobian of $\left.D f\right|_{E^{u}(x)}$ and $\left.D \tilde{f}\right|_{E^{u}(x)}$ respectively.
(Y4) There exist $c>0$ and $0<b<1$ such that:
(a) For all $n \geq 0, x \in \tilde{f}^{-n}\left(\bigcup_{i \in \mathbb{N}} \Lambda_{i}^{s}\right)$ and $y \in \gamma^{s}(x)$ we have

$$
\left|\log \frac{\operatorname{Jac} \tilde{f}\left(\tilde{f}^{n}(x)\right)}{\operatorname{Jac} \tilde{f}\left(\tilde{f}^{n}(y)\right)}\right| \leq c b^{n}
$$

(b) For any $i_{0}, \ldots, i_{n} \in \mathbb{N}, \tilde{f}^{k}(x), \tilde{f}^{k}(y) \in \Lambda_{i_{k}}^{s}$ for $0 \leq k \leq n$ and $y \in \gamma^{u}(x)$ we have

$$
\left|\log \frac{\operatorname{Jac} \tilde{f}\left(\tilde{f}^{n-k}(x)\right)}{\operatorname{Jac} \tilde{f}\left(\tilde{f}^{n-k}(y)\right)}\right| \leq c b^{k} .
$$

(Y5) For every $\gamma^{u} \in \Gamma^{u}$ one has

$$
\mu_{\gamma^{u}}\left(\gamma^{u} \cap \Lambda\right)>0, \quad \mu_{\gamma^{u}}\left(\left(\overline{\left.\Lambda \backslash \cup \Lambda_{i}^{s}\right) \cap \gamma^{u}}\right)=0\right.
$$

where $\mu_{\gamma^{u}}$ is the leaf volume on γ^{u}.
(Y6) There exists $\gamma^{u} \in \Gamma^{u}$ such that

$$
\sum_{i=1}^{\infty} \tau_{i} \mu_{\gamma^{u}}\left(\Lambda_{i}^{s} \cap \gamma^{u}\right)<\infty
$$

It is shown in [21] that the Katok map is a Young diffeomorphism. We will briefly outline the argument.
5.2. A tower representation of the automorphism A. Consider a finite Markov partition $\tilde{\mathcal{P}}$ for the automorphism A. Recall that by definition of Markov partitions, $\tilde{P}=\overline{\operatorname{int} \tilde{P}}$ for any $\tilde{P} \in \tilde{\mathcal{P}}$. Let $\tilde{P} \in \tilde{\mathcal{P}}$ be a partition element which does not intersect any of the disks $D_{r_{0}}^{i}$, $i=1,2,3,4$. Given $\delta>0$, we can always choose the Markov partition $\tilde{\mathcal{P}}$ in such a way that $\operatorname{diam}(\tilde{P})<\delta$. For a point $x \in \tilde{P}$ denote by $\tilde{\gamma}^{s}(x)$ (respectively, $\tilde{\gamma}^{u}(x)$) the connected component of the intersection of \tilde{P} with the stable (respectively, unstable) leaf of x, which contains x. We say that $\tilde{\gamma}^{s}(x)$ and $\tilde{\gamma}^{u}(x)$ are full length stable and unstable curves through x.

Given $x \in \tilde{P}$, let $\tilde{\tau}(x)$ be the first return time of x to $\operatorname{int} \tilde{P}$. For all x with $\tilde{\tau}(x)<\infty$ denote by

$$
\tilde{\Lambda}^{s}(x)=\bigcup_{y \in \tilde{U}^{u}(x) \backslash \tilde{A}^{u}(x)} \tilde{\gamma}^{s}(y)
$$

where $\tilde{U}^{u}(x) \subseteq \tilde{\gamma}^{u}(x)$ is an interval containing x and open in the induced topology of $\tilde{\gamma}^{u}(x)$, and $\tilde{A}^{u}(x) \subset \tilde{U}^{u}(x)$ is the set of points which either lie on the boundary of the Markov partition or never return to the set \tilde{P}. Note that $\tilde{A}^{u}(x)$ has zero one-dimensional Lebesgue measure in $\tilde{\gamma}^{u}(x)$. One can choose $\tilde{U}^{u}(x)$ such that
(1) for any $y \in \tilde{\Lambda}^{s}(x)$ we have $\tilde{\tau}(y)=\tilde{\tau}(x)$;
(2) for any $y \in \tilde{P}$ such that $\tilde{\tau}(y)=\tilde{\tau}(x)$ we have $y \in \tilde{\Lambda}^{s}(x)$.

Moreover, the image under $A^{\tilde{\tau}(x)}$ of $\tilde{\Lambda}^{s}(x)$ is a u-subset containing $A^{\tilde{\tau}(x)}(x)$. It is easy to see that for any $x, y \in \tilde{P}$ with finite first return time the sets $\tilde{\Lambda}^{s}(x)$ and $\tilde{\Lambda}^{s}(y)$ are either coincide or disjoint. Thus we have a countable collection of disjoint sets $\tilde{\Lambda}_{i}^{s}$ and numbers $\tilde{\tau}_{i}$ which give a representation of the automorphism A as a Young diffeomorphism for which the set

$$
\tilde{\Lambda}=\bigcup_{i \geq 1} \tilde{\Lambda}_{i}^{s}
$$

is the base of the tower, the sets $\tilde{\Lambda}_{i}^{s}$ are the s-sets and the numbers $\tilde{\tau}_{i}$ are the inducing times, see [21] for details.
5.3. A tower representation for the slow down map $f_{\mathbb{T}^{2}}$. Applying the conjugacy map H, one obtains the element $P=H(\tilde{P})$ of the Markov partition $\mathcal{P}=H(\tilde{\mathcal{P}})$. Since the map H is continuous, given ε, there is $\delta>0$ such that $\operatorname{diam}(P)<\varepsilon$ for any $P \in \mathcal{P}$ provided $\operatorname{diam}(\tilde{P})<\delta$. Further we obtain the set $\Lambda=H(\tilde{\Lambda})$, which has direct product structure given by the full length stable $\gamma^{s}(x)=H\left(\tilde{\gamma}^{s}(x)\right)$ and
unstable $\gamma^{u}(x)=H\left(\tilde{\gamma}^{u}(x)\right)$ curves. We thus obtain a representation of the slow down map as a Young diffeomorphism for which
(1) $\Lambda_{i}^{s}=H\left(\tilde{\Lambda}_{i}^{s}\right)$ are s-sets;
(2) $\Lambda_{i}^{u}=H\left(\tilde{\Lambda}_{i}^{u}\right)=f_{\mathbb{T}^{2}}^{\tau_{i}}\left(\Lambda_{i}^{s}\right)$ are u-sets;
(3) $\tau_{i}=\tilde{\tau}_{i}$ - the inducing times - are the first return time of points in Λ_{i}^{s} to Λ;
(4) $\tilde{f}(x)=f_{\mathbb{T}^{2}}^{\tau(x)}(x)$ is the induced map.

Note that for all x with $\tau(x)<\infty$

$$
\Lambda^{s}(x)=\bigcup_{y \in U^{u}(x) \backslash A^{u}(x)} \gamma^{s}(y),
$$

where $U^{u}(x)=H\left(\tilde{U}^{u}(x)\right) \subseteq \gamma^{u}(x)$ is an interval containing x and open in the induced topology of $\gamma^{u}(x)$, and $A^{u}(x)=H\left(\tilde{A}^{u}(x)\right) \subset U^{u}(x)$ is the set of points which either lie on the boundary of the Markov partition or never return to the set P. Note that $A^{u}(x)$ has zero onedimensional Lebesgue measure in $\gamma^{u}(x)$.

In what follows we will always assume that a Markov partition and the slow down domain are chosen such that the following statement holds.

Proposition 5.1. Given $Q>0$, one can choose a Markov partition \mathcal{P} and the number r_{0} in the construction of the map $f_{\mathbb{T}^{2}}$ such that
(1) there is a partition element P for which $f_{\mathbb{T}^{2}}^{j}(x) \notin D_{r_{0}}$ for any $0 \leq j \leq Q$ and for any point x for which either $x \in \Lambda$ or $x \notin f_{\mathbb{T}^{2}}\left(D_{r_{0}}\right)$ while $f_{\mathbb{T}^{2}}^{-1}(x) \in D_{r_{0}}^{i}$ for some $i=1,2,3,4$.
(2) if P_{i} is the element of the Markov partition containing $x_{i}, i=$ $1,2,3,4$, then $x_{i} \in D_{r_{0}}^{i} \subset$ Int P_{i}.

To prove this proposition observe that it holds for the automorphism A and hence, it remains to apply the conjugacy homeomorphism H.

Proposition 5.2 ([21], Proposition 6.2). There exists $Q>0$ such that the collection of s-subsets Λ_{i}^{s} satisfies Conditions (Y1)-(Y6).
5.4. Lifting the slow down map to the tower. We define Young tower with the base Λ by setting

$$
\hat{Y}=\{(x, k) \in \Lambda \times \mathbb{N}: 0 \leq k<\tau(x)\} .
$$

and the tower map $\hat{f}_{\mathbb{T}^{2}}: \hat{Y} \rightarrow \hat{Y}$ by $\hat{f}_{\mathbb{T}^{2}}(x, k)=(x, k+1)$ if $k<\tau(x)-1$ and $\hat{f}_{\mathbb{T}^{2}}(x, k)=(\tilde{f}(x), 0)$ if $k=\tau(x)-1$ where $\tilde{f}: \Lambda \rightarrow \Lambda$ is the induced map. The map $\hat{f}_{\mathbb{T}^{2}}$ is the lift of the slow down map to the tower and it preserves the lift measure $\hat{m}=m \times$ counting $/\left(\int_{\Lambda} \tau\right)$. We have that
$\hat{f}_{\mathbb{T}^{2}}$ is a measurable bijection from $\Lambda_{i}^{s} \times\{k-1\}$ to $\Lambda_{i}^{s} \times\{k\}$ for all $1 \leq k<\tau_{i}-1$ and from $\Lambda_{i}^{s} \times\left\{\tau_{i}-1\right\}$ to $\Lambda \times\{0\}$.

6. Proof of Theorem 3.1: Technical Lemmas

We establish here several technical results on the solutions of the nonlinear systems of differential equations (3). Throughout this section we fix a number $0<\alpha<1$ and $i \in\{1,2,3,4\}$ and for simplicity we drop the index i in the notation of the disk D_{r}^{i}. We also set $f:=f_{\mathbb{T}^{2}}$.

Lemma 6.1 ([21], Lemma 5.1). For $s=\left(s_{1}, s_{2}\right) \in D_{\frac{r_{0}}{2}}$ let

$$
d_{i, j}=d_{i, j}\left(s_{1}, s_{2}\right):=\frac{\partial^{2}}{\partial s_{i} \partial s_{j}} s_{2} \psi\left(s_{1}^{2}+s_{2}^{2}\right) .
$$

Then

$$
\max _{i, j=1,2}\left|d_{i, j}\right| \leq \frac{6 \alpha}{r_{0}^{\alpha}}\left(s_{1}^{2}+s_{2}^{2}\right)^{\alpha-\frac{1}{2}}
$$

Consider a solution $s(t)=\left(s_{1}(t), s_{2}(t)\right)$ of Equation (3) with an initial condition $s(0)=\left(s_{1}(0), s_{2}(0)\right)$. Assume it is defined on the maximal time interval $[0, T]$ for which $f^{-1}(s(0)) \notin D_{\frac{r_{0}}{2}}$ and $f(s(T)) \notin$ $D_{\frac{r_{0}}{2}}$ but $s(t) \in D_{\frac{r_{0}}{2}}$ for all $0 \leq t \leq T$. In particular, $s_{1}(t) \neq 0$ and $s_{2}(t) \neq 0$. Setting $T_{1}=\frac{T}{2}$ we have that $s_{1}(t) \leq s_{2}(t)$ for all $0 \leq t \leq T_{1}$ and $s_{1}(t) \geq s_{2}(t)$ for all $T_{1} \leq t \leq T$. The following statement provides effective lower and upper bounds on the functions $s_{1}(t)$ and $s_{2}(t)$. For the proof see Lemma 5.2 in the erratum to the paper [21].

Lemma 6.2. The following statements hold:

$$
\begin{array}{lr}
\left|s_{2}(t)\right| \geq\left|s_{2}(a)\right|\left(1+2^{\alpha} C_{1} s_{2}^{2 \alpha}(a)(t-a)\right)^{-\frac{1}{2 \alpha}}, & 0 \leq a \leq t \leq T_{1} \\
\left|s_{2}(t)\right| \leq\left|s_{2}(a)\right|\left(1+C_{1} s_{2}^{2 \alpha}(a)(t-a)\right)^{-\frac{1}{2 \alpha}}, & 0 \leq a \leq t \leq T \\
\left|s_{1}(t)\right| \geq\left|s_{1}(b)\right|\left(1+2^{\alpha} C_{1} s_{1}^{2 \alpha}(b)(b-t)\right)^{-\frac{1}{2 \alpha}}, & T_{1} \leq t \leq b \leq T \\
\left|s_{1}(t)\right| \leq\left|s_{1}(b)\right|\left(1+C_{1} s_{1}^{2 \alpha}(b)(b-t)\right)^{-\frac{1}{2 \alpha}}, & 0 \leq t \leq b \leq T
\end{array}
$$

where $C_{1}=\frac{2 \alpha \log \lambda}{r_{0}^{\alpha}}$ is a constant.
Consider another solution $\tilde{s}(t)=\left(\tilde{s}_{1}(t), \tilde{s}_{2}(t)\right)$ of Equation (3) satisfying an initial condition $\tilde{s}(0)=\left(\tilde{s}_{1}(0), \tilde{s}_{2}(0)\right)$. For $i=1,2$, we set

$$
\Delta s_{i}(t)=\tilde{s}_{i}(t)-s_{i}(t)
$$

For the proof of the next result see Lemma 5.3 in the erratum to the paper 21.

Lemma 6.3. Fix $0<\mu<1$ and assume that $s_{1}(t) \neq 0, s_{2}(t) \neq 0$ for all $0 \leq t \leq T$, and that
(1) $\Delta s_{2}(t)>0$ and $\left|\Delta s_{1}(t)\right| \leq \mu \Delta s_{2}(t)$ for $t \in[0, T]$;
(2) $\left|\frac{\Delta s_{2}}{s_{2}}(0)\right|<\frac{1-\mu}{72}$.

Then
$\begin{array}{llr}\Delta s_{2}(t) \leq \frac{\Delta s_{2}(0)}{s_{2}(0)} s_{2}(t)\left(1+2^{\alpha} C_{1} s_{2}^{2 \alpha}(0) t\right)^{-\beta^{\prime}}, & 0 \leq t \leq T_{1} ; \\ \Delta s_{2}(t) \leq \frac{\Delta s_{2}\left(T_{1}\right)}{s_{1}\left(T_{1}\right)} s_{1}(t)\left(\frac{1+2^{\alpha} C_{1} s_{1}^{2 \alpha}(b)(b-t)}{1+2^{\alpha} C_{1} s_{1}^{2 \alpha}(b)\left(b-T_{1}\right)}\right)^{\beta^{\prime}}, & T_{1} \leq t \leq b \leq T,\end{array}$
where $\beta^{\prime}=\frac{1-\mu}{2^{\alpha+2}}$ and C_{1} is the constant in Lemma 6.2. In addition,

$$
\|\Delta s(T)\| \leq \sqrt{1+\mu^{2}} \frac{s_{1}(T)}{s_{2}(0)}\|\Delta s(0)\|
$$

Given $0<\alpha<1$ and $0<\mu<1$, denote by

$$
\begin{equation*}
\gamma=\frac{1}{2 \alpha}+2^{\alpha-1}(1+\mu)+\frac{1-\mu}{6}, \quad \gamma^{\prime}=\frac{1}{2 \alpha}+\frac{1-\mu}{2^{\alpha+2}} \tag{8}
\end{equation*}
$$

It is easy to see that $\gamma>\gamma^{\prime}>2$ for all $0<\alpha<\frac{1}{4}$ and $0<\mu<\frac{1}{2}$.
In what follows till the end of the next section we denote by C_{2} through C_{10} positive constants that are independent of the time t and the choice of the solution $\left(s_{1}(t), s_{2}(t)\right)$.

Lemma 6.4. Under the assumptions of Lemma 6.3 for any $0 \leq t \leq T_{1}$ we have

$$
\Delta s_{2}(t) \leq C_{2} \Delta s_{2}(0) t^{-\gamma^{\prime}}
$$

Proof. By Lemma 6.2 (the second estimate), one has

$$
s_{2}(t) \leq s_{2}(0)\left(1+C_{1} s_{2}^{2 \alpha}(0) t\right)^{-\frac{1}{2 \alpha}}
$$

Therefore, Lemma 6.3 implies that

$$
\begin{aligned}
\Delta s_{2}(t) & \leq \frac{\Delta s_{2}(0)}{s_{2}(0)} s_{2}(t)\left(1+2^{\alpha} C_{1} s_{2}^{2 \alpha}(0) t\right)^{-\beta^{\prime}} \\
& \leq \Delta s_{2}(0)\left(1+C_{1} s_{2}^{2 \alpha}(0) t\right)^{-\gamma^{\prime}}
\end{aligned}
$$

Since $\left(1+C_{1} s_{2}^{2 \alpha}(0)\right) t>C_{1} s_{2}^{2 \alpha}(0) t$, we have

$$
\Delta s_{2}(t) \leq \Delta s_{2}(0)\left(C_{1} s_{2}^{2 \alpha}(0)\right)^{-\gamma^{\prime}} t^{-\gamma^{\prime}}
$$

and the desired estimate follows, since $s_{2}(0)$ is of order r_{0}.

Lemma 6.5. Under the assumptions of Lemma 6.3 we have

$$
\begin{array}{ll}
\Delta s_{2}(t) \geq \frac{\Delta s_{2}(0)}{s_{2}(0)} s_{2}(t)\left(1+C_{1} s_{2}^{2 \alpha}(0) t\right)^{-\beta}, & 0 \leq t \leq T_{1} \\
\Delta s_{2}(t) \geq \frac{\Delta s_{2}\left(T_{1}\right)}{s_{1}\left(T_{1}\right)} s_{1}(t)\left(1+C_{1} s_{1}^{2 \alpha}\left(T_{1}\right)\left(t-T_{1}\right)\right)^{-\beta_{1}}, & T_{1} \leq t \leq T
\end{array}
$$

where $\beta=(1+\mu) 2^{\alpha-1}+\frac{1-\mu}{6}$ and $\beta_{1}=\beta+\frac{2^{\alpha}}{\alpha}$.
Proof. Let $s_{1}=s_{1}(t), s_{2}=s_{2}(t), u:=s_{1}^{2}+s_{2}^{2}$, and $\tilde{u}=\tilde{s}_{1}^{2}+\tilde{s}_{2}^{2}$. Assume $s_{1}(t)$ and $s_{2}(t)$ are strictly positive (the proof in the case when $s_{1}(t)$ and $s_{2}(t)$ are strictly negative follows by symmetry). By Equation (3), we have

$$
\begin{align*}
\frac{d}{d t} \Delta s_{2}(t)= & \frac{d}{d t} \tilde{s}_{2}(t)-\frac{d}{d t} s_{2}(t)=-(\log \lambda)\left(\tilde{s}_{2} \psi(\tilde{u})-s_{2} \psi(u)\right) \\
= & -\log \lambda\left(\frac{\partial}{\partial s_{1}}\left(s_{2} \psi(u)\right) \Delta s_{1}+\frac{\partial}{\partial s_{2}}\left(s_{2} \psi(u)\right) \Delta s_{2}\right) \tag{9}\\
& -\frac{\log \lambda}{2} \sum_{i, j=1,2} d_{i, j}\left(\xi_{1}, \xi_{2}\right)\left(\Delta s_{i}\right)\left(\Delta s_{j}\right)
\end{align*}
$$

for some $\xi=\left(\xi_{1}, \xi_{2}\right)$ for which ξ_{i} lies between $s_{i}(t)$ and $\tilde{s}_{i}(t)$ for $i=1,2$ (see Lemma 6.1 for the definition of $d_{i, j}\left(\xi_{1}, \xi_{2}\right)$). Note that

$$
\frac{\partial}{\partial s_{1}}\left(s_{2} \psi(u)\right)=2 s_{1} s_{2} \psi^{\prime}, \quad \frac{\partial}{\partial s_{2}}\left(s_{2} \psi(u)\right)=2 s_{2}^{2} \psi^{\prime}+\psi
$$

and hence,

$$
\begin{aligned}
\frac{d}{d t}\left(\frac{\Delta s_{2}}{s_{2}}\right)= & \frac{1}{s_{2}}\left(\frac{d}{d t} \Delta s_{2}\right)-\frac{\Delta s_{2}}{s_{2}^{2}}\left(\frac{d s_{2}}{d t}\right) \\
= & -\log \lambda\left(2 \psi^{\prime}\left(s_{1} \Delta s_{1}+s_{2} \Delta s_{2}\right)+\frac{\Delta s_{2}}{s_{2}} \psi\right) \\
& +(\log \lambda) \frac{\Delta s_{2}}{s_{2}} \psi-\frac{\log \lambda}{2} \sum_{i, j=1,2} d_{i, j}\left(\xi_{1}, \xi_{2}\right) \frac{\Delta s_{i} \Delta s_{j}}{s_{2}} \\
= & -\frac{2 \alpha \log \lambda}{r_{0}^{\alpha}}\left(s_{1}^{2}+s_{2}^{2}\right)^{\alpha-1}\left(s_{1} \Delta s_{1}+s_{2} \Delta s_{2}\right) \\
& -\frac{\log \lambda}{2} \sum_{i, j=1,2} d_{i, j}\left(\xi_{1}, \xi_{2}\right) \frac{\Delta s_{i} \Delta s_{j}}{s_{2}}
\end{aligned}
$$

Note that for $0 \leq t \leq T_{1}$ we have $0<s_{1}(t) \leq s_{2}(t)$. Since $\left|\Delta s_{1}\right| \leq$ $\mu \Delta s_{2}<\Delta s_{2}$, we have

$$
s_{1} \Delta s_{1}+s_{2} \Delta s_{2} \leq\left(s_{1} \mu+s_{2}\right) \Delta s_{2} \leq(1+\mu) s_{2} \Delta s_{2}
$$

and Lemma 6.1 yields

$$
\begin{equation*}
\sum_{i, j=1,2} d_{i, j}\left(\xi_{1}, \xi_{2}\right) \Delta s_{i} \Delta s_{j} \leq \frac{24 \alpha}{r_{0}^{\alpha}}\left(\xi_{1}^{2}+\xi_{2}^{2}\right)^{\alpha-\frac{1}{2}}\left(\Delta s_{2}\right)^{2} \tag{10}
\end{equation*}
$$

Therefore, we have

$$
\begin{aligned}
\frac{d}{d t}\left(\frac{\Delta s_{2}}{s_{2}}\right) & \geq-(1+\mu) \frac{2 \alpha \log \lambda}{r_{0}^{\alpha}}\left(s_{1}^{2}+s_{2}^{2}\right)^{\alpha-1} s_{2}^{2} \frac{\Delta s_{2}}{s_{2}} \\
& -\frac{12 \alpha \log \lambda}{r_{0}^{\alpha}} s_{2}^{2 \alpha}\left(\frac{\xi_{1}^{2}+\xi_{2}^{2}}{s_{2}^{2}}\right)^{\alpha-\frac{1}{2}}\left(\frac{\Delta s_{2}}{s_{2}}\right)^{2} .
\end{aligned}
$$

Using again the fact that $0<s_{1}(t) \leq s_{2}(t), 0<t<T_{1}$ we obtain

$$
\begin{aligned}
\frac{d}{d t}\left(\frac{\Delta s_{2}}{s_{2}}\right) & \geq-(1+\mu) \frac{\alpha \log \lambda}{r_{0}^{\alpha}} 2^{\alpha}\left(s_{2}\right)^{2 \alpha} \frac{\Delta s_{2}}{s_{2}} \\
& -\frac{12 \alpha \log \lambda}{r_{0}^{\alpha}} s_{2}^{2 \alpha}\left(\frac{\xi_{1}^{2}+\xi_{2}^{2}}{s_{2}^{2}}\right)^{\alpha-\frac{1}{2}}\left(\frac{\Delta s_{2}}{s_{2}}\right)^{2}
\end{aligned}
$$

Let $\chi=\chi(t)=\frac{\Delta s_{2}}{s_{2}}(t)$. Then the above inequality can be written as

$$
\frac{d \chi}{d t} \geq-\frac{\alpha \log \lambda}{r_{0}^{\alpha}} s_{2}^{2 \alpha} \chi\left((1+\mu) 2^{\alpha}+12\left(\frac{\xi_{1}^{2}+\xi_{2}^{2}}{s_{2}^{2}}\right)^{\alpha-\frac{1}{2}} \chi\right)
$$

Following arguments in [21] (see page 17) one can derive from here that $\left(\frac{\xi_{1}^{2}+\xi_{2}^{2}}{s_{2}^{2}}\right)^{\alpha-\frac{1}{2}} \leq 2$ and that

$$
\frac{d \chi}{d t} \geq-A \frac{\alpha \log \lambda}{r_{0}^{\alpha}} s_{2}^{2 \alpha}(t) \chi(t)
$$

where $A=(1+\mu) 2^{\alpha}+\frac{1-\mu}{3}$. By Gronwall's inequality (applied to $\left.-\chi(t)\right)$ and the second inequality in Lemma 6.2, we obtain that

$$
\begin{aligned}
\chi(t) & \geq \chi(0) \exp \left(-A \frac{\alpha \log \lambda}{r_{0}^{\alpha}} \int_{0}^{t} s_{2}^{2 \alpha}(\tau) d \tau\right) \\
& \geq \chi(0) \exp \left(-A \frac{\alpha \log \lambda}{r_{0}^{\alpha}} \int_{0}^{t} s_{2}^{2 \alpha}(0)\left(1+C_{1} s_{2}^{2 \alpha}(0) \tau\right)^{-1} d \tau\right) \\
& =\chi(0) \exp \left(-A \frac{\alpha \log \lambda}{r_{0}^{\alpha}} \frac{1}{C_{1}} \log \left(1+C_{1} s_{2}^{2 \alpha}(0) t\right)\right) \\
& =\chi(0) \exp \left(-\frac{A}{2} \log \left(1+C_{1} s_{2}^{2 \alpha}(0) t\right)\right) \\
& =\chi(0)\left(1+C_{1} s_{2}^{2 \alpha}(0) t\right)^{-\beta}
\end{aligned}
$$

where $\beta=\frac{A}{2}=(1+\mu) 2^{\alpha-1}+\frac{1-\mu}{6}$.

In the case $s_{2}<0$ one can show using argument similar to the above that the same estimate for $\chi(t)$ holds but with exponent $(1+\mu) 2^{\alpha-1}-$ $\frac{1-\mu}{6}<\beta$. This completes the proof of the first estimate.
To prove the second estimate, using (9), we obtain that

$$
\begin{aligned}
\frac{d}{d t}\left(\frac{\Delta s_{2}}{s_{1}}\right)= & -\log \lambda\left(2 s_{2} \psi^{\prime} \Delta s_{1}+\left(2 s_{2}^{2} \psi^{\prime}+\psi\right) \frac{\Delta s_{2}}{s_{1}}\right)-\log \lambda \psi \frac{\Delta s_{2}}{s_{1}} \\
& -\frac{\log \lambda}{2} \sum_{i, j=1,2} d_{i, j}\left(\xi_{1}, \xi_{2}\right) \frac{\Delta s_{i} \Delta s_{j}}{s_{1}}
\end{aligned}
$$

By the assumption $\left|\Delta s_{1}\right| \leq \mu \Delta s_{2}$ and positivity of $s_{1}, s_{2}, \psi^{\prime}$, and Δs_{2}, we obtain

$$
\begin{aligned}
\frac{d}{d t}\left(\frac{\Delta s_{2}}{s_{1}}\right) \geq & -\log \lambda\left(2 \mu s_{1} s_{2} \psi^{\prime}+2 s_{2}^{2} \psi^{\prime}+2 \psi\right) \frac{\Delta s_{2}}{s_{1}} \\
& -\frac{\log \lambda}{2} \sum_{i, j=1,2} d_{i, j}\left(\xi_{1}, \xi_{2}\right) \frac{\Delta s_{i} \Delta s_{j}}{s_{1}}
\end{aligned}
$$

Since $s_{2}(t) \leq s_{1}(t)$ on $\left[T_{1}, T\right]$, we have

$$
2 \mu s_{1} s_{2} \psi^{\prime}+2 s_{2}^{2} \psi^{\prime}+2 \psi=2 \psi^{\prime}\left(\mu s_{1}^{2}+s_{1}^{2}+\frac{1}{\alpha} 2 s_{1}^{2}\right) \leq 2^{\alpha} \frac{\alpha \mu+\alpha+2}{r_{0}^{\alpha}} s_{1}^{2 \alpha}
$$

Using this fact along with the estimate (10), we find that

$$
\begin{aligned}
\frac{d}{d t}\left(\frac{\Delta s_{2}}{s_{1}}\right) \geq & -\log \lambda 2^{\alpha} \frac{\alpha \mu+\alpha+2}{r_{0}^{\alpha}} s_{1}^{2 \alpha} \frac{\Delta s_{2}}{s_{1}} \\
& -\frac{12 \alpha \log \lambda}{r_{0}^{\alpha}} s_{1}^{2 \alpha}\left(\frac{\xi_{1}^{2}+\xi_{2}^{2}}{s_{1}^{2}}\right)^{\alpha-\frac{1}{2}}\left(\frac{\Delta s_{2}}{s_{1}}\right)^{2}
\end{aligned}
$$

Let $\tilde{\chi}=\tilde{\chi}(t)=\frac{\Delta s_{2}}{s_{1}}(t)$. Then the above inequality can be written as

$$
\begin{equation*}
\frac{d \tilde{\chi}}{d t} \geq-\frac{\log \lambda}{r_{0}^{\alpha}} s_{1}^{2 \alpha} \tilde{\chi}\left(2^{\alpha}(\alpha \mu+\alpha+2)+12 \alpha\left(\frac{\xi_{1}^{2}+\xi_{2}^{2}}{s_{1}^{2}}\right)^{\alpha-\frac{1}{2}} \tilde{\chi}\right) \tag{11}
\end{equation*}
$$

It is shown in [21] (see page 19) that

$$
\left(\frac{\xi_{1}^{2}+\xi_{2}^{2}}{s_{1}^{2}}\right)^{\alpha-\frac{1}{2}} \leq \begin{cases}(1-\tilde{\chi})^{2 \alpha-1} & 0<\alpha \leq \frac{1}{2} \tag{12}\\ 2^{\alpha-\frac{1}{2}}(1+\tilde{\chi})^{2 \alpha-1} & \frac{1}{2} \leq \alpha<1\end{cases}
$$

and that $\tilde{\chi}=\frac{\Delta s_{2}}{s_{2}}$ is positive and decreasing (or negative and increasing). Observing that $s_{1}\left(T_{1}\right)=s_{2}\left(T_{1}\right)$ and using Assumption (2) of the lemma, we obtain

$$
0 \leq \tilde{\chi}\left(T_{1}\right)=\frac{\Delta s_{2}\left(T_{1}\right)}{s_{1}\left(T_{1}\right)}=\frac{\Delta s_{2}\left(T_{1}\right)}{s_{2}\left(T_{1}\right)} \leq \frac{\Delta s_{2}(0)}{s_{2}(0)}<\frac{1-\mu}{72}
$$

$$
\begin{equation*}
\tilde{\chi}(t)=\frac{\Delta s_{2}(t)}{s_{1}(t)} \leq \frac{\Delta s_{2}\left(T_{1}\right)}{s_{1}\left(T_{1}\right)}\left(1+2^{\alpha} C_{1} s_{1}^{2 \alpha}(t)\left(t-T_{1}\right)\right)^{-\beta} \leq \frac{\Delta s_{2}\left(T_{1}\right)}{s_{1}\left(T_{1}\right)} \tag{13}
\end{equation*}
$$

Setting $B=2^{\alpha}(\alpha \mu+\alpha+2)+\frac{1-\mu}{3} \alpha$ and combining (11), (12), and (13), we obtain that

$$
\begin{equation*}
\left.\frac{d \tilde{\chi}}{d t}\right|_{t=T_{1}} \geq-\frac{B \log \lambda}{r_{0}^{\alpha}} s_{1}^{2 \alpha}\left(T_{1}\right) \tilde{\chi}\left(T_{1}\right) \tag{14}
\end{equation*}
$$

Therefore, Gronwall's inequality and the fourth inequality in Lemma 6.2 now yield

$$
\begin{aligned}
\tilde{\chi}(t) & \geq \tilde{\chi}\left(T_{1}\right) \exp \left(-B \frac{\log \lambda}{r_{0}^{\alpha}} \int_{T_{1}}^{t} s_{1}^{2 \alpha}(\tau) d \tau\right) \\
& \geq \tilde{\chi}\left(T_{1}\right) \exp \left(-B \frac{\log \lambda}{r_{0}^{\alpha}} \int_{T_{1}}^{t} s_{1}^{2 \alpha}(t)\left(1+C_{1} s_{1}^{2 \alpha}(0)(t-\tau)\right)^{-1} d \tau\right) \\
& =\tilde{\chi}\left(T_{1}\right) \exp \left(-B \frac{\log \lambda}{r_{0}^{\alpha}} \frac{1}{C_{1}} \log \left(1+C_{1} s_{1}^{2 \alpha}(t)\left(t-T_{1}\right)\right)\right) \\
& =\tilde{\chi}\left(T_{1}\right) \exp \left(-B \log \left(1+C_{1} s_{1}^{2 \alpha}(t)\left(t-T_{1}\right)\right)\right) \\
& =\tilde{\chi}\left(T_{1}\right)\left(1+C_{1} s_{1}^{2 \alpha}(t)\left(t-T_{1}\right)\right)^{-\beta_{1}}
\end{aligned}
$$

where $\beta_{1}=\frac{B}{2 \alpha}$. It follows that

$$
\Delta s_{2}(t) \geq \frac{\Delta s_{2}\left(T_{1}\right)}{s_{1}\left(T_{1}\right)} s_{1}(t)\left(1+C_{1} s_{1}^{2 \alpha}\left(T_{1}\right)\left(t-T_{1}\right)\right)^{-\beta_{1}}, T_{1} \leq t \leq T
$$

In the case $s_{1}<0$ one can show using argument similar to the above that the same estimate for $\tilde{\chi}(t)$ holds but with exponent $2^{\alpha-1}(1+\mu)+$ $\frac{2^{\alpha}}{\alpha}-\frac{1-\mu}{6}<\beta_{1}$. This completes the proof of the second estimate.
Lemma 6.6. Under the assumptions of Lemma 6.3 for all $0 \leq t \leq T_{1}$ we have

$$
\Delta s_{2}(t) \geq C_{3} \Delta s_{2}(0) t^{-\gamma}
$$

Proof. By assumption, Lemma 6.5 holds and the first estimate together with the first inequality in Lemma 6.2 yield

$$
\begin{aligned}
\Delta s_{2}(t) & \geq \frac{\Delta s_{2}(0)}{s_{2}(0)} s_{2}(t)\left(1+C_{1} s_{2}^{2 \alpha}(0) t\right)^{-\beta} \\
& \geq \Delta s_{2}(0)\left(1+C_{1} s_{2}^{2 \alpha}(0) t\right)^{-\left(\frac{1}{2 \alpha}+\beta\right)}
\end{aligned}
$$

Since $1+C_{1} s_{2}^{2 \alpha}(0) t \leq\left(1+C_{1} s_{2}^{2 \alpha}(0)\right) t$ for $t \geq 1$, the above implies

$$
\Delta s_{2}(t)>\Delta s_{2}(0)\left(1+C_{1} s_{2}^{2 \alpha}(0)\right)^{-\left(\frac{1}{2 \alpha}+\beta\right)} t^{-\left(\frac{1}{2 \alpha}+\beta\right)}
$$

It remains to observe that $s_{2}(0)$ is of order r_{0} and so $\left(1+C_{1} s_{2}^{2 \alpha}(0)\right)^{-\left(\frac{1}{2 \alpha}+\beta\right)}$ is a constant and $\gamma=\frac{1}{2 \alpha}+\beta$.

For $0<t \leq 1$ the orbit stays bounded away from the region of perturbation and so the inequality holds for some constant.

Lemma 6.7. Under the assumptions of Lemma 6.3

$$
C_{4} \Delta s_{2}\left(T_{1}\right) \geq \Delta s_{2}(T) \geq C_{5} \Delta s_{2}\left(T_{1}\right)
$$

Proof. First, we prove the lower bound. The forth inequality in Lemma 6.2 with $t=T_{1}$ and $b=T$ yields

$$
s_{1}(T) \geq s_{1}\left(T_{1}\right)\left(1+C_{1} s_{1}^{2 \alpha}(T)\left(T-T_{1}\right)\right)^{\frac{1}{2 \alpha}} .
$$

This and the second estimate in Lemma 6.5 implies that

$$
\begin{aligned}
\Delta s_{2}(T) & \geq \frac{\Delta s_{2}\left(T_{1}\right)}{s_{1}\left(T_{1}\right)} s_{1}\left(T_{1}\right)\left(1+C_{1} s_{1}^{2 \alpha}(T)\left(T-T_{1}\right)\right)^{\frac{1}{2 \alpha}} \\
& \times\left(1+C_{1} s_{1}^{2 \alpha}\left(T_{1}\right)\left(T-T_{1}\right)\right)^{-\beta_{1}} \\
& \geq \Delta s_{2}\left(T_{1}\right)\left(1+C_{1} s_{1}^{2 \alpha}\left(T_{1}\right)\left(T-T_{1}\right)\right)^{\frac{1}{2 \alpha}-\beta_{1}}
\end{aligned}
$$

where we recall that $s_{1}(T) \geq s_{1}\left(T_{1}\right)$ and $\beta_{1}=2^{\alpha-1}(1+\mu)+\frac{1-\mu}{6}+\frac{2^{\alpha}}{\alpha}$, $0<\alpha<\frac{1}{4}$, and $0<\mu<\frac{1}{2}$. It is easy to see that $\beta_{1}>\frac{1}{2 \alpha}$ and hence, to complete the proof of the lower bound it suffices to show that $s_{1}^{2 \alpha}\left(T_{1}\right)\left(T-T_{1}\right)$ is bounded above by a constant that is independent of T_{1}, T, and the choice of the solution $\left(s_{1}(t), s_{2}(t)\right)$.

Since $s_{1}\left(T_{1}\right)=s_{2}\left(T_{1}\right)$, applying the second inequality in Lemma 6.2 with $a=0$ and $t=T_{1}$, we obtain that

$$
s_{1}^{2 \alpha}\left(T_{1}\right) \leq s_{2}^{2 \alpha}(0)\left(1+C_{1} s_{2}^{2 \alpha}(0) T_{1}\right)^{-1}
$$

This implies that

$$
\begin{aligned}
s_{1}^{2 \alpha}\left(T_{1}\right)\left(T-T_{1}\right) & \leq \frac{s_{2}^{2 \alpha}(0)\left(T-T_{1}\right)}{1+C_{1} s_{2}^{2 \alpha}(0) T_{1}} \\
& \leq \frac{s_{2}^{2 \alpha}(0)\left(T-T_{1}\right)}{C_{1} s_{2}^{2 \alpha}(0) T_{1}}=\frac{T-T_{1}}{C_{1} T_{1}}
\end{aligned}
$$

Since $\frac{T-T_{1}}{T_{1}}$ is of order 1 regardless of the choice of the solution $\left(s_{1}(t), s_{2}(t)\right)$, this completes the proof of the lower bound.

To prove the upper bound we use the existence of invariant stable and unstable cones at every point x in the disk $D_{r}^{i}, i=1,2,3,4$. More precisely, let $K^{-}(x)$ (respectively, $K^{+}(x)$) be the cone at x around vertical (respectively, horizontal) line of angle $\frac{\pi}{4}$. One can show (see [12], Proposition 4.1) that these families of cones are invariant under the flow g_{t}^{i} (given by Equation (3)) that is

$$
d g_{\tau}^{i}\left(K^{+}(x)\right) \subset K^{+}\left(g_{\tau}^{i}(x)\right), \quad d\left(g_{\tau}^{i}\right)^{-1}\left(K^{-}(x)\right) \subset K^{-}\left(\left(g_{\tau}^{i}\right)^{-1}(x)\right)
$$

Moreover, let us fix positive numbers a and b and consider the region

$$
\left\{\left(s_{1}, s_{2}\right):\left|s_{1} s_{2}\right| \leq a,\left|s_{1}\right| \leq b,\left|s_{2}\right| \leq b\right\} \subset D_{r}^{i}
$$

and a segment of hyperbola

$$
\left\{s_{1} s_{2}=\varepsilon, 0 \leq s_{1} \leq b, 0 \leq s_{2} \leq b\right\} \text { for } 0<\varepsilon \leq a
$$

One can show (see [12], Proposition 4.1) that for every $\left(s_{1}, s_{2}\right)$ on this hyperbola every angle inside the cone $K^{-}(x)$ is contracted under $\left(d g_{t}^{i}\right)^{-1}$ by the factor $d=C \frac{a^{2}}{b^{4}}$, where $C>0$ is a constant independent of x, a, and b (note that given $b>0$, one can choose a so small to ensure that $d<1$).

Let $s(t)=\left(s_{1}(t), s_{2}(t)\right)$ and $\tilde{s}(t)=\left(\tilde{s}_{1}(t), \tilde{s}_{2}(t)\right)$ be two solutions of Equation (3) satisfying the assumptions of Lemma 6.3. It follows from what was said above that for any $T_{1}<t<T$ and any $\tau \geq 0$ such that $T_{1} \leq t-\tau$ we have that $\Delta s(t) \subset K^{-}(s(t))$ and $\|\Delta s(t-\tau)\| \leq\|\Delta s(t)\|$. Since $\Delta s(t)=\Delta s_{1}(t)+\Delta s_{2}(t)$ and, by assumption, $\left|\Delta s_{1}(t)\right| \leq \mu \Delta s_{2}(t)$, choosing $t=T$ and $\tau=T-T_{1}$, we obtain the desired upper bound. This completes the proof of the lemma.

Consider a set Λ_{i}^{s} and note that it consists of full length s-curves. Let us fix one of these curves, say σ.

Lemma 6.8. Assume that σ enters the slow down disk $D_{\frac{r_{0}}{2}}$ at time n, so that the intersection $f^{n}(\sigma) \cap D_{\frac{r_{0}}{2}}$ is not empty. Assume that σ then exits $D_{\frac{r_{0}}{2}}$ at time $m, m>n>1$. Then

$$
C_{6}(m-n)^{-\gamma} \leq \frac{L\left(f^{m}(\sigma)\right)}{L\left(f^{n}(\sigma)\right)} \leq C_{7}(m-n)^{-\gamma^{\prime}}
$$

where γ, γ^{\prime} are as in (8), and L denotes the length of the curve.
Proof. Let x and y be the endpoints of the curve σ. For $k \geq 0$ set $x_{k}=f^{k}(x)$ and $y_{k}=f^{k}(y)$. It is easy to see that there is $K_{0}>0$ such that for all $k \geq 1$,

$$
\begin{equation*}
K_{0}^{-1} d\left(x_{k}, y_{k}\right) \leq L\left(f^{k}(\sigma)\right) \leq K_{0} d\left(x_{k}, y_{k}\right) \tag{15}
\end{equation*}
$$

where d denotes the usual distance.
Let $s, \tilde{s}:[0, N] \rightarrow R^{2}$ be the solutions of Equation (2) with initial conditions $s(0)=x_{n}$ and $\tilde{s}(0)=y_{n}$ respectively. Also, define $\Delta s_{i}(t)=$ $\tilde{s}_{i}(t)-s_{i}(t), i=1,2$ and $\Delta s=\left(\Delta s_{1}, \Delta s_{2}\right)$. Note that there is $K_{1}>0$ such that for all $n, m>0$ and $n \leq j \leq m$

$$
\begin{equation*}
K_{1}^{-1}\|\Delta s(j)\| \leq d\left(x_{j}, y_{j}\right) \leq K_{1}\|\Delta s(j)\| \tag{16}
\end{equation*}
$$

In what follows we will use Lemma 6.3 and we need to check the assumptions of this Lemma. Assumption (1) is satisfied, since y is contained in the stable cone at x. Assumption (2) requires $d\left(x_{i}, y_{i}\right), i=$ n_{0}, m_{0} to be sufficiently small. In view of Proposition 6.1 and (16), this can be ensured, if we choose the number r_{0} in the construction of the slow down map sufficiently small to guarantee that Q is sufficiently large.

We have that $f^{j}(\sigma) \subset D_{\frac{r_{0}}{2}} \cap\left\{\left(s_{1}, s_{2}\right): s_{2} \geq s_{1}\right\}$ for $n \leq j \leq \frac{n+m}{2}$ and $f^{j}(\sigma) \subset D_{\frac{r_{0}}{2}} \cap\left\{\left(s_{1}, s_{2}\right): s_{2}<s_{1}\right\}$ for $\frac{n+m}{2}<j<m$. Applying Lemmas 6.3. 6.6 with $0<t \leq \frac{n+m}{2}$ and $\frac{n+m}{2}<t \leq m$ and using lower bound in Lemma 6.7 as well as (15) and (16), we obtain that

$$
\begin{aligned}
L\left(f^{m}(\sigma)\right) & \geq K_{0}^{-1} d\left(x_{m}, y_{m}\right) \geq K_{0}^{-1} K_{1}^{-1}\|\Delta s(m-n)\| \\
& \geq K_{0}^{-1} K_{1}^{-1} \Delta s_{2}(m-n)>K_{0}^{-1} K_{1}^{-1} C_{5} \Delta s_{2}\left(\frac{m-n}{2}\right) \\
& \geq K_{0}^{-1} K_{1}^{-1} C_{5} C_{3} \Delta s_{2}(0)\left(\frac{m-n}{2}\right)^{-\gamma} \\
& \geq K_{0}^{-1} K_{1}^{-1} C_{5} C_{3} 2^{\gamma}(m-n)^{-\gamma} \frac{1}{\sqrt{1+\mu^{2}}}\|\Delta s(0)\| \\
& \geq K_{0}^{-2} K_{1}^{-2} C_{5} C_{3} 2^{\gamma}(m-n)^{-\gamma} \frac{1}{\sqrt{1+\mu^{2}}} L\left(f^{n}(\sigma)\right) .
\end{aligned}
$$

Therefore, for some $C_{6}>0$,

$$
\frac{L\left(f^{m}(\sigma)\right)}{L\left(f^{n}(\sigma)\right)} \geq C_{6}(m-n)^{-\gamma}
$$

To prove the upper bound we use Lemmas 6.3. 6.4 with $0<t \leq \frac{n+m}{2}$ and $\frac{n+m}{2}<t \leq m$, the upper bound in Lemma 6.7 as well as inequalities (15) and (16). Then the arguments similar to the above yield that for some $C_{7}>0$,

$$
\frac{L\left(f^{m}(\sigma)\right)}{L\left(f^{n}(\sigma)\right)} \leq C_{7}(m-n)^{-\gamma^{\prime}}
$$

This completes the proof of the lemma.

7. Proof of Theorem 3.1: A lower bound for the tail of the Return time

In this section we establish a polynomial lower bound on the decay of the tail of the return time that is $m(\{x \in \Lambda: \tau(x)>n\})$. Consider the Markov partitions $\tilde{\mathcal{P}}$ and \mathcal{P} for the automorphism A and the map $f_{\mathbb{T}^{2}}$ respectively and let $\tilde{P} \in \tilde{\mathcal{P}}$ and $P \in \mathcal{P}$ be the elements of the partitions as in Section 5.3. Fix the number Q as in Proposition 5.2.

We assume that the partition \mathcal{P} and the number r_{0} are chosen such that Proposition 5.1 holds and we set again $f:=f_{\mathbb{T}^{2}}$. Finally, we denote by

$$
\mathcal{N}=\{n \in \mathbb{N}: \text { there is } x \in P \text { such that } n=\tau(x)\}
$$

Lemma 7.1. There exists an integer $Q_{1}>0$ such that for any $N>0$ one can find $n>N$ with $n \in \mathcal{N}$, an s-subset Λ_{ℓ}^{s} with $\tau\left(\Lambda_{\ell}^{s}\right)=n$ and numbers $0<m_{1}<m_{2}$ satisfying $m_{1}<Q_{1}, n-m_{2}<Q_{1}$ such that $f^{k}\left(\Lambda_{\ell}^{s}\right) \cap D_{r_{0}}^{1}=\emptyset$ for all $0 \leq k<m_{1}$ or $m_{2}<k \leq n$ and $f^{k}\left(\Lambda_{\ell}^{s}\right) \cap D_{r_{0}}^{1} \neq \emptyset$ for all $m_{1} \leq k \leq m_{2}$.

Proof. It suffices to show that there is $Q_{1}>0$ such that for any $N>0$ there is an admissible word of length $n>N$ with $n \in \mathcal{N}$ of the form

$$
\begin{equation*}
P \bar{W}_{1} \bar{P}_{i} \bar{W}_{2} P, \tag{17}
\end{equation*}
$$

where the words \bar{W}_{1} and \bar{W}_{2} are of length $l\left(\bar{W}_{j}\right)<Q_{1}$ for $j=1,2$ and do not contain any of the symbols P or P_{k} (the element of the Markov partition containing x_{k} for $\left.k=1,2,3,4\right)$, and the word \bar{P}_{i} consists of the symbol P_{i} which is repeated $n-2-l\left(\bar{W}_{1}\right)-l\left(\bar{W}_{2}\right)$ times. Since the map f is topologically conjugate to A, it is enough to find an admissible word of the form (17) which consists of the corresponding elements of the partition $\tilde{\mathcal{P}}$.

Note that $A=B^{3}$ where B is an automorphism of the torus given by the matrix $B=\left(\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right)$. Therefore the result would follow if we find an admissible word of the type of (17) for the automorphism B. To this end consider the stable and unstable separatrices through the origin and denote the "first" connected component of their intersection with P by γ^{s} and γ^{u} respectively. It takes finitely many iterates of G and G^{-1} for each of these curves to completely enter the disk $D_{r_{0}}^{1}$. Now for each sufficiently large $n>0$ with $n \in \mathcal{N}$ there is an s-set Λ_{ℓ}^{s} with $\tau\left(\Lambda_{\ell}^{s}\right)=n$ which completely enters $D_{r_{0}}^{1}$ (under iterates of G and G^{-1}) at the same time as γ^{s} and γ^{u} respectively. This completes the proof of the lemma.

Lemma 7.2. There exists a constant $C_{8}>0$ such that

$$
m(\{x \in \Lambda: \tau(x)>n\})>C_{8} n^{-(\gamma-1)},
$$

where γ is defined in (8).

Proof. Using the conjugacy (6), it suffices to prove the lemma for the map G. Write

$$
\begin{aligned}
m(\{x \in \Lambda: \tau(x)>n\}) & =\sum_{N=n+1}^{\infty} m(\{x \in \Lambda: \tau(x)=N\}) \\
& =\sum_{N=n+1}^{\infty} \sum_{\Lambda_{p}^{s}: \tau\left(\Lambda_{p}^{s}\right)=N} m\left(\Lambda_{p}^{s}\right)>\sum_{N=n+1}^{\infty} m\left(\Lambda_{\ell}^{s}\right),
\end{aligned}
$$

where Λ_{ℓ}^{s} is the set constructed in Lemma 7.1. We wish to obtain a polynomial bound for the measure of the set Λ_{ℓ}^{s}.

Given $x \in \Lambda_{\ell}^{s}$, denote by $\gamma_{\ell}^{s}(x):=\gamma^{s}(x) \cap \Lambda_{\ell}^{s}$ (recall that $\gamma^{s}(x)$ is the full length stable curve through x in the element P of the Markov partition). There is $K_{1}>0$ such that

$$
\begin{equation*}
m\left(\Lambda_{\ell}^{s}\right)=m\left(G^{N}\left(\Lambda_{\ell}^{s}\right)\right)=K_{1} L\left(G^{N}\left(\gamma_{\ell}^{s}(x)\right)\right) \tag{18}
\end{equation*}
$$

where L stands for the length of the curve.
Let $x_{j}=G^{j}(x)$ for $j=0, \ldots, n$. Assume that x enters the region $D_{r_{0}}^{1}$ at time k_{1} and exits at time k_{2}, i.e.,
(1) $G^{j}(x) \notin D_{r_{0}}^{1}$ if $0 \leq j<k_{1}$, or $k_{2}<j \leq N$;
(2) $G^{j}(x) \in D_{r_{0}}^{1}$ if $k_{1} \leq j \leq k_{2}$.

Note that for $0 \leq j<k_{1}$ and $k_{2}<j \leq N$ the curve $G^{j}\left(\gamma_{\ell}^{s}(x)\right)$ lies in the stable cone for the automorphism A at x_{j} and indeed, is an admissible manifold for A (i.e., for any $y \in \gamma_{\ell}^{s}(x)$ the line $T_{y} \gamma_{\ell}^{s}(x)$ lies in the stable cone at y). So the length of the curve $\gamma_{\ell}^{u}(x)$ expands exponentially outside of the region $D_{r_{0}}$. Since by Lemma 7.1, $k_{1}<Q_{1}$ and $N-k_{2}<Q_{1}$, we have that

$$
\begin{equation*}
L\left(\gamma_{\ell}^{s}(x)\right)=\lambda^{k_{1}} L\left(G^{k_{1}}\left(\gamma_{\ell}^{s}(x)\right)\right) \leq \lambda^{Q_{1}} L\left(G^{k_{1}}\left(\gamma_{\ell}^{s}(x)\right)\right) \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
L\left(G^{N}\left(\gamma_{\ell}^{s}(x)\right)\right)=\lambda^{-\left(N-k_{2}\right)} L\left(G^{k_{2}}\left(\gamma_{\ell}^{s}(x)\right)\right) \geq \lambda^{-Q_{1}} L\left(G^{k_{2}}\left(\gamma_{\ell}^{s}(x)\right)\right) \tag{20}
\end{equation*}
$$

where λ is the largest eigenvalue of the matrix A.
By Lemma 5.6 in [21], the time the trajectory spends in $D_{r_{0}}^{1} \backslash D_{\frac{r_{0}}{2}}^{1}$ is uniformly bounded. Thus, by Lemma 6.8,

$$
\begin{equation*}
L\left(G^{k_{2}}\left(\gamma_{\ell}^{s}(x)\right)\right)>C_{6}\left(k_{2}-k_{1}\right)^{-\gamma} L\left(G^{k_{1}}\left(\gamma_{\ell}^{s}(x)\right)\right) \tag{21}
\end{equation*}
$$

Since $k_{2}-k_{1}<N$, combining Equations (18)-(21) yields

$$
\begin{aligned}
m\left(\Lambda_{\ell}^{s}\right) & \geq K_{2} L\left(G^{N}\left(\gamma_{\ell}^{s}(x)\right)\right)=K_{2} \lambda^{-Q_{1}} L\left(G^{k_{2}}\left(\gamma_{\ell}^{s}(x)\right)\right) \\
& \geq K_{2} C_{6} \lambda^{-Q_{1}}\left(k_{2}-k_{1}\right)^{-\gamma} L\left(G^{k_{1}}\left(\gamma_{\ell}^{s}(x)\right)\right) \\
& \geq K_{2} C_{6} \lambda^{-2 Q_{1}}\left(k_{2}-k_{1}\right)^{-\gamma} L\left(\gamma_{\ell}^{s}(x)\right) \geq K_{3} N^{-\gamma}
\end{aligned}
$$

where $K_{2}>0$ is a constant and $K_{3}=K_{2} C_{6} \lambda^{2 Q_{1}} L\left(\gamma_{\ell}^{u}(x)\right)$.
Note that $\gamma_{\ell}^{s}(x)$ is a full length stable curve in P and hence, has length which is independent of N. It follows that

$$
m(\{x \in \Lambda: \tau(x)>n\})>\sum_{N=n+1}^{\infty} m\left(\Lambda_{\ell}^{s}\right)>C_{8} \frac{1}{n^{\gamma-1}}
$$

where $C_{8}>0$ is a constant. The desired lower bound follows.
8. Proof of Theorem 3.1: An upper bound for the tail of THE RETURN TIME

In this section we obtain an upper polynomial bound for the decay of the tail of the return time. As before we assume that the Markov partition and the number r_{0} are chosen such that Proposition 5.1 holds. Recall that D_{r} is the union of the disks D_{r}^{i} around the points x_{i} and P_{i} is the element of the partition containing $x_{i}, i=1,2,3,4$. We have that $D_{r_{0}}^{i} \subset P_{i}$. Using the conjugacy (6), it suffices to establish that upper bound for the map G.

Given an s-set $\Lambda_{i}^{s} \subset P$ with $\tau\left(\Lambda_{i}^{s}\right)=n$, choose any numbers $k=$ $k\left(\Lambda_{i}^{s}\right), p=p\left(\Lambda_{i}^{s}\right)$, and two finite collections of numbers $\left\{k_{m} \geq 0\right\}_{m=1, \ldots, p}$ and $\left\{l_{m} \geq 0\right\}_{l=0, \ldots, p}$ such that
(1) $k_{1}+k_{2}+\cdots+k_{p}=k$ and $l_{1}+l_{2}+\cdots+l_{p+1}=n-k$;
(2) the trajectory of the set Λ_{i}^{s} under $G^{j}, 0 \leq j \leq n$, consecutively spends l_{m}-times outside $D_{r_{0}}$ and k_{m}-times inside $D_{r_{0}}$.
Given $0<p<k<n$, consider the collections

$$
\mathcal{S}_{k, n, p}=\left\{\Lambda_{i}^{s} \subset P: \tau\left(\Lambda_{i}^{s}\right)=n, k=k\left(\Lambda_{i}^{s}\right), p=p\left(\Lambda_{i}^{s}\right)\right\}
$$

Lemma 8.1. There are $0<h<h_{\text {top }}(f), \varepsilon_{0}>0$, and $C_{9}>0$ such that $\varepsilon_{0}<h_{\text {top }}(f)-h$ and

$$
\text { Card } \mathcal{S}_{k, n, p} \leq C_{9} \frac{1}{p^{2}} e^{\left(h+\varepsilon_{0}\right)(n-k)}
$$

Proof. Note that the cardinality of $\mathcal{S}_{k, n, p}$ does not exceed the number of symbolic words of length n that start and end at P and contain exactly k symbols $P_{j}, j=1,2,3,4$. Since A is topologically mixing, the latter is exactly the number of words of length $n-k$ that start and end at P. By Corollary 1.9.12 and Proposition 3.2.5 in [13], the number of such words grows exponentially with an exponent that does not exceed $(n-k) h$ where $0<h<h_{\text {top }}(A)$.

The number of different ways the iterates of Λ_{i}^{s} can enter $D_{r_{0}}$ exactly p times and stay in this set exactly k times does not exceed the number of ways in which the number k can be written as a sum of p positive
integers (where order matters) which is equal to $\binom{k-1}{p-1}$. The number of different ways the iterates of Λ_{i}^{s} can spend outside $D_{r_{0}}$ exactly $p+1$ times is equal to the number of ways in which the number $n-k$ can be written as a sum of $p+1$ positive integers which is $\binom{n-k-1}{p}$. Since iterates of Λ_{i}^{s} may enter any of the disks $D_{r_{0}}^{i}, i=1,2,3,4$, we obtain

$$
\operatorname{Card} \mathcal{S}_{k, n, p} \leq C_{9} 4^{p}\binom{k-1}{p-1}\binom{n-k-1}{p} e^{h(n-k)}
$$

Write

$$
\operatorname{Card} \mathcal{S}_{k, n, p} \leq \frac{C_{9}}{p^{2}} p^{2} 4^{p}\binom{k-1}{p-1}\binom{n-k-1}{p} e^{h(n-k)}
$$

To prove the lemma we wish to estimate $p^{2} 4^{p}\binom{k-1}{p-1}\binom{n-k-1}{p}$ and we claim that there is $\varepsilon_{0}>0$ such that $\binom{k-1}{p-1}<e^{\varepsilon_{0}(n-k)}$.

To this end note that by Propositions 5.1 and 5.2, it takes Λ_{i}^{s} at least Q iterates before it enters $D_{r_{0}}$ again. This implies that $n=$ $k+l_{1}+\cdots+l_{p+1}>k+(p+1) Q$ that is $p+1<\frac{n-k}{Q}$.

For a fixed k note that $\binom{k-1}{p-1}$ achieves its maximum when $p-1=\left[\frac{k-1}{2}\right]$ or $p-1=\left[\frac{k-1}{2}\right]+1$. We may assume $p-1=\frac{k-1}{2}$. Then using the asymptotic formula $\binom{m}{l} \sim\left(\frac{m e}{l}\right)^{l}$, we obtain that

$$
\binom{k-1}{p-1}<\binom{2 p-2}{p-1}<4^{p-1}=e^{(p-1) \ln 4}<e^{\frac{n-k}{Q} \ln 4}
$$

To estimate $\binom{n-k-1}{p}$ observe that p does not exceed $\frac{n-k}{Q}$. Hence, using the above asymptotic formula, we find that

$$
\begin{aligned}
\binom{n-k-1}{p} & <\binom{n-k}{\frac{n-k}{Q}}<\left(\frac{(n-k) e}{\frac{n-k}{Q}}\right)^{\frac{n-k}{Q}} \\
& <e^{\frac{n-k}{Q} \ln \frac{(n-k) e}{\frac{n-k}{Q}}}<e^{\frac{n-k}{Q} \ln (Q e)}
\end{aligned}
$$

Finally, note that

$$
p^{2} 4^{p}<e^{2 \ln p+p \ln 4}<e^{2 p+p \ln 4}<e^{\frac{n-k}{Q}(\ln 4+2)} .
$$

Now, given any sufficiently small $\varepsilon_{0}>0$, one can choose Q large enough so that $\frac{\ln 4+2}{Q}+\frac{\ln 4}{Q}+\frac{\ln (Q e)}{Q}<\varepsilon_{0}$. Combining the above estimates we obtain

$$
4^{p}\binom{k-1}{p-1}\binom{n-k-1}{p} e^{h(n-k)}<e^{(n-k) \varepsilon_{0}} e^{h(n-k)}=e^{(n-k) \varepsilon_{0}+h}
$$

and hence,

$$
\operatorname{Card} \mathcal{S}_{k, n, p} \leq C_{9} \frac{1}{p^{2}} e^{\left(h+\varepsilon_{0}\right)(n-k)}
$$

This completes the proof of the lemma.
Lemma 8.2. There exists $\varepsilon_{0}>0$ such that for any $\Lambda_{i}^{s} \in \mathcal{S}_{k, n, p}$,

$$
m\left(\Lambda_{i}^{s}\right) \leq C_{10} k^{-\gamma^{\prime}} e^{\left(-\log \lambda+\varepsilon_{0}\right)(n-k)}
$$

where $C_{10}>0$ is a constant and γ^{\prime} is given by (8).
Proof. Note that by (18) $), m\left(\Lambda_{i}^{s}\right)=m\left(G^{n}\left(\Lambda_{i}^{s}\right)\right)=K_{1} L\left(G^{n}\left(\gamma_{i}^{s}(x)\right)\right)$ and that the length of the backward iterates of γ_{i}^{s} lying outside the region $D_{r_{0}}$ are stretched by the largest eigenvalue λ of the matrix A. Note also that every time the iterates of γ_{i}^{s} enter the region we have an upper estimate for its length according to Lemma 6.8 (note that we can apply this lemma in the region $D_{r_{0}}$ since by Lemma 5.6 in [21] the time spent in $D_{r_{0}} \backslash D_{\frac{r_{0}}{2}}$ is uniformly bounded). Thus,

$$
\begin{aligned}
m\left(\Lambda_{i}^{s}\right) & =m\left(G^{n}\left(\Lambda_{i}^{s}\right)\right)=K_{1} L\left(G^{n}\left(\gamma_{i}^{s}(x)\right)\right) \\
& =K_{1} \lambda^{-l_{p+1}} L\left(G^{n-l_{p+1}}\left(\gamma_{i}^{s}(x)\right)\right) \\
& \leq K_{1} C_{7} \lambda^{-l_{p+1}} k_{p}^{-\gamma^{\prime}} L\left(G^{n-\left(l_{1}+k_{1}\right)}\left(\gamma_{i}^{s}(x)\right)\right) \leq \cdots \\
& \leq K_{1} C_{7}^{p} \lambda^{-\left(l_{p+1}+\cdots+l_{1}\right)} k_{p}^{-\gamma^{\prime}} k_{p-1}^{-\gamma^{\prime}} \cdots k_{1}^{-\gamma^{\prime}} L\left(\gamma_{i}^{s}(x)\right)
\end{aligned}
$$

Note that $\gamma_{i}^{s}(x)$ is a full length stable curve in P and hence, has length independent of n. One can also assume that $k_{i} \geq 2$ by making r_{0} smaller if necessary. This implies

$$
k_{1} k_{2} \cdots k_{p} \geq k_{\max } 2^{p-1} \geq k_{\max } p \geq \sum_{i=1}^{p} k_{i}=k
$$

where $k_{\max }$ denotes the largest of $k_{i}^{\prime} s$.
In addition, $C_{6}^{p}=e^{p \ln C_{6}}<e^{\frac{n-k}{Q} \ln C_{6}}<e^{\varepsilon_{0}(n-k)}$ for sufficiently small $\varepsilon_{0}>0$ if one chooses Q large. Therefore,

$$
m\left(\Lambda_{i}^{s}\right)<K_{1} e^{\varepsilon_{0}(n-k)} \lambda^{-(n-k)} k^{-\gamma^{\prime}}<C_{10} k^{-\gamma^{\prime}} e^{\left(-\log \lambda+\varepsilon_{0}\right)(n-k)}
$$

This completes the proof of the lemma.
Lemma 8.3. There exists $C_{11}>0$ such that

$$
m(\{x \in \Lambda: \tau(x)>n\})<C_{11} n^{-\left(\gamma^{\prime}-1\right)}
$$

see (8) for the definition of γ^{\prime}.

Note that

$$
m(\{x \in \Lambda: \tau(x)=n\}) \leq \sum_{k=1}^{n} \sum_{p=1}^{k} \max _{\Lambda_{i}^{s} \in \mathcal{S}_{k, n, p}}\left\{m\left(\Lambda_{i}^{s}\right)\right\} \operatorname{Card} \mathcal{S}_{k, n, p}
$$

Therefore, by Lemmas 8.1 and 8.2, we have

$$
\begin{align*}
m(\{x \in \Lambda: \tau(x) & =n\}) \\
& \leq \sum_{k=1}^{n} \sum_{p=1}^{k} \frac{1}{p^{2}} C_{9} e^{\left(h+\varepsilon_{0}\right)(n-k)} C_{10} e^{\left(\varepsilon_{0}-\log \lambda\right)(n-k)} k^{-\gamma^{\prime}} \tag{22}\\
& <C_{9} C_{10} \frac{\pi^{2}}{6} e^{-\delta n} \sum_{k=1}^{n} e^{\delta k} k^{-\gamma^{\prime}}
\end{align*}
$$

where $\delta=2 \varepsilon_{0}+\log \lambda-h>0$ if ε_{0} is sufficiently small.
To estimate $\sum_{k=1}^{n} e^{\delta k} k^{-\gamma^{\prime}}$ set $u_{k}=e^{\delta k} k^{-\gamma^{\prime}}$ and note that $u_{k+1}-u_{k} \sim$ $e^{\delta k} k^{-\gamma^{\prime}}=u_{k}$. Since $\sum_{k=1}^{n} u_{k}$ is positive and diverges, by Stolz-Cesaro theorem,

$$
\sum_{k=1}^{n} u_{k} \sim \sum_{k=1}^{n} u_{k+1}-u_{k}=u_{n+1}-u_{1} \sim e^{\delta n} n^{-\gamma^{\prime}}
$$

Therefore,

$$
m(\{x \in \Lambda: \tau(x)=n\}) \leq C_{9} C_{10} e^{-\delta n} \sum_{k=1}^{n} e^{\delta k} k^{-\gamma^{\prime}}<C_{9} C_{10} n^{-\gamma^{\prime}}
$$

Thus, we have the following estimate of the tail

$$
m(\{x \in \Lambda: \tau(x)>n\})=\sum_{k>n} m(\{x \in \Lambda: \tau(x)=k\})<C_{11} n^{-\left(\gamma^{\prime}-1\right)}
$$

for some $C_{11}>0$. This concludes the proof of the Lemma and the upper bound.

9. Proof of Theorem 3.1: Carrying the slow-down map to a Surface

In this section we show how to carry over the slow-down map of the torus to a measure preserving diffeomorphism of any surface. Following [12], we will construct the maps $\varphi_{1}, \varphi_{2}, \varphi_{3}$ such that the following
diagram is commutative:

We stress that while our construction of the maps φ_{1} and φ_{2} follows [12], our construction of the map φ_{3} is quite different, since we have to deal with finite regularity of the slow-down map.

First, using the slow down map we construct a diffeomorphism of the sphere S^{2}.
Proposition 9.1 (see [12]). There exists a map $\varphi_{1}: \mathbb{T}^{2} \rightarrow S^{2}$ satisfying:
(1) φ_{1} is a double branched covering, is one-to-one on each branch, and C^{∞} everywhere except at the points $x_{i}, i=1,2,3,4$ where it branches;
(2) $\varphi_{1} \circ I=\varphi_{1}$ where $I: \mathbb{T}^{2} \rightarrow \mathbb{T}^{2}$ is the involution map given by $I\left(t_{1}, t_{2}\right)=\left(1-t_{1}, 1-t_{2}\right) ;$
(3) φ_{1} preserves area, i.e., $\left(\varphi_{1}\right)_{*} m=m_{S^{2}}$ where $m_{S^{2}}$ is the area in S^{2};
(4) there exists a coordinate system in each disk $D_{r_{0}}^{i}$ such that

$$
\varphi_{1}\left(s_{1}, s_{2}\right)=\left(\frac{s_{1}^{2}-s_{2}^{2}}{\sqrt{s_{1}^{2}+s_{2}^{2}}}, \frac{2 s_{1} s_{2}}{\sqrt{s_{1}^{2}+s_{2}^{2}}}\right)
$$

(5) The map $f_{S^{2}}:=\varphi_{1} \circ f_{\mathbb{T}^{2}} \circ \varphi_{1}^{-1}$ preserves the area.

The sphere can be unfolded onto the unit disk D^{2} and the map $f_{S^{2}}$ can be carried over to an area preserving map $f_{D^{2}}$ of the disk which is identity on the boundary of the disk. To see this set $p_{i}=\varphi_{1}\left(x_{i}\right)$, $i=1,2,3,4$. In a small neighborhood of the point p_{4} we define a map φ_{2} by

$$
\varphi_{2}\left(\tau_{1}, \tau_{2}\right)=\left(\frac{\tau_{1} \sqrt{1-\tau_{1}^{2}-\tau_{2}^{2}}}{\sqrt{\tau_{1}^{2}+\tau_{2}^{2}}}, \frac{\tau_{2} \sqrt{1-\tau_{1}^{2}-\tau_{2}^{2}}}{\sqrt{\tau_{1}^{2}+\tau_{2}^{2}}}\right)
$$

One can extend φ_{2} to an area preserving C^{∞} diffeomorphism (still denoted by φ_{2}) between $S^{2} \backslash\left\{p_{4}\right\}$ and the interior of the unit disk D^{2}. The map

$$
f_{D^{2}}:= \begin{cases}\varphi_{2} \circ f_{S^{2}} \circ \varphi_{2}^{-1} & \text { on } \operatorname{int} D^{2} \tag{23}\\ I d & \text { on } \partial D^{2}\end{cases}
$$

is a diffeomorphism of D^{2} that preserves area $m_{D^{2}}$.

Proposition 9.2. The maps $f_{S^{2}}$ and $f_{D^{2}}$ are of class of smoothness $C^{2+2 \kappa}$ where $\kappa=\frac{\alpha}{1-\alpha}$.
Proof. Using the explicit local expressions for $f_{S^{2}}$ and $f_{D^{2}}$ and following arguments in Proposition 4.2, we find that the maps $f_{S^{2}}$ and $f_{D^{2}}$ are Hamiltonian with respect to the area and the Hamiltonian functions are given as

$$
H_{3}\left(\tau_{1}, \tau_{2}\right)=\frac{\tau_{2} h\left(\sqrt{\tau_{1}^{2}+\tau_{2}^{2}}\right)}{\sqrt{\tau_{1}^{2}+\tau_{2}^{2}}} \log \lambda
$$

and

$$
H_{4}\left(x_{1}, x_{2}\right)=\frac{x_{2} h\left(\sqrt{1-x_{1}^{2}-x_{2}^{2}}\right)}{\sqrt{x_{1}^{2}+x_{2}^{2}}} \log \lambda
$$

respectively. Here, as before, $h(u)=u^{\frac{2}{1-\alpha}}$.
To show that the maps $f_{S^{2}}$ and $f_{D^{2}}$ are of the desired class of smoothness, we will show that the Hamiltonian functions H_{3} and H_{4} have Hölder continuous second order partial derivatives with Hölder exponent 2κ. Since H_{3} and H_{4} are of the same regularity we consider only one of them and we set $g(x, y)=y\left(x^{2}+y^{2}\right)^{\delta}$ where $\delta=\frac{1}{1-\alpha}-\frac{1}{2}$.

Obviously, $\frac{\partial g}{\partial x}(0,0)=0$ and

$$
\frac{\partial g}{\partial x}(x, y)= \begin{cases}2 \delta x y\left(x^{2}+y^{2}\right)^{\delta-1}, & (x, y) \neq(0,0) \\ 0, & (x, y)=(0,0)\end{cases}
$$

The function $\frac{\partial g}{\partial x}$ is symmetric, so we will only study Hölder continuity of $\frac{\partial^{2} g}{\partial x^{2}}$ as Hölder continuity of $\frac{\partial^{2} g}{\partial x \partial y}$ is immediate. Note that

$$
\frac{\partial^{2} g}{\partial x^{2}}(x, y)= \begin{cases}2 \delta^{\frac{y\left(x^{2}+y^{2}\right)^{1-\delta}-2(1-\delta) x^{2} y\left(x^{2}+y^{2}\right)^{-\delta}}{\left(x^{2}+y^{2}\right)^{2-2 \delta}}} & (x, y) \neq(0,0) \\ 0 & (x, y)=(0,0)\end{cases}
$$

Since the function $\frac{\partial^{2} g}{\partial x^{2}}(x, y)$ is differentiable for all $(x, y) \neq(0,0)$, it is Hölder continuous for all pairs of nonzero points (x, y). It remains to show Hölder continuity for pairs of points one of which is zero. We can write

$$
\frac{\partial^{2} g}{\partial x^{2}}=K_{1} y\left(x^{2}+y^{2}\right)^{\delta-1}-K_{2} x^{2} y\left(x^{2}+y^{2}\right)^{\delta-2}
$$

where $K_{1}>0$ and $K_{2}>0$ are some constants. Choose $(x, y) \neq(0,0)$ and note that
$\left|y\left(x^{2}+y^{2}\right)^{\delta-1}\right| \leq\left(x^{2}+y^{2}\right)^{\frac{1}{2}}\left(x^{2}+y^{2}\right)^{\delta-1}=\left(x^{2}+y^{2}\right)^{\delta-\frac{1}{2}}=d((x, y),(0,0))^{2 \delta-1}$.
Similarly,

$$
\left|x^{2} y\left(x^{2}+y^{2}\right)^{\delta-2}\right| \leq d((x, y),(0,0))^{2 \delta-1}
$$

Hence, $\frac{\partial^{2} g}{\partial x^{2}}$ is Hölder continuous with Hölder exponent

$$
2 \delta-1=2\left(\frac{1}{1-\alpha}-\frac{1}{2}\right)-1=2 \kappa .
$$

Further, each of the functions $\frac{\partial^{2} g}{\partial y^{2}}$ and $\frac{\partial^{2} g}{\partial y \partial x}$ can be written as a linear combinations of functions

$$
\begin{equation*}
x\left(x^{2}+y^{2}\right)^{\delta-1}, \quad y\left(x^{2}+y^{2}\right)^{\delta-1}, \quad x^{2} y\left(x^{2}+y^{2}\right)^{\delta-2}, \quad y^{2} x\left(x^{2}+y^{2}\right)^{\delta-2} \tag{24}
\end{equation*}
$$

and are 0 at the point $(x, y)=(0,0)$. Arguing as above one can show that each function in (24) is Hölder continuous with Hölder exponent 2κ. This completes the proof of the proposition.

Consider a smooth compact connected oriented surface M. It can be cut along closed geodesics in such a way that the resulting surface with boundary is homeomorphic to a regular polygon via a homeomorphism which we denote by T; this is a well-known topological construction.

Let now f be a C^{∞} diffeomorphism of the disk, which is identity on the boundary ∂D^{2} and is infinitely flat, i.e., given a sequence $\rho_{n} \rightarrow 0$ and a sequence of open domains $V_{n} \subset D^{2}$ satisfying

$$
\begin{equation*}
V_{n} \subset V_{n+1} \text { and } \bigcup_{n \geq 1} V_{n}=D^{2} \tag{25}
\end{equation*}
$$

we have that for every $n \geq 1$,

$$
\|f-\mathrm{Id}\|_{C^{n}\left(V_{n}\right)} \leq \rho_{n}
$$

For such an f it is shown in [12] (see also [2]) that there is a homeomorphism $\varphi: \overline{D^{2}} \rightarrow M$ such that
(1) φ is of class C^{∞} in the interior of the disk;
(2) φ is area preserving, i.e., $h_{*} m_{D^{2}}=m_{M}$;
(3) the map $\varphi \circ f \circ \varphi^{-1}$ is a C^{∞} area preserving diffeomorphism of the surface.
In our case however, the map $f=f_{D^{2}}$ is only of class $C^{2+2 \kappa}$ and hence, is only finitely flat at the boundary, i.e., there is a sequence of open domains $V_{n} \subset D^{2}$, satisfying (25), such that for every $0<\beta<2+2 \kappa$,

$$
\begin{equation*}
\left\|f_{D^{2}}-\mathrm{Id}\right\|_{C^{1+\beta}\left(V_{n}\right)} \leq\left(r_{n-1}\right)^{2+2 \kappa-\beta} \tag{26}
\end{equation*}
$$

where $r_{n}=\operatorname{dist}\left(V_{n}, \partial D^{2}\right)$. This requires us to develop a specific construction of the homeomorphism φ which guarantees that the map f_{M} is an area preserving diffeomorphism of class $C^{1+\beta}$ for some $\beta>0$. More precisely, the following statement holds.

Theorem 9.3. Given a smooth compact connected oriented surface M and numbers $\frac{1}{9}<\alpha<\frac{1}{4}$ and $0<\mu<\frac{1}{2}$, there exist $\beta=\beta(\alpha, \mu)>0$ and a continuous map $\varphi_{3}: \overline{D^{2}} \rightarrow M$ such that
(1) the restriction $\varphi_{3} \mid$ int D^{2} is a diffeomorphic embedding;
(2) $\varphi_{3}\left(\overline{D^{2}}\right)=M$;
(3) φ_{3} preserves area; more precisely, $\left(\varphi_{3}\right)_{*} m_{D^{2}}=m_{M}$ where m_{M} is the area in M; moreover, $m_{M}\left(M \backslash \varphi_{3}\left(\right.\right.$ int $\left.\left.D^{2}\right)\right)=0$;
(4) the map $f_{M}:=\varphi_{3} \circ f_{D^{2}} \circ \varphi_{3}^{-1}$ is a $C^{1+\beta}$ area preserving diffeomorphism of the surface.

Proof. One can represent a compact smooth oriented surface M as a regular p-polygon P (the number p is even) whose angles are $\alpha=\frac{\pi(p-2)}{p}$. Let $A_{1}, A_{2}, \ldots, A_{p}$ be vertices of the polygon and O its center. For each $i=1, \ldots, p$ denote by B_{i} the points on the segment $A_{i} O$ for which $\frac{\left|A_{i} B_{i}\right|}{\left|A_{i} O\right|}=\frac{1}{3}$. In what follows we assume that $A_{p+1}=A_{1}$ and $B_{p+1}=B_{1}$. Denote by

$$
\begin{equation*}
P^{*}:=\left(\bigcup_{i=1}^{p} A_{i} A_{i+1}\right) \cup\left(\bigcup_{i=1}^{p} A_{i} B_{i}\right) . \tag{27}
\end{equation*}
$$

Note that the complement to P^{*} is an open simply connected set.
We now construct a homeomorphism from the unit disk D^{2} onto P.
Proposition 9.4. There exist
(1) a nested sequence of open simply connected sets $U_{0} \subset U_{1} \subset$ $\cdots \subset U_{n} \subset \cdots$ satisfying $\bigcup_{n} U_{n}=P \backslash P^{*}$;
(2) a sequence of C^{∞} diffeomorphisms $h_{n}: U_{n} \rightarrow U_{n+1}$ for $n \geq 0$;
(3) a number $\beta>0$
such that setting $h(x)=\lim _{n \rightarrow \infty} h_{n-1} \circ \cdots \circ h_{1} \circ h_{0}$, we have that the map $f_{P}: P \rightarrow P$ given by

$$
f_{P}=\left\{\begin{array}{lr}
\left(h \circ f_{D^{2}} \circ h^{-1}\right)(x), & x \in P \backslash P^{*}, \\
I d & \text { otherwise }
\end{array}\right.
$$

is a $C^{1+\beta}$ diffeomorphism.
Proof of the proposition. We split the proof into three steps.
Step 1. We first construct a sequence of open sets U_{n} (see Figure 1)

Figure 1: The shape of the set U_{n}

Fix $n>0, t \in[n, n+1]$ and let $r(t)>0$ be a strictly monotonically decreasing continuous function on $[1, \infty)$ which will be determined later in Step 4. For $i=1, \ldots, p$ consider the following collection of points associated with the point A_{i} (see Figure 2):

- $K_{t i}$, the point that is determined uniquely by the requirements that the angle $\angle\left(K_{t i} A_{i} A_{i+1}\right)=\frac{1}{8} \alpha$ and $\operatorname{dist}\left(K_{t i}, A_{i} A_{i+1}\right)=r(t)$;
- $L_{t i}$, the point that is determined uniquely by the requirements that the angle $\angle\left(O A_{i} L_{t i}\right)=\frac{1}{8} \alpha$ and $\operatorname{dist}\left(L_{t i}, A_{i} O\right)=r(t)$;
- $M_{t i}$, the image of $L_{t i}$ under the reflection about the line $O A_{i}$;
- $N_{t i}$, the image of $K_{t i}$ under the reflection about the line $O A_{i}$;
- $E_{t i}$, the point on the line through B_{i} which is perpendicular to the line $A_{i} B_{i}$ and such that $\operatorname{dist}\left(E_{t i}, B_{i}\right)=r(t)$;
- $F_{t i}$, the image of $E_{t i}$ under the reflection about the line $A_{i} B_{i}$.

Figure 2: The collection of marked points
We introduce the following curves: for $i=1, \ldots, p$ let

- $\gamma_{t i}^{(1)}$ be a line segment connecting the points $K_{t i}$ and $N_{t(i+1)}$ where we assume that $N_{t(p+1)}=N_{t 1}$;
- $\gamma_{t i}^{(2)}$ be a curve connecting the points $K_{t i}$ and $L_{t i}$ to be determined later in Step 2;
- $\gamma_{t i}^{(3)}$ be a curve connecting the points $M_{t i}$ and $N_{t i}$ to be determined later in Step 2.
- $\gamma_{t i}^{(4)}$ be the line segment connecting the points $L_{t i}$ and $E_{t i}$;
- $\gamma_{t i}^{(5)}$ be the line segment connecting the points $M_{t i}$ and $F_{t i}$;
- $\gamma_{t i}^{(6)}$ be a curve connecting the points $E_{t i}$ and $F_{t i}$ to be determined later in Step 2.
Let τ_{t} be the curve given by

$$
\tau_{t}=\bigcup_{i=1}^{p} \bigcup_{j=1}^{6} \gamma_{t i}^{(j)}
$$

By construction, $\tau_{t}, t \in[n, n+1]$, is a closed connected continuous curve which bounds an open simply connected domain in the polygon
P. We denote this domain by U_{t}. In particular, U_{n} is the desired open set.

Step 2. We show how to choose the curves $\gamma_{t i}^{(2)}$ and $\gamma_{t i}^{(6)}$. The curve $\gamma_{t i}^{(3)}$ can be chosen in a similar way.

Let $\varphi, \psi:[-1,1] \rightarrow \mathbb{R}$ be two continuous functions satisfying:
(1) $\varphi \in C^{\infty}$ on $[0,1]$ and $\psi \in C^{\infty}$ on $(0,1)$;
(2) $\varphi(-x)=\varphi(x)$ and $\psi(-x)=\psi(x)$;
(3) $\varphi(0)=a$ where $1-\tan \frac{\alpha}{4}<a<\cot \frac{\alpha}{4}$ and $\varphi(-1)=\varphi(1)=$ $\cot \frac{\alpha}{8}$;
(4) $\psi(0)=1$ and $\psi(-1)=\psi(1)=0$;
(5) $0<\varphi^{\prime}(x) \leq \cot \frac{\alpha}{4}$ for $0<x \leq 1$ and $-\cot \frac{\alpha}{4} \leq \varphi^{\prime}(x)<0$ for $-1 \leq x<0$
(6) $\varphi^{\prime}(-1)=-\cot \frac{\alpha}{4}$ and $\varphi^{\prime}(1)=\cot \frac{\alpha}{4}$;
(7) ψ is infinitely vertically flat at -1 and 1 .

For $i=1, \ldots, p$ consider the orthogonal coordinate system with origin at A_{i} whose vertical axis is the bisector of the angle $\angle\left(B_{i} A_{i} A_{i+1}\right)$ and for every $t \in[n, n+1]$ we let $\gamma_{t i}^{(2)}$ be the graph of the function $\varphi_{t}(x)=r(t) \varphi\left(\frac{x}{r(t)}\right)$ where $-r(t) \leq x \leq r(t)$. It is easy to see that $\gamma_{t i}^{(2)}$ is a C^{∞} curve that connects the points $K_{t i}$ and $L_{t i}$ and is infinitely tangent to the lines $K_{t i} N_{t i}$ and $L_{t i} E_{t i}$.

Now consider the orthogonal coordinate system with origin at B_{i} whose vertical axis is the line $A_{i} B_{i}$. We let $\gamma_{t i}^{(6)}$ be the graph of the function $\psi_{t}(x)=r(t) \psi\left(\frac{x}{r(t)}\right)$ where $-r(t) \leq x \leq r(t)$. It is easy to see that $\gamma_{t i}^{(6)}$ is a C^{∞} curve that connects the points $E_{t i}$ and $F_{t i}$ and is infinitely tangent to the lines $L_{t i} E_{t i}$ and $M_{t i} F_{t i}$. Hence, with the above choice of curves $\gamma_{t i}^{j}, j=1, \ldots, 6$, the curve τ_{t} is of class C^{∞}.

We show that the curves τ_{t} corresponding to different values of t are disjoint. To this end fix $n \leq t_{1}<t_{2} \leq n+1$. It suffices to show that the curves $\gamma_{t i}^{(2)}, \gamma_{t i}^{(6)}$, and $\gamma_{t i}^{(3)}$ with $t=t_{1}$ and $t=t_{2}$ are disjoint. We will prove this for the curve $\gamma_{t i}^{(2)}$ only as the proof for other curves is similar. By Property (3),

$$
\varphi_{t_{1}}(0)=\operatorname{ar}\left(t_{1}\right), \quad \varphi_{t_{1}}\left(r\left(t_{1}\right)\right)=r\left(t_{1}\right) \cot \frac{\alpha}{8}, \quad \varphi_{t_{1}}^{\prime}\left(r\left(t_{1}\right)\right)=\cot \frac{\alpha}{4} .
$$

Similarly,

$$
\varphi_{t_{2}}(0)=\operatorname{ar}\left(t_{2}\right), \quad \varphi_{t_{2}}\left(r\left(t_{2}\right)\right)=r\left(t_{2}\right) \cot \frac{\alpha}{8}, \quad \varphi_{t_{2}}^{\prime}\left(r\left(t_{2}\right)\right)=\cot \frac{\alpha}{4} .
$$

In view of Property (5) the desired result would follow if we show that

$$
\varphi_{t_{1}}\left(r\left(t_{2}\right)\right)=r\left(t_{1}\right) \varphi\left(\frac{r\left(t_{2}\right)}{r\left(t_{1}\right)}\right) \geq \varphi_{t_{2}}\left(r\left(t_{2}\right)\right)=r\left(t_{2}\right) \cot \frac{\alpha}{8} .
$$

Setting $x=\frac{r\left(t_{2}\right)}{r\left(t_{1}\right)}$, the above inequality amounts to $\varphi(x) \geq x \cot \frac{\alpha}{8}$ and immediately follows from Properties (3) and (4) of the function φ.

Step 3. We now construct maps h_{n}. By the Riemann Mapping theorem, there is a C^{∞} diffeomorphism $h_{0}: D^{2} \rightarrow U_{1}$. For each $n=$ $1,2,3, \ldots$ we will construct maps $h_{n}: U_{n} \rightarrow U_{n+1}$ such that $h_{n} \mid U_{n-1}=$ Id.

Given two numbers $n-1 \leq s \leq n$ and $n-1 \leq t \leq n+1$ such that $s<t$ we construct a C^{∞} diffeomorphism $\hat{h}_{s t}: \tau_{s} \rightarrow \tau_{t}$ in the following way.

- $\hat{h}_{s t}: \gamma_{s i}^{(1)} \rightarrow \gamma_{t i}^{(1)}$ is a linear map, given by $\hat{h}_{s t}(z)=\frac{r(t)}{r(s)}(z)$, $z \in \gamma_{s i}^{(1)}$ and $i=1, \ldots, p ;$
- $\hat{h}_{s t}: \gamma_{s i}^{(j)} \rightarrow \gamma_{t i}^{(j)}$ is a map, given by $\hat{h}_{s t}(z)=v$, where $z=$ $\left(y, \varphi_{s}(y)\right)$ and $v=\left(\frac{r(t)}{r(s)} y, \varphi_{t}(y)\right)$ for $-r(s) \leq y \leq r(s), i=$ $2, \ldots, p, j=2, \ldots, 6$.
Now given $n-1 \leq s \leq n$, define the map $\hat{h}_{s}:=\hat{h}_{s t}$ with $t=2(s-n+$ 1) $+n-1$. The desired map $h_{n}: U_{n} \rightarrow U_{n+1}$ is now given as follows: for $A \in U_{n}$ choose a unique s such that $A \in \tau_{s}$ with $n-1 \leq s \leq n$ and then set $h_{n}(A)=B$ where $B=\hat{h}_{s}(A) \in \tau_{2(s-n+1)+n-1} \subset U_{n+1}$. It is easy to see that h_{n} is a C^{∞} diffeomorphism.

It follows that the map $h=\lim _{n \rightarrow \infty} h_{n-1} \circ \cdots \circ h_{1} \circ h_{0}$ is a well defined C^{∞} diffeomorphism from int D^{2} onto $P \backslash P^{*}$ where P^{*} is given by (27). It also follows from the construction of the map h that there is $C>0$ such that

$$
\begin{equation*}
\|h\|_{C^{1}} \leq C, \quad\left\|h^{-1}\right\|_{C^{1}} \leq C . \tag{28}
\end{equation*}
$$

Step 4. It remains to show that the map $f_{P}=h \circ f_{D^{2}} \circ h^{-1}$ is a $C^{1+\beta}$ diffeomorphism for some $\beta>0$.

Observe that $f_{P}\left(P \backslash P^{*}\right)=P \backslash P^{*}, f_{P}\left(P^{*}\right)=P^{*}$, and $f_{P} \mid P^{*}=\mathrm{Id}$. In particular, $f_{P} \mid P \backslash P^{*}$ is a C^{∞} diffeomorphism. It remains to show that f_{P} is of class $C^{1+\beta}$ on P^{*}. To do so we will show the following:

$$
\begin{equation*}
\left\|f_{P}-\operatorname{Id}\right\|_{C^{1+\beta}\left(U_{n+1} \backslash U_{n}\right)} \rightarrow 0 \tag{29}
\end{equation*}
$$

as $n \rightarrow \infty$.
First, we will prove the following lemma.
Lemma 9.5. Let $r(n)$ be a decreasing sequence such that $0<r(1)<1$ and

$$
\begin{equation*}
r(n+1)=r^{2}(n), \quad 0<r(1)<1 . \tag{30}
\end{equation*}
$$

Then the sequence of open sets $V_{n}=h^{-1}\left(U_{n}\right)$ satisfies (25) and

$$
V_{n-1} \subset f_{D^{2}}\left(V_{n}\right) \subset V_{n+1}
$$

Proof of the Lemma. Note that there are $C_{2} \geq C_{1}>0$ such that

$$
C_{1} r(n) \leq \operatorname{dist}\left(U_{n}, P^{*}\right) \leq C_{2} r(n)
$$

Furthermore, in view of (28) there are $C_{4} \geq C_{3}>0$ such that

$$
C_{3} r(n) \leq \operatorname{dist}\left(V_{n}, \partial D^{2}\right) \leq C_{4} r(n) .
$$

Since the map $f_{D^{2}}$ is identity on ∂D^{2} and is of class of smoothness $2+2 \kappa$, we obtain that for all sufficiently small r_{n}, any x in the neighborhood $U_{r_{n}}\left(\partial D^{2}\right)$ and any $\beta>0$

$$
\operatorname{dist}\left(x, f_{D^{2}}(x)\right)<r(n)^{2+2 \kappa-\beta}
$$

Therefore, for some $0<a<1$,

$$
C_{3} r(n)-r(n)^{2+a} \leq \operatorname{dist}\left(f_{D^{2}}(x), \partial D^{2}\right) \leq C_{4} r(n)+r(n)^{2+a} .
$$

To prove the desired inclusion we will show that

$$
C_{4} r(n+2)<C_{3} r(n)-r(n)^{2+a} \leq C_{4} r(n)+r(n)^{2+a}<C_{3} r(n-2) .
$$

We prove the leftmost inequality. Since $r(n+2)=r^{4}(n)$, we have

$$
\begin{aligned}
C_{4} r(n+2) & <C_{3} r(n)-r(n)^{2+a} \Leftrightarrow \\
C_{4} \frac{r(n+2)}{r(n)} & <C_{3}-r(n)^{1+a} \Leftrightarrow \\
C_{4} r(n)^{3} & <C_{3}-r(n)^{1+a} .
\end{aligned}
$$

For large values of n both $C_{4} r(n)^{3}$ and $r(n)^{1+a}$ are small. Hence, the last inequality holds.

We now prove the rightmost inequality (the inequality in the middle is obvious).

$$
\begin{aligned}
C_{4} r(n)+r(n)^{2+a} & <C_{3} r(n-2) \Leftrightarrow \\
C_{4}+r(n)^{1+a} & <C_{3} \frac{r(n-2)}{r(n)} \Leftrightarrow \\
C_{4}+r(n)^{1+a} & <C_{3} r(n)^{-\frac{3}{4}} .
\end{aligned}
$$

For large values of n the left hand side of the last inequality is close to C_{4} while the right hand side gets large. This completes the proof of the lemma.

The above lemma allows us to write

$$
\begin{gather*}
\left\|h \circ\left(f_{D^{2}}-\mathrm{Id}\right) \circ h^{-1}\right\|_{C^{1+\beta}\left(U_{n+1} \backslash U_{n}\right)} \leq \tag{31}\\
\|h\|_{C^{1+\beta}\left(V_{n+2} \backslash V_{n-1}\right)}\left\|f_{D^{2}}-\mathrm{Id}\right\|_{C^{1+\beta}\left(V_{n+1} \backslash V_{n}\right)}\left\|h^{-1}\right\|_{C^{1+\beta}\left(U_{n+1} \backslash U_{n}\right)} .
\end{gather*}
$$

Observe that $\left\|f_{D^{2}}-\mathrm{Id}\right\|_{C^{1+\beta}}$ admits Estimate (26) and it remains to estimate the norms $\|h\|_{C^{1+\beta}\left(V_{n+2} \backslash V_{n-1}\right)}$ and $\left\|h^{-1}\right\|_{C^{1+\beta}\left(U_{n+1} \backslash U_{n}\right)}$.

We write $\left.h\right|_{V_{n+2}}=\left.h_{n+1}\right|_{U_{n+1}}$, so in order to estimate the norm of h we will estimate the norm of h_{n+1}. In order to estimate the norm of h^{-1} we will need to estimate the norms of h_{n}^{-1} for each $n=0,1,2, \ldots$.

Further, it suffices to estimate the norm of h restricted to the boundary of the sets U_{n}. Recall that τ_{n}, the boundary of U_{n}, is a union of the curves $\gamma_{n i}^{(j)}, i=1, \ldots, p, j=1, \ldots, 6$. Note that the map h acts linearly on the curves $\gamma_{n i}^{(1)}$ and hence, the norm of h restricted to these parts of the curve τ_{n} is bounded.

The curves $\gamma_{n i}^{(2)}$ and $\gamma_{n i}^{(3)}$ are the graphs of the function φ_{n} and the curves $\gamma_{n i}^{(6)}$ are the graphs of the function ψ_{n}. We shall only give an estimate of the norm of h restricted to the curves $\gamma_{n i}^{(2)}$, since the estimates of the norm of h restricted to other curves are similar. Also, we can assume that i and $j>1$ are fixed.

Now for a fixed curve $\gamma_{n i}^{(2)}$ we define the orthogonal coordinate system centered at the vertex A_{i} with the vertical axis $A_{i} O$ (recall that O is the center of the polygon P). In this coordinate system the map h_{n} is given by

$$
h_{n}:\left(x, \varphi_{n}(x)\right) \rightarrow\left(\frac{r(n+1)}{r(n)} x, \varphi_{n+1}(x)\right),-r(n) \leq x \leq r(n)
$$

Since φ_{n} is symmetric, we can further assume that $x>0$. We have that

$$
\left\|h_{n}\right\|_{C^{1+\beta}}=\max \left(\left\|h_{n}\right\|_{C^{0}},\left\|d h_{n}\right\|_{C^{0}},\left\|d h_{n}\right\|_{C^{\beta}}\right)
$$

where

$$
\left\|d h_{n}\right\|_{C^{\beta}}=\max \left(\sup \frac{\left\|\partial_{x} h_{n}(x)-\partial_{y} h_{n}(y)\right\|}{\|x-y\|^{\beta}}, \sup \frac{\left\|\partial_{x} h_{n}(x)-\partial_{y} h_{n}(y)\right\|}{\|x-y\|^{\beta}}\right)
$$

and $\partial_{x} h_{n}$ and $\partial_{y} h_{n}$ are the partial derivatives of h with respect to the first and the second variables respectively.

Let us write $h_{n}=\left(h_{n}^{(1)}, h_{n}^{(2)}\right), y=\varphi_{n}(x)$ where

$$
h_{n}^{(1)}(x, y)=\frac{r(n+1)}{r(n)} x \text { and } h_{n}^{(2)}(x, y)=\varphi_{n+1}(x) .
$$

Since
$h_{n}^{(1)}(x, y)=\frac{r(n+1)}{r(n)} x \leq r(n+1)<1$ and $h_{n}^{(2)}(x, y)=\varphi_{n+1}(x)<K_{1}$,
we obtain that $\sup \left\|h_{n}\right\|<K_{1}$.

Further, we have that $\partial_{x} h_{n}^{(1)}(x, y)=\frac{r(n+1)}{r(n)}<1$ and

$$
\begin{aligned}
\partial_{y} h_{n}^{(2)}(x, y) & =\frac{\partial}{\partial y}\left(\frac{r(n+1)}{r(n)} x\right)=\frac{\partial}{\partial y}\left(\frac{r(n+1)}{r(n)} \varphi_{n}^{-1}(y)\right) \\
& =r(n+1)\left(\varphi^{-1}\right)^{\prime}\left(\frac{x}{r(n)}\right) \frac{1}{r(n)}<1
\end{aligned}
$$

Also, $\partial h_{n}^{(2)}(x, y)=\varphi_{n+1}^{\prime}(x)<\cot \frac{\alpha}{4}$ and

$$
\begin{aligned}
\partial h_{n}^{(2)}(x, y) & =\frac{\partial}{\partial y}\left(r(n+1) \varphi\left(\frac{r(n) \varphi^{-1}\left(\frac{y}{r(n)}\right)}{r(n+1)}\right)\right) \\
& =r(n+1) \varphi^{\prime} \frac{r(n)}{r(n+1)} \varphi^{-1}\left(\frac{y}{r(n)}\right)\left(\varphi^{-1}\right)^{\prime} \frac{1}{r(n)}<K_{2} .
\end{aligned}
$$

Thus, the partial derivatives of the functions h_{1} and h_{2} are bounded. However, a similar calculation shows that $\left\|d h_{n}\right\|_{C^{\beta}}$ tends to infinity as $r(n)^{-\beta}$. Therefore, we conclude that

$$
\begin{equation*}
\|h\|_{C^{1+\beta}\left(V_{n+2} \backslash V_{n-1}\right)} \leq r(n+1)^{-\beta}=r(n)^{-2 \beta} . \tag{32}
\end{equation*}
$$

Similar computations holds for $h_{n}^{-1}: U_{n+1} \rightarrow U_{n}$, with the only difference that the partial derivatives estimated by $\frac{r(n)}{r(n+1)}$ which is unbounded. Therefore, the Hölder norm of the first derivatives of h_{n}^{-1} are bounded by

$$
\frac{r(n)}{r(n+1)} \frac{1}{r(n)^{-\beta}}=\frac{r(n)^{1-\beta}}{r(n+1)}
$$

It follows that

$$
\begin{align*}
\left\|h^{-1}\right\|_{C^{1+\beta}\left(U_{n+1} \backslash U_{n}\right)} & =\left\|h_{n}^{-1} \circ h_{n-1}^{-1} \circ \cdots \circ h_{0}^{-1}\right\|_{C^{1+\beta}\left(U_{n+1} \backslash U_{n}\right)} \\
& \leq \prod_{i=0}^{n} \frac{r(n)^{1-\beta}}{r(n+1)}=\prod_{i=0}^{n} r(n)^{-1-\beta} . \tag{33}
\end{align*}
$$

Since $r(n-1)=r(n)^{\frac{1}{2}}$, we obtain that

$$
\begin{equation*}
\prod_{i=0}^{n} r(n)^{-1-\beta}=r(n)^{-(1+\beta)\left(1+\frac{1}{2}+\frac{1}{4}+\cdots+\frac{1}{2^{n+1}}\right)}=r(n)^{-2(1+\beta)\left(1-\frac{1}{2^{n+2}}\right)} \tag{34}
\end{equation*}
$$

Finally, using (31), we find that

$$
\begin{aligned}
\| h \circ\left(f_{D^{2}-} \mathrm{Id}\right) & \circ h^{-1} \|_{C^{1+\beta}\left(U_{n} \backslash U_{n-1}\right)} \\
& \leq r(n)^{-2 \beta} r(n)^{2+2 \kappa-\beta} r(n)^{-2(1+\beta)\left(1-\frac{1}{2^{n+2}}\right)} \\
& =r(n)^{2 \kappa-5 \beta+\frac{1}{2^{n+1}-\frac{\beta}{2^{n+1}}} .}
\end{aligned}
$$

One can choose β such that $2 \kappa-5 \beta+\frac{1}{2^{n+1}}-\frac{\beta}{2^{n+1}}>0$ and conclude that

$$
\left\|h \circ\left(f_{D^{2}}-\mathrm{Id}\right) \circ h^{-1}\right\|_{C^{1+\beta}\left(U_{n} \backslash U_{n-1}\right)} \rightarrow 0
$$

as $n \rightarrow \infty$. Therefore, f_{P} is tangent to Id near ∂P and hence, the map f_{P} is of class $C^{1+\beta}$.

Proof of Theorem 9.3. By construction, the map f_{P} generates via a homeomorphism T a $C^{1+\beta}$ diffeomorphism f_{M} of the surface M. We construct a C^{∞} diffeomorphism $\psi: D^{2} \rightarrow D^{2}$ such that $\varphi_{3}:=T \circ h \circ \psi$ is the desired area preserving diffeomorphism (that is $\left.\left(\varphi_{3}\right)_{*} m_{D^{2}}=m_{M}\right)$ which can be continuously extended to the closure of D^{2}.

Denote $\mu=\left(h^{-1} \circ T^{-1}\right)_{*} m_{M}$. Since both $m_{D^{2}}$ and m_{M} are normalized Lebesgue measures, we have

$$
\int_{D^{2}} d m_{D^{2}}=1=\int_{M} d m_{M}=\int_{D^{2}} d \mu .
$$

To obtain the desired result it suffices to show that there is a C^{∞} diffeomorphism $\psi: D^{2} \rightarrow D^{2}$ that can be continuously extended to ∂D^{2} such that $\psi_{*} \mu=m_{D^{2}}$.

Set $\mu_{1}=m_{D^{2}}$ and for $n>1$ define a sequence of measures μ_{n} such that
(i) $\mu_{n} \in C^{\infty}\left(D^{2}\right)$ that is the measure μ_{n} is absolutely continuous with respect to $m_{D^{2}}$ with density function of class C^{∞};
(ii) $\mu_{n}=\mu$ on $h^{-1}\left(U_{n-1}\right)$;
(iii) $\int_{h^{-1}\left(U_{n}\right)} d \mu_{n}=\int_{h^{-1}\left(U_{n}\right)} d \mu$.

It is clear that for any $n \geq 1, \int_{D^{2}} d \mu_{n}=\int_{D^{2}} d \mu=1$.
We need the following version of Moser's theorem (see [9], Lemma 1).
Lemma 9.6. Let ω and μ be two volume forms on an oriented manifold M and let K be a connected compact set such that the support of $\omega-\mu$ is contained in the interior of K and $\int_{K} d \omega=\int_{K} d \mu$. Then there is a C^{∞} diffeomorphism $\hat{\psi}: M \rightarrow M$ such that $\hat{\psi}|(M \backslash K)=I d|(M \backslash K)$ and $\hat{\psi}_{*} \omega=\mu$.

Applying Lemma 9.6 to each compact sets $K_{n}=h^{-1}\left(\bar{U}_{n} \backslash U_{n}\right)$ and volume forms $\mu_{n+1} \mid\left(\bar{U}_{n} \backslash U_{n}\right)$ and $\mu_{n} \mid\left(\bar{U}_{n} \backslash U_{n}\right)$, we obtain a C^{∞} diffeomorphism $\hat{\psi}_{n}: D^{2} \rightarrow D^{2}$ such that $\left(\hat{\psi}_{n}\right)_{*} \mu_{n+1}=\mu_{n}$ and $\hat{\psi}_{n} \mid h^{-1}\left(U_{n-1}\right)=$ Id. Then we let

$$
\psi_{n}=\hat{\psi}_{n} \circ \cdots \circ \hat{\psi}_{1} \quad \text { and } \quad \psi=\lim _{n \rightarrow \infty} \psi_{n} .
$$

The construction gives $\hat{\psi}_{n}\left(h^{-1}\left(U_{n} \backslash U_{n}\right)\right)=h^{-1}\left(U_{n} \backslash U_{n}\right)$. Recalling that $r(n)$ satisfies (30) and using (32), (33), and (34), we find that
$\operatorname{diam} \hat{\psi}_{n}^{-1}\left(U_{n}\right) \leq C d_{n}$ where $C>0$ is a constant and d_{n} is a decreasing sequence of numbers such that $\sum_{n=1}^{\infty} d_{n}<\infty$. This implies that $d\left(x, \hat{\psi}_{n}(x)\right) \leq C d_{n}$ for any $x \in D^{2}$. It follows that for any $x \in D^{2}$ and $n>j>0$,

$$
\begin{aligned}
d\left(\psi_{j}(x), \psi_{n}(x)\right) & \leq \sum_{i=j}^{n-1} d\left(\psi_{i}(x), \psi_{i+1}(x)\right) \\
& \leq \sum_{i=j}^{n-1} d\left(\psi_{i}(x), \hat{\psi}_{i}\left(\psi_{i}(x)\right)\right) \leq C \sum_{i=j}^{n-1} d_{i}
\end{aligned}
$$

This implies that the sequence ψ_{n} is uniformly Cauchy and hence, ψ is well defined and continuous on D^{2}. We can also get that $\psi: D^{2} \rightarrow D^{2}$ is a C^{∞} diffeomorphism.

By construction, we know that $\left(\psi_{n}\right)_{*} \mu_{n+1}=\mu_{1}=m_{D^{2}}$. Note that $D^{2}=\cup_{n \geq 1} h^{-1}\left(U_{n}\right)$. Hence, for any $x \in D^{2}$ there is $n>0$ and a neighborhood of x on which $\mu_{n+i}=\mu_{n}$ for any $i>0$. It follows that $\psi_{*} \mu=\left(\psi_{n}\right)_{*} \mu_{n}=m_{D^{2}}$ on the neighborhood and hence, $\psi_{*} \mu=m_{D^{2}}$ on D^{2}.

10. Completion of the proof of Theorem 3.1

10.1. Representing the $\operatorname{map} f_{M}$ as a Young diffeomorphism. Consider a smooth compact connected oriented surface M of genius $g \geq 0$ and the diffeomorphism $f_{M}: M \rightarrow M$ given by Statement 4 of Theorem 9.3. In this section we represent the map f_{M} as a Young diffeomorphism.

Proposition 10.1. The map f_{M} is a Young diffeomorphism. More precisely, one can choose the number r_{2} in (1) so small that the collection of s-subsets satisfies Conditions (Y1)-(Y6).

Proof. First note that we already know that the map $f_{T^{2}}$ is a Young diffeomorphism, so we can assume that the genius $g \geq 1$. Consider the collection of s-subsets Λ_{i}^{s} and the return time $\tau: \Lambda \rightarrow \mathbb{N}$ for the map $f_{\mathbb{T}^{2}}$ defined in Section5.3. Define $\Delta_{i}^{s}:=\varphi_{3}\left(\varphi_{2}\left(\varphi_{1}\left(\Lambda_{i}^{s}\right)\right)\right)$ with the return time on M (again denoted by τ) given by $\tau\left(\varphi_{3}\left(\varphi_{2}\left(\varphi_{1}(x)\right)\right)=\tau(x), x \in\right.$ \mathbb{T}^{2}. Let $\Delta=\bigcup_{i} \Delta_{i}^{s}$. We claim that f_{M} is a Young diffeomorphism with respect to the collection of s-subsets Δ_{i}^{s}.

To prove this we need to check Conditions (Y1)-(Y6). Since the maps $\varphi_{i}, i=1,2,3$ are homeomorphisms and (Y1) and (Y2) are satisfied for the map $f_{\mathbb{T}^{2}}$, then these conditions are also satisfied for f_{M}. In addition, (Y5) and (Y6) hold true for f_{M} since the maps $\varphi_{i}, i=1,2,3$ preserve the area.

To show (Y3) and (Y4) observe that the element of the Markov partition P in the Young tower representation for the map $f_{\mathbb{T}^{2}}$ is away from the critical points $x_{i}, i=1,2,3,4$. This implies that the map $\varphi_{3} \circ \varphi_{2} \circ \varphi_{1}$ is a smooth diffeomorphism from P onto its image. Since the return time function $\tilde{f}_{M}=f_{M}^{\tau}$ is defined on $\Delta \subset P$, (Y4) follows as it hold true for the map $f_{\mathbb{T}^{2}}$ by Proposition 5.2. Note that (Y3) holds for the map $f_{\mathbb{T}^{2}}$ for some constant $0<a<1$. If the number r_{2} in (11) is chosen sufficiently small, then the fact that (Y3) holds for the map f_{M} can be shown by applying the argument in the proof of Proposition 6.2. in [21.

Finally, arguing similarly it is easy to show that the diffeomorphism $f_{S^{2}}$ of the sphere S^{2} is a Young diffeomorphism. This completes the proof of the proposition.
10.2. Lower and upper polynomial bounds on the decay of correlations. Let f be a Young diffeomorphism admitting a Young tower with base Λ, s-sets Λ_{i}^{s}, and inducing time $\tau=\left\{\tau_{i}\right\}$. Consider the associated Young tower given by (see Section 5.4)

$$
\hat{Y}=\{(x, k) \in \Lambda \times \mathbb{N}: 0 \leq k<\tau(x)\} .
$$

For $k>0$ let

$$
\hat{M}_{k}=\{(x, \ell) \in \hat{Y}: 0 \leq \ell \leq \min \{k, \tau(x)\}\}
$$

Consider the projection $\pi: \hat{Y} \rightarrow M$ given by $\pi(x, \ell)=f^{\ell}(x)$ and let

$$
Y_{M}=\pi(\hat{Y}), \quad M_{k}=\pi\left(\hat{M}_{k}\right) .
$$

The sets M_{k} are clearly nested and exhaust Y.
To establish upper and lower bounds on the decay of correlations we need the following result which is a corollary of results in [23] (see also [8] and [22]).
Proposition 10.2. Assume that

- the greatest common divisor of numbers $\left\{\tau_{i}\right\}, \operatorname{gcd}\left\{\tau_{i}\right\}=1$, where τ_{i} are the values of the function τ;
- there is $C>0$ such that for all $x, y \in \Delta_{i}^{s}$ and $0 \leq j \leq \tau_{i}$,

$$
\begin{equation*}
d\left(f^{j}(x), f^{j}(y)\right) \leq C \max \left\{d(x, y), d\left(f^{\tau_{i}}(x), f^{\tau_{i}}(y)\right)\right\} ; \tag{35}
\end{equation*}
$$

- there are $\nu>0$ and $C_{1}>0$ such that

$$
\begin{equation*}
m(\tau>n) \leq \frac{C_{1}}{n^{\nu}} \tag{36}
\end{equation*}
$$

Then the following statements hold:
(1) There is $C_{2}>0$ such that $\operatorname{Cor}_{n}\left(h_{1}, h_{2}\right) \leq \frac{C_{2}}{n^{\nu-1}}$ for any $h_{1}, h_{2} \in$ $C^{\rho}(M)$.
(2) For any $h_{1}, h_{2} \in C^{\rho}(M)$ supported in M_{k} for some $k>0$, we have

$$
\begin{gather*}
\operatorname{Cor}_{n}\left(h_{1}, h_{2}\right)=\sum_{k=n+1}^{\infty} m(\{x: \tau(x)>k\}) \int_{M} h_{1} d m \int_{M} h_{2} d m+r_{\nu}(n), \tag{37}\\
\text { where } r_{\nu}(n)=O\left(R_{\nu}(n)\right) \text { and } \\
R_{\nu}(n)= \begin{cases}\frac{1}{n^{\nu}} & \text { if } \nu>2, \\
\frac{\log n}{n^{2}} & \text { if } \nu=2, \\
\frac{1}{n^{2 \nu-2}} & \text { if } 1<\nu<2 .\end{cases}
\end{gather*}
$$

Moreover, if $\int_{M} h_{1} \int_{M} h_{2}=0$, then $\operatorname{Cor}_{n}\left(h_{1}, h_{2}\right)=O\left(1 / n^{\nu}\right)$.
To apply Proposition 10.2 to the Young diffeomorphism f_{M} we need to verify the assumptions of this proposition.

To prove the first assumption that $\operatorname{gcd}\left\{\tau_{i}\right\}=1$ observe that the $\operatorname{maps} \varphi_{i}, i=1,2,3$ and the map H are homeomorphisms. Hence, it suffices to prove this for the linear map A. This is well known (see for example, [24]).

To prove the second assumption that the map f_{M} satisfies (35) observe that this is true for the map $f_{\mathbb{T}^{2}}^{\tau_{i}}$ of the torus which is smoothly conjugate to the map $f_{M}^{\tau_{i}}$.

Finally, to prove the third assumption observe that by Lemmas 7.2 and 8.3, we have that

$$
\begin{equation*}
\frac{C_{8}}{n^{\gamma-1}}<m(\{x \in \Delta: \tau(x)>n\})<\frac{C_{11}}{n^{\gamma^{\prime}-1}} \tag{38}
\end{equation*}
$$

where γ and γ^{\prime} are defined by (8). It is easy to see that $\gamma>\gamma^{\prime}>2$ for all $0<\alpha<\frac{1}{4}$ and $0<\mu<\frac{1}{2}$.

Since the homeomorphisms φ_{1}, φ_{2}, and φ_{3} are measure preserving we also have the same estimates for the map f_{M}^{τ}. In particular, (36) holds with $\nu=\gamma^{\prime}-1$ and $C_{1}=C_{11}$.

The upper bound on correlations is now an immediate corollary of Statement 1 of Proposition 10.2 where $\nu=\gamma^{\prime}-1$. In particular, we have $\gamma_{1}=\gamma^{\prime}-2>0$.

To obtain the lower bound on correlations we apply Statement 2 of Proposition 10.2 with $\nu=\gamma^{\prime}-1$ and obtain for all $h_{1}, h_{2} \in C^{\rho}(M)$ supported in M_{k} for some $k>0$ that

$$
\begin{equation*}
\operatorname{Cor}_{n}\left(h_{1}, h_{2}\right)=\sum_{k=n+1}^{\infty} m(\{x: \tau(x)>k\}) \int_{M} h_{1} d m \int_{M} h_{2} d m+r_{\gamma^{\prime}}(n) \tag{39}
\end{equation*}
$$

where $r_{\gamma^{\prime}}(n)=O\left(R_{\gamma^{\prime}}(n)\right)$ and

$$
R_{\gamma^{\prime}}(n)= \begin{cases}\frac{1}{n \gamma^{\prime}-1} & \text { if } \gamma^{\prime}>3, \\ \frac{\log n}{n^{2}} & \text { if } \gamma^{\prime}=3, \\ \frac{1}{n^{2} \gamma^{\prime}-4} & \text { if } 2<\gamma^{\prime}<3\end{cases}
$$

Consider the two cases $\gamma^{\prime} \geq 3$ and $2<\gamma^{\prime}<3$.
Assume first that $\gamma^{\prime}>3$, which is true if $\alpha<\frac{1}{6}$. By assumption, $\int_{M} h_{1} d m \int_{M} h_{2} d m>0$ and hence, applying (38) and (39), we obtain

$$
\operatorname{Cor}_{n}\left(h_{1}, h_{2}\right)>\frac{K_{1}}{n^{\gamma-2}}-\frac{K_{2}}{n^{\gamma^{\prime}-1}},
$$

where $K_{1}>0$ and $K_{2}>0$ are constants. Using definitions of γ and γ^{\prime} (see (8)) and choosing any $0<\mu<\frac{1}{2}$, one can show that $\gamma-2<\gamma^{\prime}-1$ for all $0<\alpha<\frac{1}{6} \pm^{4}$ We conclude that for some $C>0$,

$$
\operatorname{Cor}_{n}\left(h_{1}, h_{2}\right)>\frac{C}{n^{\gamma-2}} .
$$

Now, we consider the case when $\frac{1}{6}<\alpha<\frac{1}{4}$. This implies that $\gamma^{\prime}>2$. Depending on the value of μ, we may either have $\gamma^{\prime}>3$ or $\gamma^{\prime}<3$ and we assume the latter (otherwise we are back to the previous case). With this assumption we have

$$
\operatorname{Cor}_{n}\left(h_{1}, h_{2}\right)>\frac{K_{1}}{n^{\gamma-2}}-\frac{K_{3}}{n^{2 \gamma^{\prime}-4}},
$$

where $K_{3}>0$ is a constant. Choosing again $0<\mu<\frac{1}{2}$, one can show that $\gamma-2<2 \gamma^{\prime}-4$ holds for all $0<\alpha<\frac{1}{4}{ }^{5}$ Thus we have the desired estimate

$$
\operatorname{Cor}_{n}\left(h_{1}, h_{2}\right)>\frac{C}{n^{\gamma-2}}
$$

for some $C>0$ and all $0<\alpha<\frac{1}{4}$. In particular, we have $\gamma_{2}=\gamma-2>0$.
10.3. The Central Limit Theorem. By Statement 1 of Theorem 3.1. for any Hölder continuous function h satisfying $\int h d m=0$ we have $\operatorname{Cor}_{n}(h, h)=O\left(\frac{1}{n \gamma^{\prime}-1}\right)$. This implies that the correlation function is summable, when $\gamma^{\prime}>2$ that is when $0<\alpha<\frac{1}{4}$. The desired result now follows from [14], Theorem 4.1 (see also [23], Theorem 3.1).

[^2]10.4. The Large Deviation property. We consider the Young tower Y that represents the map f_{M}. The upper bound in (38) allows us to use Theorem 4.2 in [17] to obtain for $0<\alpha<\frac{1}{4}$ that for all sufficiently small $a>0$
$$
m_{M}\left(\left|\frac{1}{n} \sum_{i=0}^{n-1} h\left(f_{M}^{i}(x)\right)-\int h\right|>\varepsilon\right)<C_{h, a} \varepsilon^{-2\left(\gamma^{\prime}-2-a\right)} n^{-\left(\gamma^{\prime}-2-a\right)} .
$$

Moreover, for each such an $a>0$ the constant $C_{h, a}$ depends on the Hölder norm of h continuously.

To get a lower bound we need to check the conditions of Theorem 4.3 in [17]. More precisely, for the set $\hat{Y}_{k}=\{(x, l) \in \hat{Y}: \tau(x)>k\}$ it must be true that for some $k, m_{M}\left(\pi\left(\hat{Y}_{k}\right)\right)<1$ where $\pi: \hat{Y} \rightarrow M$ is given by $\pi(x, k)=f^{k}(x)$ as before.

Given k let us chose a partition element Δ_{i} in the base Δ of the tower for f_{M} with $\tau\left(\Delta_{i}\right) \leq k$. Then $\Delta_{i} \subset \hat{Y} \backslash \hat{Y}_{k}$ and obviously $\hat{m}_{M}\left(\Delta_{i}\right)>$ 0 . Thus $\hat{m}_{M}\left(\hat{Y}_{k}\right)<1$ and since π is measure preserving, we obtain $m_{M}\left(\pi\left(\hat{Y}_{k}\right)\right)<1$. Thus, by Theorem 4.3 in [17], we obtain the lower bound

$$
\frac{1}{n^{\gamma^{\prime}-2+a}}<m_{M}\left(\left|\frac{1}{n} \sum_{i=0}^{n-1} h\left(f_{M}^{i}(x)\right)-\int h\right|>\varepsilon\right)
$$

for small ε, open and dense subset of Hölder continuous observables h, and infinitely many n.
10.5. The measure of maximal entropy (MME). Recall that the diffeomorphism f_{M} of the surface M is a Young diffeomorphism and consider the corresponding collection $\left\{\Delta_{i}^{s}\right\}$ of s-sets. Denote by $\mathcal{S}_{n}=$ $\left\{\Delta_{i}^{s}: \tau\left(\Delta_{i}^{s}\right)=n\right\}$. Since the map f_{M} is topologically conjugate to the toral automorphism A, the number \mathcal{S}_{n} for f_{M} is equal to the number \mathcal{S}_{n} for A. The latter is known to satisfy $\mathcal{S}_{n} \leq e^{h n}$ with $h<h_{\text {top }}(A)$ (see [21]). It now follows from [20] (see Theorem 7.1) and [23] that the $\operatorname{map} f_{M}$ possesses a unique MME which has all the desired properties.

References

[1] D. Anosov and A. Katok, New examples in smooth ergodic theory. Ergodic diffeomorphisms, Trans. Moscow. Math. Soc., 23 (1970) 1-35.
[2] L. Barreira and Ya. Pesin, Introduction to Smooth Ergodic Theory, 148, Graduate Studies in Mathematics, AM, Providence, RI, 2013.
[3] M. Brin, Bernoulli diffeomorphims with nonzero exponents, ETDS, 1 (1981), 453-465.
[4] M. Brin, J. Feldman, and A. Katok,Bernoulli diffeomorphisms and group extensions of dynamical systems with non-zero characteristic exponents, Ann. Math., 113:1 (1981) 159-179.
[5] H. Bruin and D. Terhesiu, Regular variation and rates of mixing for infinite measure preserving almost Anosov diffeomorphisms, ETDS, 40 (2020) 663698.
[6] D. Dolgopyat and Ya. Pesin, Every compact manifold carries a completely hyperbolic diffeomorphism, ETDS 22 (2002), 409-435.
[7] P. Eslami and C. Liverani, Mixing rates for symplectic almost Anosov maps, Nonlinearity, 34 (2021) 3709-3731.
[8] S. Gouëzel, Sharp polynomial estimates for the decay of correlations, Israel J. Math, 139 (2004) 29-65.
[9] R. E. Greene and K. Shiohama, Diffeomorphisms and volume-preserving embeddings of noncompact manifolds, Trans. Amer. Math. Soc., 255 (1979) 403414, .
[10] H. Hu, Decay of correlations for piecewise smooth maps with indifferent fixed point, ETDS, 24 (2004) 495-524.
[11] H. Hu and X. Zhang, Polynomial decay of correlation for almost Anosov maps, ETDS, 2017.
[12] A. Katok, Bernoulli diffeomorphisms on surfaces, Ann. Math., 110:3 (1979) 529-547.
[13] A. Katok and B. Hasselblatt. Introduction to the theory modern theory of $d y$ namical systems, 54, Cambridge Univ. Press, 1995.
[14] C. Liverani, Central limit theorem for deterministic systems, International Conference on Dynamical Systems (Montevideo, 1995), 362, Pitman Res. Notes Math. Ser., Longman-Harlow (1996) 56-75.
[15] C. Liverani, B. Saussol, and S. Vaienti. A probabilistic approach to intermittency, ETDS 19 (1999) 671-685.
[16] C. Liverani and M.Martens, Convergence to equilibrium for intermittent symplectic maps, Comm. Math. Phys., 260(3),(2005) 527-556.
[17] I. Melbourne and M. Nicol, Large Deviations for nonuniformly hyperbolic systems, Trans. AMS 360 (2008) 6661-6676.
[18] I. Melbourne and D. Terhesiu, Decay of correlations for non-uniformly expanding systems with general return times, ETDS, 34 (2014) 893-918.
[19] Yves Pomeau and Paul Manneville, Intermittent transition to turbulence in dissipative dynamical systems, Comm. Math. Phys., 74:2 (1980) 189-197.
[20] Y. Pesin, S. Senti, and K. Zhang, Thermodynamics of towers of hyperbolic type, Trans. Amer. Math. Soc., 368:12 (2016) 8519-8552.
[21] Y. Pesin, S. Senti, and K. Zhang, Thermodynamics of the Katok map, ETDS, 39:3 (2019) 764-794.
[22] O. Sarig, Subexponential decay of correlations, Inventiones Mathematicae, 150 (2002) 629-653.
[23] F. Shahidi and A. Zelerowicz, Thermodynamics via inducing, J. Stat. Phys. 175:2 (2019) 351-383.
[24] L.-S. Young, Statistical properties of dynamical systems with some hyperbolicity, Ann. Math., 147:2 (1998) 585-650.
[25] L.-S. Young, Recurrence times and rates of mixing, Israel J. Math., 110 (1999) 153-188.

Department of Mathematics, Pennsylvania State University, University Park, PA 16802, USA

Email address: pesin@math.psu.edu
Instituto de Matematica, Universidade Federal do Rio de Janeiro, C.P. 68 530, CEP 21945-970, R.J., Brazil

Email address: senti@im.ufrj.br
Department of Mathematics, Pennsylvania State University, University Park, PA, 16802, USA

Email address: fus144@psu.edu

[^0]: ${ }^{1}$ We believe that the rate of decay of correlations of $f_{T^{2}}$ is determined by the rate of decay of the slow down function at 0 .
 ${ }^{2}$ This is due to the fact that the slow down function can be chosen arbitrarily flat at 0 .

[^1]: ${ }^{3}$ Our requirements are slightly different than those in [24] since we do not assume the inducing domain Λ to be compact.

[^2]: ${ }^{4}$ One can use a computer assisted calculation to show that $\gamma-2<\gamma^{\prime}-1$ for all $0<\alpha<0.42 \ldots$.
 ${ }^{5}$ Again a computer assisted calculation to show that $\gamma-2<2 \gamma^{\prime}-4$ holds for all $0<\alpha<0.36 \ldots$.

