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GEODESIC FLOWS ON CLOSED RIEMANNIAN MANIFOLDS

WITHOUT FOCAL POINTS

UDC 517.9

Ja. B. PESIN

Abstract. In this paper it is proved that a geodesic flow on a two-dimensional compact
manifold of genus greater than 1 with Riemannian metric without focal points is isomorphic
with a Bernoulli flow. This result generalizes to the multidimensional case. The proof is
based on establishing some metric properties of flows with nonzero Ljapunov exponents (the
ΑΓ-property, etc.), and also the construction of horospheres and leaves on a very wide class of
Riemannian manifolds, together with a study of some of their geometric properties.

Bibliography: 24 titles.

Introduction

Studies connected with geodesic flows on manifolds have not only a long history

(which is expounded in detail in [1], §3), but have served as the impetus for the creation

of a general theory of U-systems* (cf. [1], [2] and [7]). In the case when the manifold

is compact and has negative curvature, the geodesic flow is a U-flow,* so it is topologically

transitive, has the /^-property, etc. (cf. [1]). We shall be interested in properties of geodesic

flows on manifolds without focal points. Topological properties of such flows were studied

by Eberlein [14]. In particular, he proved that a geodesic flow on a compact manifold

satisfying the axiom of uniform visibility (cf. §5) and without conjugate points is topologic-

ally transitive. The first result establishing some metric properties of geodesic flows on two-

dimensional manifolds without focal points was obtained by Kramli [5]. In [11] we

generalized his theorem, proving that geodesic flows on compact surfaces without focal

points of genus greater than one are ergodic. In the present paper we shall extend the study

of metric properties of geodesic flows, relying, as in [11], on results of two kinds.

First is the description of metric properties of dynamical systems (i.e. diffeomorphisms

and flows) preserving a measure equivalent with the smooth Lebesgue measure and having

nonzero Ljapunov exponents on a set of positive measure (cf. [9] —[12]). However for

flows in [11] only ergodicity on a set of positive measure was proved. In part I of the

AMS (MOS) subject classifications (1970). Primary 28A65, S8F15, 34C35; Secondary 53C2O.
'Editor's note. In English one speaks of Anosov systems and flows.
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present paper we shall prove under some additional hypotheses the ΛΓ-property and the

Bernoulli property on a set of positive measure. Our result is analogous to the theorem on

the alternative for U-flows (cf. [11, Theorem 14).

Second is the construction and description of the properties of horospheres. It is

well known (cf. [2]) how to construct horospheres in LobacevskiT space. With the help

of the invariant contracting and expanding foliations for geodesic flows one can define

horospheres on any compact manifold of variable negative curvature. Eberlein (cf. [16]

and [22]), considering level lines of a Busemann function, constructed horospheres on

manifolds of nonpositive curvature; he also studied some of their geometric properties (cf.

also [21]). In part II of the present paper we shall construct horospheres on manifolds

without conjugate points, satisfying a certain condition which we call the axiom of asymp-

toticity (cf. §5). This condition will be satisfied, for example, if the manifold has no

focal points or satisfies the axiom of uniform visibility. We shall also study a series of

geometric properties of horospheres (cf. §7).

We note that in [11] results related to the construction of horospheres were only

formulated. In this paper they are proved in detail.

On the basis of the results obtained, in part III we shall continue the study of metric

properties of geodesic flows begun in [11]. We shall show that geodesic flows on com-

pact surfaces without focal points of genus greater than 1 are isomorphic with Bernoulli

flows.

The author expresses profound gratitude to D. V. Anosov for his attention to the

work and helpful discussions.

PART I. METRIC PROPERTIES OF FLOWS WITH NONZERO

LJAPUNOV EXPONENTS

§1. Preliminary information and results

1.1. In the present paper, a flow f* on a smooth Riemannian manifold Μ is con-

sidered; f* is defined by a vector field X and preserves a finite measure v, equivalent to

the measure induced by some Riemannian metric. The smoothness of Μ and the Riemann-

ian metric can be assumed to be of class C°° without loss of generality; the scalar product

and norm in the tangent space TXM are denoted by < , ) x and || • \\x (sometimes the

index χ will be omitted). On the tangent bundle TM there is defined a measurable function

χ+ (χ, ν) = lim — In fl dfv II, υ e= TXM,
t-KX> t

called the Ljapunov characteristic exponent (cf. [3], [8] and [10]) (the number χ+(χ, υ)

is called the characteristic exponent of the vector υ at the point x).

Our basic assumption is that the set Λ = {χ € Μ: χ+(χ, υ) Φ 0 for any υ ε ΤχΜ,

υ Φ αΧ, α G R} , which is measurable and invariant with respect to /*, has positive meas-

ure. In the present section some metric properties of the flow on the set Λ are described.

1.2. PROPOSITION 1.1 (cf. [10], §1, and [11], §9). There exist a measurable set

Λ C Λ, v(A) = v(A), measurable functions X(x), C(x, e) and K(x, e), χ G Λ, e > 0, and

a measurable family of subspaces Eix, E2x C TXM such that for any t G R
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3. TxM=Elx®{aX(x)}®Eis,

dfEu = Etftw, i = l , 2 ;

4. X+(x, f ) < 0 for each » e £ u

%+(x, v)>0 for any

5. for any t>0

analogous inequalities are valid for υ G E2x;

6. the angle y(x) between the subspaces Elx and E2x admits the estimate y(x) >

K(x, e).

1.3. We set for any integer s > 1

A,= {x^A : λ(χ) ^ 1 .where s is the smallest number satisfying this inequality}.
s

It is obvious that As is a measurable set which is invariant with respect to / ' , while

U i > 1 A i = A, and if sl Φ s2, then Λ̂  Π Λ 5 = 0 . For χ G As, we set e(x) = es

= (l/100)hi(l + 2/s). The function e(x) is measurable and invariant with respect to / ' .

For / > 1 we set

Λ,' = { * e A , : C ( x , e (x)) < /, Κ'1 (χ, ε (χ)) < /}.

The set A' is measurable, while U / : s , A ' = A. and A' C A ' + *. One can show (cf.

[11], Proposition 4.6) that the subspaces Elx and E2x depend continuously on the point

χ in the set As. We also set

Ai,s (Ak,s) =* {x s Λ5 (Λ!): dim Eve = k }.

PROPOSITION 1.2. (cf. [10], Theorem 1.3.1). 1. For any χ GX'ks (the bar de-

notes closure) there exist subspaces Ejx, i = 1,2, satisfying Proposition 1.1, while X(x) =

1 - Us, Ox, e(x)) = / and K(x, e(x)) = /"'.

_ 2. The subspaces Eix, i = 1,2, depend continuously on the point χ in the set

1.4. In this subsection local stable and unstable manifolds are defined for flows.

Let us assume that / f G C, r > 2. We set n(x) = (1 - lls)e5€s for χ G A$. If δ(χ)

is a measurable function on the set A s , we write

B'(6(x))={u<=Eix:lul<t>(x)}, 1 = 1,2,
B<+a (δ (χ)) = {u e= Elx 0 {aX (it)>: | « I , < Λ (*), a e R>,

U (χ, δ (*)) = exp,Β1 (δ (*)) X

Also let p(x, y) denote the distance in Μ induced by the Riemannian metric.
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PROPOSITION 1.3. (cf. [10], §2.2). There exist measurable functions δ'(χ), δ(χ) and

A(x), χ G Λ,, and a family of maps φ): Β1(δ(χ)) —> Β4(δ(χ)) of class Cr~l, depending

measurably on χ Ε As, satisfying the following conditions:

1. The set V~(x) = {expx(u, φ)α): u G Β1(δ(χ))} is a submanifold of Μ of class

c-1.
2. xGV-(x),TxV-(x)=Elx.

3. For any y G V~(x) andt>0 we have f*(y) <= U(f\x), δ'(/'(*))) and

Ρ {f (*). f(M)XA (χ) (κ (x)/p (χ, y). ^ -1)

4. For awy r > 0

δ'

, δ ί = inf

= sup

5. /*(F-(x)) n i/(f'(x), δ(/\χ))) c ^(Λ(*))/οΓβ«ν r e R.

The submanifold F~(x) is called the local stable manifold passing through the point x.

Analogously one defines the local unstable manifold

V* (x) = {exp, («, * (x) u) : u ε Β* (δ (χ))},

where \p(x): Β2(δ(χ)) —*• Β3(δ(χ)) is a map of class C ' 1 . The manifold V + (x) has

properties 2—5 of Proposition 1.2 (with ί changed to - r).

PROPOSITION 1.4 (cf. [10], Theorem 2.3.1 and Remark 2.3.1).

1. Ifx, y e A s j e U(x, Κδ(χ)) and y ί F^

V(x)fl V'(y) Π i/(i/,-i-

2. Ifx € Λ',, x, e Λ',, i = 1, 2, . . . , and xt -* x, then ^-(x,) η U(x, q)

η U(x, q) in the C1-topology, where 0 < q <δι

χ.

3. For any x, y G A'fcpJ and y G i/(x, ί^δ^),

V- (y) Π £/ (*. βί) ̂  {exp* («, ψ, («)): « e β 1 ( j δ ί ) | ,

\py: Βι(Κδ[) —> 54(δ^) is a map of class Cr~x, while

max max [ || ̂  («) |14- Β ̂ ^ (u) Π ̂  1.

i [ ' ) ( i )
The analogous assertion is valid for the manifold V+(y).

Let δ (χ) be a positive measurable function on the set Λ. For χ G Λ and r > 0 we

set

υ
<1<τ

υ
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Analogously one defines submanifolds V+0(x) and V+0(x).

PROPOSITION 1.5 (cf. [11], Theorem 9.1). There exists a measurable function

8T(JC), 0 < ?(*) < 8(JC), x e Λ, satisfying (1.2), sHcfc tfiai ?~ ο (χ) C V-°(x) and V+ °

1.5. Let W1 and W2 be two smooth submanifolds, transverse to the local stable mani-

folds passing through points;/ G Λ ' Μ η ί/(χ, &δ£). There exist sets ΐϊ/1 C W1 and Ϊ)/2 C W2

for which the succession map p: W1 —> W2 is defined. Namely, if y E l f ' n V~(w) and

w e J s n U(x, y*S's), then p(y) = W2 η V~(w).

PROPOSITION 1.6(cf. [10], Theorem 3.2.1). There exist constants ql

s andj\ satisfying

the following conditions:

1. Any succession map constructed as indicated above is absolutely continuous in

the neighborhood U(x, ql

s).

2. The jacobian J(p)(y) (y is a point of density of the set W1 Π Al

k s) satisfies

i max d ( β β , Ew).

Similarly one can construct a succession map using local unstable manifolds and

prove the assertion analogous to Proposition 1.6.

In what follows, one denotes by v~, v*, v~° and v*° measures on the manifolds

V~(x), V+(x), V~°(x) and V+0(x) respectively, induced by the Riemannian metric.

1.6. Ergodicity.

THEOREM 1.1 (cf. [11], Theorem 7.2). There exist measurable sets Λ,-, ι = 0, 1,

2, . . . , such that

1. Λ(ΠΛ/ = 0 , i=h j* U Af = Λ, A( C AftfS for some k and s;

2.v(A.J=0,v(AO>0 for t > 0 ;

3./'(Λ,)=Λ, for any fe=R;

4. the flow /f|Aj. is ergodic for i > 0.

1.7. We shall assume that the reader is familiar with the basic concepts of general

measure theory and ergodic theory, and also with the concepts connected with measurable

partitions, entropy, the /^-property, and the Bernoulli property ([13], [19]).

In this section, we shall dwell only on the concept of metric transitivity (cf. [1],

§5). It will be assumed that the measure ν is normalized. Let ξ be a measurable parti-

tion of the space (M, v). The partition | is called metrically transitive if there exists no

measurable f-set of intermediate measure (i.e. a |-set A for which 0 < v(A) <_1).

1.8. Now we introduce the concept of a parallelepiped at a point w e Al

ks, which

is used in the following constructions, and we shall study some of its properties.

A measurable set Π is called a δ-parallelepiped at the point w £ Λ k s if it satisfies

the following conditions:
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1. w <= Π C Xfe· Π Β (w, δ) (h = ψ (/, fc, s) [Icf. [11], Theorem 7.4(i)].
2. Ρ"0(ι/) Π V+ (z) e=ll for any y, ζ ε Π .

We shall say that the measurable set A CM intersects the parallelepiped Π leafwise

if for any w G Α η Π we have V+(w) n n c i n n .

The following assertions are proved just as in [11] (cf. Lemmas 8.1 and 8.4).

PROPOSITION 1.7. For any number δ, 0 < δ < 8lJS, and any w G Λ^ one can

find a number r > 0, independent of w, and a δ-parallelepiped Π at w, such that Al

k s

η B(w, r) C Π.

PROPOSITION 1.8. Let Π be a δ-parallelepiped, a a finite partition of Μ with

piecewise-smooth boundaries, and β > 0. There exists an Nt > 0 such that for any N1

> Ν > N1 and β-almost any element A G \f^ffa\A k s one can find a set Ε C A,

intersecting Π leafwise, for which j^iTXX/l))"1 > 1 - β.

1.9. "Measurable foliations". We fix k > 0 and s > 1, and for χ G Λ k s we set

^-(*)= υ r*{ν(f m, w+(X)= υ r'(v+(?(χ)», α.4)
-O0</<00 -00</<00

The following assertions are proved in [12].

THEOREM \2 (cf. [12], Theorem 3). For any x, y G Aks and t G R one te

i/ie following assertions:

l.W-(x)r\W-(y)=0, if y&W-(x).
2.W-(x) = W-(y), if y(=W-(x).

3. W^e) is an immersed k-dimensional submanifold in Μ of class C " 1 without

boundary.

5. Ify G W~(x), then /0 / f ( H ,- ( ; c ) ) (/ f W, / ' Ο ) ) ~ * 0 as r - + ~ (nere P / t ( w , - ( x ) )

w the distance in the submanifold ft(W~(x)) induced by the Riemannian metric).

6. Assertions 1—5 remain valid if in them one replaces W~(x) by W+(x) (and in

5 lets t tend to ~ °°).

Let JC be a density point of the set Xl

k s, and A C Λ ' ^ η U(x, 8l

s/8) a measur-

able set of positive measure. For y G A we denote by njy), i = 1, 2 the se-

quence of moments at which the semitrajectory {/"()>)}, η > 0, lands in the set A

THEOREM 1.3 (cf. [12], Theorem 4). For almost any y G A

The sets Λ,· η W,-(x), χ G Λ,· (cf. Theorem 1.1) form a partition of Λ,·, which we

denote by f,·.

i 1 ) The function ψ is constructed in [11] for the case of a diffeomorphism. The proof for
the case of a flow differs only in that the role of V~(x) is played by K " (x).
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THEOREM 1.4 (cf. [12], Theorem 1). There exists a partition η of the set Λ,·

which has the following properties:

1. For almost any χ e Λ(- the set ϋη(χ) is mod 0 an open subset of W~(x).

3. V Λΐ = e.

4. λ Λι = ν(ξ,).
fc=-oo

1.10. In conclusion we give some notation which is used constantly in this paper.

Η is the universal Riemannian covering manifold of Μ (dim Μ = m).

SM (SH) is the (2m - l)-dimensional manifold in TM (77/) consisting of line ele-

ments, i.e. pairs (JC, υ), χ GM(H), υ & TXM (ΤχΗ), where ||υ|| = 1 (sometimes the line

element will be denoted simply by υ).

y(t), yv(t) and yxy(t) are respectively a geodesic in Μ οτ Η (parametrized by arc

length), the geodesic defined by the line element υ (i.e. γυ(0) = υ), and a geodesic joining

χ and y (in this case we assume that χ = 7^(0) and y = yxy(t), where t > 0).

Sm~1(x, t) is the (m — l)-dimensional sphere in Η with center at the point χ and

radius t, which is a submanifold of Η of class Cr~x (r is the smoothness class of the

Riemannian metric).

Graph(i^) is the graph of the map ψ.

The phrase "Proposition 4.4(1)" means assertion 1 of Proposition 4.4.

§2. The ^-property

THEOREM 2.1. Assume that the flow / ' |Λ ( · has continuous spectrum (cf. [13],

§2). Then it is a K-flow.

PROOF. We shall show that the partition f,· is metrically transitive. For the case

of a U-system this assertion was proved by Anosov (cf. [1], Theorem 13); we shall ad-

here to basically the same scheme of argument. One can assume that Λ,- C Ah s. We

set Λ' = A'ks η Λ,·.

Let us assume that there exists a measurable ξ,-set A of intermediate measure.

LEMMA 2.1. There exists a Borel %t-set Β of intermediate measure.

PROOF. For some / > 0 we have v(A Π Λ') > 0. By virtue of Proposition 1.6

there exists a point χ e Α Π Λ 1 such that the set C = ν+(χ) η A C\ Λ' is measurable

and v^(C) > 0. There exists a closed set D C C such that v(D) > 0. According to

Proposition 1.6 the set Β = U^eDW^Cv) has positive measure. We denote by Q the

set of rational numbers. It is easy to see that in (1.4) the union can be taken over t G

Q. We have

U U r'(y-(f(y)))= U f ( U
D t<=Q teQ t

Since the set f*(D) is closed, by virtue of Proposition 1.4(2) the set (J

is Borel, and consequently Β is Borel. The lemma is proved.
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The following assertion is proved in the same way as Lemma 21.3 in [1].

LEMMA 2.2. There exists α τ > 0 such that the set C = U !*!<,•/'(·#) has inter-

mediate measure.

We proceed to the proof of the theorem. We choose numbers e and / such that

0<e<|v(C), (2·1)

ν (A,\A*) < εν (Λ<). ( 2 2 )

By virtue of Proposition 1.7 (cf. also [11], Lemma 8.3) there exists a covering of the

set Λ' by parallelepipeds Π 1 ( . . . , Um with centers at the points xx, . . . , xm, whose

diameters are less than %τ. (The number τ is defined in Lemma 2.2. One can show

that each Π;· is contained mod 0 in the set Λ,·; cf. [11], Theorem 7.1.) From the con-

tinuity of the spectrum of the flow fx on the set Λ,- follows (cf. Lemma 21.1 in [1])

the existence of a number Δ > 0 and a sequence of numbers tn —• °° such that for

any / = 1, . . . , m

v(r'n(fi)nny-)>A. (2-3)

We denote by JT. the measure in the quotient space Π;-/ξ;-~ο, where %j° is the partition of

IL by the submanifolds V~°(x) (the measure v'j is absolutely continuous with respect to the

measures v+, where χ e IL). From (2.2), the definition of the set C (cf. Lemma 2.2) and

Proposition 1.6 follows the existence of a δ > 0 such that

v, ({y 6= A1: V-° (y) C Γ'" (C) Π Π/}) > δ. (2.4)

We choose any number γ such that 0 < γ < ^minfo, e}. There exists a measurable finite

partition a = {A1, . . . , At} of the manifold M, each element of which has piecewise

smooth boundary, and an α-set D such that

v ( C A D ) < 7 . (2.5)

We consider the parallelepiped Uy. From Proposition 1.8 for β < lAminx<k<ilAk

follows the existence of a T > 0 such that for any t > Τ one can find a set Ft satisfying

the condition

Y (2-6)

and such that the set Pt = f-\D)\Ft intersects Π, leafwise. It follows from (2.4)-(2.6) that

for any tn > Τ one can find a ^ e n , such that the set Qn = V~°(yn) η Pt η Ι ^ is

measurable and

jj (2.7)

From what was said above it follows that
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( u ^ ( Z ) ) n n '
Hence from (2.5), (2.7) and Proposition 1.6(2) it follows that for tn > Τ

ν (f*n (C) η n j · (v (nor1 > ι - (2γ + -X- yij y|.

One argues analogously for the parallelepipeds Π 2 , . . . , Um. After this, taking account of

(2.2) we get that for sufficiently large tn

ν (Γ'π (C) Π Λ,·) · (ν (Λ,))"1 > 1 - mY (2 + Λ'δ"1) /J - ε.

Since the number γ can be chosen arbitrarily small (independently of m and δ), this in-

equality contradicts (2.1). Thus, we have proved that ΚΙ;) = ν. Now Theorem 2.1 follows

from Theorem 1.4, the definition of a ̂ -system and a result of D. Rudolph [20].

§3. The Bernoulli property

THEOREM 3.1. Assume that the flow Ft = /f|A,- has continuous spectrum. Then it

is isomorphic with a Bernoulli flow.

The method of proof of this theorem goes back to Ornstein [19] and is a simple modi-

fication of the construction used in [11] to prove the analogous assertion in the case of a

diffeomorphism. We shall only indicate those changes which must be made in the proof

presented there (cf. [11], Theorem 8.1). Our construction is based on the concept of δ-

parallelepiped, introduced in §1.8. We fix e > 0, and let / > 0 be such that

LEMMA 3.1. (cf. [11], Lemma 8.5). For any δ > 0 there exists α δλ,Ό <δλ < δ,

such that for any δ ̂ parallelepiped Π and any set ECU, v(E) > 0, intersecting Π leafwise,

one can find a bijective map θ: Ε ̂ + Π (with respect to the normalized measures on Ε

and Π), satisfying the following conditions:

1) The jacobian J(9)(y) of the map θ at the point y &E satisfies |/(0)O) - 11 < δ.

2) P(Ft(y),Ft(<d{y)))<^ * > 0 , ye=E.

PROOF. Let Π be a δ-parallelepiped at the point w, and let w, e Π. We consider

the succession map pw w of a measurable subset of V~ °(w) onto a measurable subset of

r V i ) , defined by means of the local stable manifolds K+O), y e Π (cf. §1.5). If δι

is sufficiently small, then on the basis of (1.3) the jacobian J(pWiWl) satisfies

τ « · (3·ΐ)

Lowering the number δ1, one can assume by virtue of (1.1) that for any yit y2 ε V~(w)

and t > 0

(3 ·2)

Hence (3.2) holds for any yx, y2 € V~°(w) and t > 0. Let Ε be a measurable set of posi-

tive measure which intersects Π leafwise, and let
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θ 0 : Ε Π V"°(o>)22ii* Π Π V-° (w)

be any bijective measure-preserving map (keeping in mind the properly normalized measure

u~°). If ye Ε, then

2 = V+ (y) Π Γ « ( ί » ) ε Π η V~° (a»)·.

Moreover, ζ GE, so that ζ G if C F~°(w). Hence the formula

Θ (y) = v+ (θ, (ζ» η r ° G/) - Λ.., ° Θ0

properly defines the map Θ. The first assertion follows from (3.1), and the second from

(3.2) and the condition 0(y) G V"0(y) for y &E. The lemma is proved.

The proof proceeds further just as in [11] (cf. the proof of Theorem 8.1).

PART II. THE CONSTRUCTION OF HOROSPHERES AND LEAVES

FOR GEODESIC FLOWS

§4. Preliminary information. The structure of the variational

equation for geodesic flows

In this section we give a brief survey of the concepts and results relating to Riemann-

ian manifolds without conjugate points and without focal points, and to geodesic flows on

these manifolds. Here it will be assumed that the reader is acquainted with the elements of

Riemannian geometry; in particular, we shall not dwell on such concepts as Riemannian

connection, vector field along a curve, parallel translation, geodesic, etc., which can be found,

for example, in the book [4]. The circle of questions we are interested in is connected

with the limit solutions of the Jacobi equation constructed by Eberlein which play an im-

portant role in the study of variational equations for the geodesic flow.

4.1. Jacobi fields. Everywhere in this chapter Μ denotes a complete smooth Rie-

mannian m-dimensional manifold, equipped with a Riemannian metric of class C 3 . A

Jacobi field is a vector field along a geodesic γ, satisfying the Jacobi equation

0, (4.1)

where the primes denote covariant differentiation along γ (another notation is d/df), R is

the curvature tensor and X = γ (t) is the unit tangent vector field along γ. We denote by

J(y) the 2n-dimensional space of Jacobi fields along γ. Let {/,·(?)}, i = 1, · · · , m, be the

system of vector fields along y obtained by parallel transport of an orthonormal system at

the point γ(0), where lm(t) = γ(0· Then (4.1) can be written in matrix form:

£-Y(t) + R(t)Y(t) = Q, (4-2)

where Y(t) is an m-dimensional vector and R(t) — (i?,y(r)) is the matrix

Rti (0 = < RimWi(t)ln (0, // φ>, i, / = 1, . . . , m.

Let n: TM —> Μ be the natural projection and K: 1\TM) —+ TM be the map of

the Riemannian connection. It is known (cf. [17], §1) that for any υ € TM



GEODESIC FLOWS ON CLOSED RIEMANNIAN MANIFOLDS 1205

T0TM = Κβτώι φ Ker/C, dim Kerdit = dim Ker/C.

We introduce a scalar product in the space ΤυΤΜ by setting

In this metric the subspaces Ker d-π and Ker Κ are orthogonal.

Let υ e 7M and ξ ε ^ 7Μ, and let yv be the geodesic with initial vector υ. We de-

fine a Jacobi field Y% by the initial conditions r { (0) = ί/πξ and Ϋ%(0) = ΑΓξ.

The map % —• Y"j is a linear isomorphism of ^ΓΛ/ onto /(γυ) (cf. [17], Proposition

1.7).

Let Z{s), - e < s < e, be a curve in TM with Z(0) = -y(O). We consider a variation

r{t, s) of the geodesic y of the form

r(t,s) = exp(tZ(s)), t>0, — e < s < e . (4.3)

The variation r{t, s) is called geodesic if the curve a(s) = π(Ζ(χ)) is a geodesic and the

vectors Z(s) and ά(χ) are orthogonal.

PROPOSITION 4.1 (cf. [6], Lemma 14.3). The vector field

Y(t) = j-r(t,s)\s=0 ( 4 · 4 )

along the geodesic y is a Jacobi field along y.

4.2. Conjugate and focal points. The points χ = 7(fj) and y = γ(ί 2 ) are called con-

jugate if there exists a Jacobi field F ^ 0 along y such that Y(tj) = l"(f2) = 0. The points

x = τΌι) a n d .V = 7(^2) a r e called focal if there exists a Jacobi field Υ along y such that

y(fi) = 0, F 'Ci) ^ 0 and (d/diX| |y(f) | | 2)| f = f 2 = 0.

PROPOSITION 4.2 (cf. [4]). 1. The points y(t1),t1> 0, and γ(0) are conjugate if

and only if there exists a variation r{t, s) of the form (4.3), where r (0, s) = γ(0), — e < s

< e, for which the point y(tx) is the limit of points of intersection of the geodesic y(t) and

r(t, s) (s fixed) as s —• 0.

2. The points y(tx), i t > 0, and γ(0) are focal if and only if there exists a geodesic

variation r(t, s) of the form (4.3) for which y(tt) is the limit of points of intersection of

y(t) and r(t, s) (s fixed) as s —> 0.

PROPOSITION 4.3 (cf. [1], §22). If on the geodesic y no two points are conjugate,

then for any tly t2 € R, ux e Ty^t yM and υ2 Ε. Ty^t *.M there exists a unique Jacobi field

Y(t) along y such that υ1 = 7(ij) and v2 = Y(t2).

One says that a Riemannian manifold has no conjugate (focal) points if on each geo-

desic no two points are conjugate (focal).

It is easy to see that if a Riemannian manifold has no focal points, then it also has

no conjugate points. One can also prove that if a manifold has nonpositive curvature, then

it has no focal points (cf. [17], §1).

We shall also mention some results describing geometric properties of manifolds with-

out conjugate points and without focal points.
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PROPOSITION 4.4. Assume that the manifold Μ has no conjugate points.

1. The universal Riemannian covering Η of Μ is diffeomorphic with R m by means of

the map ex?x, χ G Μ (cf. [4], §7).

2. Geodesies in Η realize the distance between any two of their points. Any two geo-

desies in Η intersect in no more than one point (cf. [4], §7.2).

3. // the curvature of Μ at any point and in any two-dimensional direction is greater

than or equal to - a2, then any two intersecting geodesies fx(t) and γ 2 ( 0 ' " Η diverge, i.e.

P(7i(0, 7 2 (0) - • °° "S t - > °° (cf. [14], p. 168).

4. Let Sm~l(x, t) be an (m - \)-dimensional sphere in H. Then for any y e

Sm-1(x, t) the geodesic yxy(s) is orthogonal to Sm~l(x, t) (cf. [6], Lemma 10.5).

PROPOSITION 4.5 (cf. [18]). // the manifold Μ has no focal points, then the sphere

Sm~l(x, t) is a (strictly) convex set.

4.3. Limit solutions. Starting with this subsection we shall assume that the manifold

Μ has no conjugate points. We consider the matrix Jacobi equation corresponding to (4.2)

(D(t) is an m χ m matrix):

Λ 2 w .- U w ( · )

P R O P O S I T I O N 4.6 (cf. [17], §2). Let Ds(t), s>0,be the solution of (4.5) with

boundary conditions DS(O) = / and Ds(s) = 0. Then there exists a solution D~(t) of this

equation satisfying the conditions

D~ (0) = /, D~ (t) = Iim Ds (t),
s-wo

±D- (t) μ , = lim j - Ds (t) μ,, det (D" (f)) φ 0
at s—co at

for any f £ R .

The solution D~(t) is called the negative limit solution of equation (4.5). Analogously

one constructs the positive limit solution D+(t) of (4.5).

For any υ e SM, if V(v) is the vector field defined by the geodesic flow in SM (see

§4.5, below), we set

X- (o) - {ξ ε T 0SM : <ξ, V (σ)> = 0, 7 S (ί) = ΖΤ (ί) ίίπξ},

Χ* (ο) = {ξ €= 7\£Λί : <ξ, V (ο)> = 0, Yt (t) = D + (ί) ditg}.

The subspaces X~(v) and A"t"(u) are called respectively the stable and unstable sub-

spaces of 7\, SM.

PROPOSITION 4.7 (cf. [17], Propositions 2.4 and 2.11). 1. For any υ e SM, X~(v)

and X+(v) are vector subspaces of TVSM of dimension m — 1.

2. dnX~(v) = dnX+(v) = {w € Γπ(υ)Λί: w is orthogonal to υ}.

3. Lei τ: 5Μ —* SM be the involution τ(υ) = - υ. Then X+(- v) = drX~(v) and

X~(- υ) = άτΧ+(ϋ).

4. // the curvature of Μ at any point and in any two-dimensional direction is greater

than or equal to - a2, a > 0, then for any % e Χ'(υ) (or % e Χ+(υ))
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. ( 4 . 6 )

PROPOSITION 4.8 (cf. [17], §3). Assume that the Riemannian manifold has no focal

points. Then for any Jacobi field Y^, % G Χ~(υ) (respectively ξ G Χ+(υ)), the function

\\Υξ(ί)\\ is nonincreasing (respectively, nondecreasing).

PROPOSITION 4.9 (cf. [17], Proposition 2.7). Let the curvature of the manifold Μ

at any point and in any two-dimensional direction be greater than or equal to — a2, a > 0,

and let Y(t) be a perpendicular Jacobi field along the geodesic y(t), i.e. (Y(t), y(t)) = 0,

while Y(0) = 0. Then for any t > 0

|| r ' (0 IK a coth (a/) || Κ (ί) |. (4.7)

4.4. Isometries. The constructions described in the preceding subsections can be

carried over to the universal Riemannian covering Η of the manifold M. In particular, for

each υ &SH one can construct stable and unstable subspaces X~(v), X+(v) C TVSH. The

fundamental group 7TJ(M) (we shall not indicate the base point explicitly) of Μ acts by

isometries on the covering H.

PROPOSITION 4.10 (cf. [17]). For any veSH and ψ Ε πχ(Μ)

ά(άφ) Χ- (υ) = Χ- (άψν), d (dy) Χ+ (ν) = Χ + (dqw).

4.5. Geodesic flows and Jacobi fields. The geodesic flow / f is the flow in the mani-

fold SM given by the formula (cf. [1], §22) f\v) = yv(t) for i; G SM. The flow f can be

carried over to a flow (also denoted by /*) on SH. We denote by V the vector field on SM

(respectively SH) defined by f*.

PROPOSITION 4.11 (cf. [17], Propositions 1.7, 2.4 and 2.12). Let v&SM and ξ G

TVSM (respectively υ G SM and ξ £ TVSH). Then the following assertions are true:

1. r 6 (t) = dn ο df% Y{ (t) = Κ ο dfl.

3. // ξ G X~(v) orie X+(v), then Y^t) Φ 0.

4.df<X-(v)=X-(f'(v)), drX+(u)=X+(f*(v)).

5. ξ G Χ'(υ) (respectively ξ G Χ+(υ)) if and only if {ξ, V(v)> = 0 and \\dn ° df*B <

const for t > 0 (respectively for t < 0).

§5. Axiom of asymptoticity

5.1. Formulation of the axiom of asymptoticity. Starting with this section it is as-

sumed that the manifold Μ has no conjugate points and the curvature of Μ at any point

and in any two-dimensional direction is greater than or equal to — a2. We also stress that

geodesies are parametrized by arc-length. Geodesies yt and γ 2 on the universal Riemannian

covering Η are called asymptotic for t > 0 if one can find a constant C > 0 such that

P(7i(0> 72(0) ^ C f° r ω Υ t > 0. Analogously one can define asymptotic geodesies for
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t < 0 (geodesies which are asymptotic for ί > 0 are simply said to be asymptotic). The re-

lation of asymptoticity for t > 0 (respectively for t < 0) is an equivalence relation. A

class of equivalent elements is called an infinitely distant point, and the set of equivalence

classes is called the absolute and is denoted by H(°°). The class of geodesies asymptotic to

y(t) for t > 0 (for t < 0) is denoted by y(+ °°) (respectively y(- °°)).

The action of the fundamental group π^Λ/) on Η can be extended to H{°°). Namely,

if φ € π,(Λ0 and p = Ύυ(+ «β) e #(«>), then φ) = 7(1φυ(+ ~) = ( W o X + «,).

We choose an arbitrary point χ GH, a vector υ e 5//, a sequence of line elements

vn —• υ, a sequence of points xn — * x and a sequence of numbers tn —* + °°. We denote

by Tn a geodesic joining the points xn and γ υ (tn). It is easy to see that the sequence of

vectors 7n(0) is compact, so that the sequence of geodesies has a limit geodesic.

DEFINITION 5.1. The manifold Μ satisfies the axiom of asymptoticity if for any choice

of xn, χ G H, !)„,!)€ SH, xn —• χ, υη —• υ and tn —>· °° any limit geodesic of the above-

constructed sequence of geodesies yn is asymptotic to the geodesic y.

It follows from Proposition 4.4(3) that the sequence of geodesies yn has a unique

limit geodesic, i.e., it converges.

PROPOSITION 5.1. // the manifold Μ satisfies the axiom of asymptoticity, then for

any geodesic y and any point χ G Η one can find a unique geodesic y passing through χ

and asymptotic with y.

PROOF. We choose an arbitrary sequence of numbers tn —• + °° and consider the

sequence of geodesies yn — yxy(t ) (f). It is easy to see that the sequence of geodesies

yn has a limit geodesic, which by the axiom of asymptoticity is asymptotic to y. The

uniqueness of the asymptotic geodesic passing through a given point follows from Proposi-

tion 4.4(3).

5.2. THEOREM 5.1. If the manifold Μ has no focal points, then it satisfies the axiom

of asymptoticity.

PROOF. We choose arbitrary points x, y E.H and a geodesic γ passing through x,

where y ^ y. We fix t0 > 0 and consider the family of spheres

{S"1-1 (Y (t0), s): 0 < s < Ρ (y, γ (*„)) = Q.

In what follows the parameter on the geodesic y(t) will be reckoned from the point
w = yifo ~ *i) i n t ' i e direction of the point ζ = y(t0). We consider the geodesic segment

6 f l(w), 0 < κ < a, on the sphere Sm~l{z, ij), Βίχ(α) = y, 6 f l (0) = w, and on equipping

it with unit vectors orthogonal to Sm~l(z, tt) and directed to the center, we get a smooth

curve Z(u, tx~) in SH. We consider the variation r{u, s) = exp(xZ(«, fj)), 0 < χ < ti. The

points of intersection of the geodesies yu(s) = r{u, s) with Sm~1(z, s) (s fixed) form a

smooth curve 5s(u), δ/O) = y(s), Ss(a) = yyz(s). We denote by l(s) the length of the

curve 8s(u).

LEMMA 5.1. For any t0 > 0

/(0) 0 < < i ! . (5.1)
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PROOF. Let Yu(s) be the Jacobi field along the geodesic yu(s) generated by the varia-

tion r(u, s) (cf. (4.4)), 0 < Μ < a. It is obvious that YJtJ = 0 and (Yu(s), yu(s)) = 0.

Since Μ has no focal points, by virtue of Proposition 11.6

if si < s2. We have

l(s) = l\Yu(s)\du. (5.3)
0

It follows from (5.2) and (5.3) that /(jj) > l(s2) if 0 < s t < s2 < t, whence (5.1) fol-

lows. The lemma is proved.

LEMMA 5.2. For any t0 > 0 we have p(x, γ ^ ) ) < p(x, y).

PROOF. Depending on the disposition of the points χ, ζ and w = γ(0), two cases are

possible.

1. The point w lies between χ and z. It follows from the triangle inequality that

p(x, w) + p(w, z) < p(x, y) + p(y, z ) . Since p(w, z) = p(y, z) - tx, it follows t h a t p(x, w)

< p(z. y)·

2. The point χ lies between w and z. It follows from the triangle inequality that

p(z, x) - p{z, y) - p(x, y). Since p(z, χ) = ΐλ - p(x, w) and p(z, y) = tl, it follows that

p{x, w) < p(x, y). The lemma is proved.

LEMMA 5.3. There exists an e> 0 such that for t0 > 1 it follows from the condition

p(x, y)<e that l(tl)< 4p(x, y).

PROOF. We join the points w = γ(0) and y by a geodesic segment y(f) (τ"(0) = w)

and through the points γ(τ) and ζ we draw a geodesic which intersects Sm~l(z, ίγ) at a

point Δ(τ). We denote the variation obtained in this way by Γ(τ, s) (r~(r, 0) = Δ(τ);

fr(jt ty) = z). Let YT(s) be the Jacobi field corresponding to F(T, S). We have YT(t{) = 0

and

<F,(s), ±r(t,s)> = 0.
OS

According to Proposition 4.9 there exists a O O such that | | ^ ( ί ) | | < C||yT(s)|| for any

r0 > 1 and 0 < s < tx. We also have that γ(τ) = r (r, ί(τ)), where S(T) > 0 for 0 < r <

piy, w). Moreover, for any a > 0 one can find an e > 0 (independent of r 0 ) such that if

p(x, y) < e, then s(r) < a for any 0 < τ < p(y, w) (because by virtue of Lemma 5.2,

piy, w) < p(x, y) + p(x, w) < 2p(x, y)). Using the inequality

we get

- Sj|Ft(s)|'ds>lFx(O)l
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if the number a is chosen small enough that 1 - Cot > Vi. It follows that \\Δ(τ)\\ = | |FT(0)| |

< 2 | |F T (S(T)) | | < 2||γ(τ)|| = 2. Hence l(t^ < the length of Δ(τ) < 2p(w, y) < 4p(x, y).

The temma is proved.

Let υη —• υ, xn —>• χ and tn —*• °°. If the points χ and π(υ) are sufficiently close,

then from Lemmas 5.1-5.3 follows the existence of τη —> 0 such that the function

p(y (t + r n ) , ?„(/)) i s nonincreasing for t e [0, tn] and is bounded above:

4p(xn, π(υη)) ίζ5ρ(χ,π(ν))·

(if η is sufficiently large). Hence follows the validity of the axiom of asymptoticity for suf-

ficiently close points χ and π(υ). Since the relation of asymptoticity is an equivalence re-

lation, from this follows the validity of the axiom of asymptoticity for any χ G Η and υ 6Ξ

SH. The theorem is proved.

5.3. The axiom of visibility. We shall say that a Riemannian manifold satisfies the

axiom of uniform visibility (cf. [14]-[16] and [22]) if for any e > 0 there exists an R =

R(e) such that from each point χ € Η, any geodesic segment γ for which p(x, y) > R is

visible at an angle less than ε.

PROPOSITION 5.2 (cf. [14], Theorems 4.2 and 5.1). A compact two-dimensional mani-

fold Μ of genus greater than 1 satisfies the axiom of uniform visibility.

PROPOSITION 5.3 (cf. [14], Propositions 1.13 and 1.7). If the compact manifold Μ

satisfies the axiom of uniform visibility, then the following assertions hold:

1. One can introduce a topology on the absolute H(°°) and construct a homeomorphic

map of the closed unit ball in Rm onto the set Η U /^(°°), which associates the interior of

the ball with the set Η and the sphere Sm~1 with the absolute H(°°).

2. For any two geodesies 7j(r) and y2(t) there exists a geodesic y(f) such that y(+ °°)

= 7i(+ °°) and y(- °°) = γ 2 ( - °ο).

3. Ifp.q £H(°°) and U and V are open neighborhoods of ρ and q respectively (cf.

assertion 1), then there exists an isometry φ of the space Η such that if(U) C V.

From the results of [14] (cf. Lemma 1.6) there also follows

PROPOSITION 5.4. // the manifold Μ satisfies the axiom of uniform visibility, then it

also satisfies the axiom of asymptoticity.

THEOREM 5.2 (cf. [14], Theorem 3.7). If the compact manifold Μ satisfies the

axiom of uniform visibility, then the geodesic flow in SM is topologically transitive.

§6. Invariant foliations for a geodesic flow

6.1. THEOREM 6.1. // the smooth m-dimensional compact manifold Μ with Riemann-

ian metric of class C3 has no conjugate points and satisfies the axiom of asymptoticity, then

the distributions X~ and X+ are integrable, and their maximal integral submanifolds form

continuous C1-foliations W~ and W+ respectively of the manifold SH (for the definition

of continuous foliation cf. [1], §4).

PROOF. We shall only prove the integrability of the distribution Χ~(υ), since for
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Χ*(υ) the argument is analogous. We consider the sphere Sm~l(x, t), χ €Ξ Η, r > 0 . Let

y Ε Sm~1(x, t), w e TyS
m-l(x, t), \\w\\ = 1, and let ht(s), - e < s < e, be a geodesic seg-

ment on the sphere such that 6,(0) = y and 6f(0) = w. We consider the variation

rt (a, s) = y6i(s)x (u), y6((s)x (0) = 6, (s).

By virtue of Proposition 4.1(1) the vector field

Yt(u)=~rt(u,s)\s=o (6.1)
OS

is a Jacobi field along the geodesic yyx(u) satisfying

By virtue of Proposition 4.4(4)

(Yt(u),yyx(u)} = 0, 0<u<f. (6.3)

Let nt(s) be a vector at the point 6f(s), normal to Sm~l(x, t). Since <6f(s), nt(s)) = 0 for

any s e [- e, e] , one has

<6ί (s), nt (s)> = — (h (s), rit (s)>, — ε < s <%. (6.4)

Since the parameter u is the length of the geodesic segment, one has

— η (u, s) | u = 0 = Vfl/(s), (0) = tit (s).

From what was said above and Lemma 8.7 of [6] it follows that

Hence the curvature K(t, w) of the curve Sf(s) for s = 0 admits the estimate

Since by virtue of (6.2) and (6.3) the field Yt{u) satisfies the hypotheses of Proposition 4.9,

from this and (4.7) follows

| / C ( f , i » ) | < a c a t h ( a Q . (6-5)

Let υ G SH, π(υ) = χ. We fix e > 0 and we consider the geodesic area element ortho-

gonal to the vector υ (i.e. the set of geodesic segments of length 2e whose initial vector is

orthogonal to υ), which we shall denote by Π(υ, e) (this is a submanifold of Η of class C2).

In a neighborhood of χ (for sufficiently small e) the set expj 1 (5 m ~ 1 (7 l ) (r), r)) can be

represented as the graph of a function ψ((μ), u G ε χ ρ ^ ^ Π φ , e)), of class C2, where φ((0)

= 0 and d/ipf(O)/<2« = 0 (of course ψ^ύ) depends on χ and v, but we shall not indicate this

dependence explicitly in the notation). We identify TXH with R" and &χγ~ι(Χ\(υ, e)) with

a neighborhood of zero in R" ~ l . We denote by g{j-(y) the components of the Riemannian

metric in TyM, y GM, and let gff(y) = (expj 1 )*£ί;·00- For sufficiently small e (by the
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compactness of Μ, e can be chosen independently of x) by virtue of the properties of the

map expx (cf. [4], §2) we have for y € B(x, e), y = (yv . . . , ym),

d

Hence and from (6.5) follows the boundedness of the curvature of the surface which is the

graph of the function <pt(u), u £ exp^^II^;, e)) (uniformly for t > 1 and υ £ SH). Hence

there exists a constant C> 0, independent of χ and υ, such that for t > 1 and u £

», e)) we have

| £ | (6.6)

Hence the family of functions {φ((μ)} is relatively compact in the C1 -topology. Let ψ be

the limit function of this family.

LEMMA 6.1.1. φ EC1.

2. Ify £ Graph(i^), then a geodesic passing through the point expx y, orthogonal to

the submanifold W(x) = expx Graph(v?), is asymptotic to the geodesic yv(f).

3. //6 f(s), - e < s < e, is a geodesic segment on the submanifold W(x), where 6 f(0)

= x, and Z(s) is an assignment along this segment of vectors normal to W(x), then a varia-

tion of the form (4.3) defines by (4.4) a Jacobi field Y(t) = Y^t), where % G Χ~(υ) and

dn = 5,(0).

PROOF. Assertion 1 follows from the construction of the function ψ.

2. The function ψ is the limit in the C1-topology of the functions φί , where tn is

some sequence of numbers, tn —* °°. If y £ Graph(^), then there exists a sequence of

points yn —»• y, where yn G Graph(^). We set zn — expx yn and ζ = expx y. Since the

geodesic 7 n = 7Z Ύ (f ) i s orthogonal to the sphere Sm~1(7t,(fn)> tn) at the point zn, the

sequence of geodesies yn converges to a geodesic orthogonal to the submanifold W(x) at

z. Since Μ satisfies the axiom of asymptoticity, this geodesic is asymptotic to yv(t).

3. We choose an arbitrary vector w £ TXM, orthogonal to υ, and let 6f(s), — e < s

< e, be a geodesic segment on the sphere 5" Ι ~ 1 (7 υ (0, 0 s u c h that 6 f(0) = χ and 6f(0) = w.

Taking an orthonormal system of parallel vector fields along the geodesic yv(f), we write the

Jacobi field (6.1) in the form Yt(u) = Dt(u)w, where Dt(u) is a solution of the matrix equa-

tion (4.5) with boundary conditions £>t(0) = / and Dt(t) = 0. On the basis of Proposition

4.6 the limit

lim Ytn (u) = lim D,n (u) w = Dt (μ) w =.Υξ (u)

exists. The lemma is proved.

We consider a point y £ W(x) and denote by y(y, t) a geodesic passing through y

and orthogonal to W(z), where we assume that y(y, 0) = y. By virtue of Proposition 5.1

and Lemma 6.1(2) the geodesies γΟ^, t) and y(y2, i) do not intersect if yx Φy2. Hence

the set
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</(*)= U U y(y,f)

is an open neighborhood of x. To each point ζ e U(x) we assign the vector u(z) which is

the unit tangent vector to the geodesic y(y, i), passing through z. Let ψ(ά) be any other

limit function of the family {¥>,(«)}, and let W(x) = expx Graph(<£). According to Lemma

6.1, χ G W(x), and if ζ e W(x), then a geodesic y passing through ζ and orthogonal to the

submanifold W(x) is asymptotic to yv(f). Hence γ = y(y, ·), where y is the point of inter-

section of y and W(x). Hence W(pc) is orthogonal to the field v(z). Introducing any local

coordinates in a neighborhood of x, considering the intersections of W(x) and W(x) with all

possible planes passing through υ, and using the classical uniqueness theorem in the theory

of differential equations, we conclude that φ(μ) = φ(μ), u S expJ1(II(u, e)). In particular,

φί —*• φ as t —> °°.

We denote by Q ~(υ) an assignment to the submanifold W(x) of orthonormal vectors

directed to the same side as the vector u. It follows from Lemma 6.1 that 6~(u) is an

(m — l)-dimensional submanifold of SH of class C1, which has the following characteristic

property:

there exists a neighborhood U(v) such that ifwG Q ~(υ) Π U(v),

then the geodesic yw{t) is orthogonal to the submanifold π(6 "(ν)) (6-7)

and is asymptotic to the geodesic yv(f).

It also follows from Lemma 6.1(3) that

oeS-(»), TJBf(O)=*XT(p). (6.8)

LEMMA 6.2. The submanifold 6 ~(i>) depends continuously in the C 1 -topology on

vESH.

PROOF. Let vn, u £ f f l , ! ) n - > u a s n - > « > . We set yn(t) = TUn(0» χ

η - π(υΛ χ

= η(υ) and y(t) = yv(t), and we consider the sphere Sm~1(xn, t). By virtue of (6.6), for

sufficiently small e > 0 and t > 1 the surface Wnt = exp~*(Sm~1(xn, t)) can be repre-

sented as the graph of some function of class C2, denoted by Φ(η, t, u),u G exp~1 (U(vn, e)),

and the surface Wn = exp^H^i 6 ~(v

n))) as the graph of some function of class C1, de-

noted by i//(w, u), u e βχρ^1(Π(υη, e)), where ψ(η, t) —*• φ(ή) as t —• + °° in the Cl-

topology for any η > 0. It follows that for sufficiently small e > 0 the surfaces Wn t and

Wn can be represented as the graphs of functions denoted by φ(η, t, u) and respectively

φ(η, u), where u e exp'1^^, e)). Moreover, the family of functions [ψ(η, t), φ(η)} is

compact in the C 1 -topology. Let φ be the limit function of the family of functions

(φ(η)}. We choose sequences of numbers nk —*• °° and tk —* °° such that φ(ηΗ, tk) —>· φ.

We set

W = {expx (u, ψ (u)): u e exp;1 (Π (ο, ε))}.

Let y G W. We choose a sequence of points yk 6 Wnktk such that yk ~> ̂  as A: —> »

By virtue of the axiom of asymptoticity the geodesies yk, joining the points yk and γ η (i fc),
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converge to some geodesic y asymptotic to 7. Moreover, γ is orthogonal to the submani-

fold W (because the geodesies yk are orthogonal to Wn t ). Hence and from property

(6.7) follows the required assertion. The lemma is proved.

An immediate consequence of property (6.7) is

LEMMA 6.3. For any υ ε SH and w € β ~(υ)

This lemma allows one to "paste together" the submanifolds β ~(υ) passing through

different line elements υ e SH. Namely, we shall call line elements υ and w equivalent (cf.

[2], §2), if one can find line elements v1 = v, v2, · • · , vp = w such that v{ G G ~(vi_1),

i = 2, . . . , p. From Lemmas 6.2, 6.3 and condition (6.8) it follows that the set of equiva-

lence classes forms the required continuous CJ -foliation. Theorem 6.1 is proved.

Let υ e SH. We denote by 6~(u) ( G +(u)) the leaf of the foliation 6~ ( 6 + ) con-

taining the line element v.

DEFINITION 6.1. The leaf Q ~(υ) (respectively 6 + (υ)) is called the stable (respec-

tively unstable) horosphere passing through the line element υ.

Some properties of horospheres are established in the following assertions.

PROPOSITION 6.1. 1. 6~(- i>)= 6 + (u), and 6 + ( - υ ) = 6~(υ).

2. If<pGnl(M),thend<pQ~(v)= G ~(άψυ) and άφ S+(u) = 6+(ify>u).

3. There exists α δ > 0 such that, for any υ G SH,

a) ifwG 6~(u) Π Β(υ, δ), then the geodesic T w ( 0 κ orthogonal to the submanifold

1(6 ~(w) Π Β(υ, δ)) and is asymptotic to the geodesic yv(t);

b) ifwGQ +(υ) η Β(υ, δ), then yw(t) is orthogonal to π(6 +(υ) η Β(υ, δ)) and is

asymptotic to y_v(t).

PROOF. Assertion 1 follows from Proposition 4.7; assertion 2 from Proposition 4.10

and the construction of the leaf G~(u); assertion 3 from assertion 1, property (6.7) and

the continuity of the foliations Q ~ and 6 + .

PROPOSITION 6.2. 1. δ ~(υ) is a connected (m - l)-dimensional closed submanifold

ofSH.

2. For any f € R , t¥= 0, we have f*(Q ~(u)) Π 6 ~(u) = 0 ,

PROOF. It is obvious that the set 6 ~(υ) is connected.

LEMMA 6.4. For any y e π(6 ~(u)) there exist sequences of numbers tn —• + °°

and points yn such that yn —• y and yn e Sm "^ (?„('„)» tn).

PROOF. The set of points satisfying the assertion of the lemma is nonempty (it con-

tains the point π(υ)) and closed in π( Q ~(υ)) (this is easily proved by a diagonal process).

We shall show that this set is open. In fact, arguing just as in the proof of Lemma 6.2, we

get that if yn —• y, then the family of submanifolds
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is compact in the C1 -topology for some e > 0. If K' is the limit submanifold then by virtue

of the axiom of asymptoticity any geodesic orthogonal to W is asymptotic to yv(t). Hence

it follows from (6.7) that W C π ( 6 ~(w)). Now the lemma follows from the connectedness

of π(6 '(υ)).

Let y, ζ Ε ?r(6 ~(V)) and tn —>• °°. On the basis of Lemma 6.4 there exists a se-

quence zn —> ζ such that zn Ε Sm~1(yv(tn), tn). We consider a vector wn orthogonal to

Sm~1(yv(tn), tn) at the point zn = ir(wn) and directed to the center, and a vector w Ε

6 ~(v), TT(W) = z. We have wn —• w. Hence pn - π(/*(ννΠ)) —>• π(/*(\ν)) = ρ and pn Ε

&"~1(Ίυ(*η + 0, '„)· We consider the sphere 5"" - 1 (?„(?„ + i), tn + t). Each point of

such a sphere is distant by t from the sphere Sm~l(yv(tn + t), tn). By virtue of Lemma

6.4 there exist _>-„ Ε Sm~l(yv(tn + t), tn + t) such that yn —• y. Hence from what was

said above it follows that p(y, p) > t. Since the points y and ζ were chosen arbitrarily,

assertion 2 follows from this. We shall prove assertion 1. If w Ε 6~(υ) Π U(v) and

w € 6 (υ) (cf. (6.7)), then 7W(/) intersects ττ(6 ~(ν)) at some point yw(t0), where ftQ(w)

Ε 6 ~(υ), which contradicts assertion 2. The proposition is proved.

THEOREM 6.2. // the compact manifold Μ with Riemannian metric of class C3 has

no conjugate points and satisfies the axiom of asymptoticity, then the distributions X~ and

X+ are integrable and their integral submanifolds form continuous C1 -foliations (denoted

as before by G~ and 6 + ) of the manifold SM.

THEOREM 6.3. The foliations S ~~ and 6 + are invariant with respect to the geodesic

flow f* (considered in SM or SH).

PROOF. Let υ Ε SM (or υ Ε SH) and w Ε Q = f*(Q ~(υ)) η B(f*(v), δ) (cf. Proposi-

tion 6.1(3)). It is obvious that the geodesies yv(s) and yw(s) are asymptotic. From Proposi-

tions 4.11(4) and 4.7(2) it follows that yw(s) is orthogonal to π(6). Hence, by virtue of

Proposition 6.1(3), S = <5~(f*(v)) Π B(ff(v), δ). One argues analogously for the folia-

tion 6 + . The theorem is proved.

For ν 6 SM (or υ Ε SH) we denote by Z(v) the one-dimensional subspace of Τυ SM

(respectively Tv SH) generated by the vector V(v) . Also let Q ° denote the smooth folia-

tion of the manifold SM or SH formed by the trajectories of the geodesic flow.

THEOREM 6.4. // the manifold Μ has no conjugate points and satisfies the axiom of

asymptoticity, then the pair of foliations G~ and 6 ° is integrable in the sense of [I] (cf.

§4), and leaves of the corresponding foliation (denoted by Q~°) are integral submanifolds

of the distribution X~ θ Ζ. The foliation S ~ 0 is invariant with respect to the flow ff,

and its leaves have the following properties:

1. w Ε 6 ~°(υ) if and only if the geodesies yv(t) and yw(t) are asymptotic for t> 0.

2. dip(Q ~°(v)) = δ -°(άφυ) for any υ Ε SH and φ Ε π,(Λί).

The pair of foliations 6 + and G° has analogous properties (the corresponding folia-

tion is denoted by 6 + 0 ) .

PROOF. For υ Ε SM we set

©-»= u u />)•
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From Theorem 6.3 it follows that G~0(i>) = (J _«,<,<== δ " ( / » ) · Hence for sufficiently

small δ > 0 the set 6 ~°(υ) η Β(υ, δ) is a submanifold of SH of class C 1 , and To 6 ~°(υ) =

Χ~(υ) Θ Ζ(υ). From Proposition 6.1(3) it follows that for any w e δ ~ο(υ) the geodesies

yv(t) and ?„,(?) are asymptotic for t > 0. Moreover, there exists a δ > 0 such that, for any

υ e SH and w e 5(u, δ) such that γ υ (+ °°) = yw(+ °°), W e have w € 6 "°(υ). If υ, w e Sff

and ?„(+ °°) = 7 W (+ °°), then we choose w 0 = υ, ννχ, . . . , wp = w such that w,- €

B(wi_1, δ) and 7 W .(+ °°) = 7 W . _ , ( + °°), * = 1, · · • ,p. It follows from what was said above

that w G 6~°(u). Assertion 1 is proved. Assertion 2 follows from Proposition 6.1(2). The

theorem is proved.

DEFINITION 6.2. The leaf 6~°(υ) (respectively 6+0(i>)) is called the stable {unstable)

leaf passing through the line element υ.

§7. Some consequences

7.1. THEOREM 7.1. If the compact manifold Μ has no conjugate points and satisfies the

axiom ofasymptoticity, then the distributions X~ and X+ (considered in SM or SH) are con-

tinuous.

The proof follows from Theorems 6.1 and 6.2.

It follows from the results of the preceding section and also Theorem 5.1 and Propositions

5.2 and 5.4 that horospheres and leaves can be constructed on any compact Riemannian mani-

fold satisfying one of the following conditions:

1. The manifold has no focal points.^)

2. The manifold has no conjugate points and satisfies the axiom of visibility.

3. The manifold has no conjugate points and dim Μ = 2 (actually, if the genus of Μ is

2 or greater, then Μ satisfies the axiom of visibility, in the case of the torus any metric with-

out conjugate points, as is known [23], coincides with the standard metric).

7.2. Limit spheres. Let υ G SH, χ = π(ν) and ρ = yv(+ °°).

DEFINITION 7.1. The set L(x, p) — n(Q ~(v)) is called the limit sphere with center at the

point p, passing through the point χ (we note that ρ $. L(x, p)).

Immediately from the definition of limit sphere and Propositions 5.1,6.1 and 6.2 we

get

THEOREM 7.2. Assume that the compact Riemannian manifold Μ has no conjugate

points and satisfies the axiom ofasymptoticity.

1. The limit sphere L(x, p) is an (m — l)-dimensional submanifold of Η of class Cl (m =

dimAf). The set L(x, p) is closed in H.

2. For any χ &Hand ρ £Η(°°) there exists a unique limit sphere with center at p,

passing through x.

3. The leaf G~(v) is the limit sphere L(x, ρ) (χ = π(υ), ρ = yv(+ °°)) equipped with

orthogonal unit vectors directed to the same side as the vector v. The leaf G+(v) is the limit

sphere L(x, q) (q = yv(— °°) = y_v(+ °°)) fitted with orthogonal unit vectors directed to the

same side as —υ.

(') Added in proof. The existence and some properties (cf. our Proposition 7.3 and Theorem 7.5(c))
of limit spheres on manifolds without focal points are obtained in [24] from consideration of the Busemann
function.
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4. For any υ, w G SH such that yv(+ °°) = yv(— °°), the geodesic yw(t) inter-
sects the limit sphere L(n(v), yv(+ °°)) in a unique point.

5. //> G ,τ,ίΜ), then tfL(x, ρ)) = Ι ( φ ) , φ)).

We consider the limit sphere L(x, ρ), χ G Η, ρ G H(°°). For y G L(x, p) we denote by
y(y, t) the geodesic passing through y orthogonal to L(x, p) and parametrized so that y(y, 0)
= 0 and y(y, + °°) = p.

PROPOSITION 7.1. Let x, y GH and ρ G H(°°), and let the number tQ be such that

y(x, t0) G L(y, p). Then

9{L{x, p), L{y, p))=9{x, y{x, U)) = \ta\.

The proof follows directly from Definition 7.1 and Theorem 6.4.

For χ EH and ρ GH(°°) we set

Β- (x, p) = u U ν (y,'). β + ( .̂ P) = U U v (ί/> Ο-

The set 5~(x, p) is called the interior of the limit sphere or the (open) limit ball with

center at p, passing through x. The set B+(x, p) is called the exterior of the limit sphere.

From Theorem 7.2 follows

PROPOSITION 7.2. \. Η = B~(x, p) U 5+(x, p) U Z,(x, p).

2. The sets B~(x, p) and B+(x, p) are open and simply-connected.

7.3. Elements of uniqueness. On manifolds without focal points limit spheres have
certain additional properties which we shall study here.

PROPOSITION 7.3. // the manifold Μ has no focal points, then a limit sphere is a

convex set.

PROOF. Since a limit sphere is locally a limit of spheres (cf. Lemma 6.1), the assertion
follows from Proposition 4.5.

We shall call a line element υ G SH an element of nonuniqueness if there exists a vec-
tor w E.SH such that

γο(+οο) = γ β (+οο), γο(— οο) = γ β ( — οο). (7.1)

The other υ GSH are called elements of uniqueness.

We denote by ΡΘ-(υ) the distance in the submanifold 6 ~(u) induced by the Rie-
mannian metric.

THEOREM 7.3. Assume that the manifold Μ has no focal points.

1. If υ is an element of nonuniqueness, then there exists a vector w £ SH, orthogonal
to υ, and a geodesic segment 8(s), 0 < s < a, in SH such that δ(0) = π(υ), δ(0) = w, 6(s) G
L(n(v), yu(+ °°)) for any s G [0, a], and the union of the geodesies passing through points
of 6(s) orthogonal to L(rr(v), yv(+ °°)) is the image under a global geodesic isometric imbed-
ding of the strip {(s, t) G R2: 0 < s < a, - °° < t < °°].
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2. If υ is an element of uniqueness, then for any w G W~(v) the function

is monotone increasing, and tends to + °° as t —> - °°.

PROOF. 1. We consider the set

Π.(ο)= U U Y«(0.
-oo<<<oo zsS/ί, <z,t»=o

which is an (m - l)-dimensional submanifold of Η of class C2, dividing// into two parts

(actually, βχρ~|υ)Π(υ) = Rm~l). Since a limit sphere is a convex set (cf. Proposition 7.3),

it is situated on one side of the submanifold Π(υ), namely, the one to which the vector υ is

directed.

LEMMA 7.1. If υ is an element of nonuniqueness, then there exists a point y G

Ζ,(π(υ), γ υ (+ °°)), y Φ η(υ) = χ, such that the geodesic segment bxy in Η joining χ and y

lies on L(n(v), yv(+ °°)).

PROOF. We choose a vector w £ SH such that (7.1) holds. Let y be the point of

intersection of yw(t) and £(π(υ), γ υ (+ °°)). Without loss of generality one can assume that

y = π(νν). It suffices to show that B~(x, yv(~ °°)) = B~(y, yw(- <»)). Let, for example

(cf. Proposition 7.2), B~(x, yv(- °°)) C B~(y, yw(- °°)) (strict inclusion) and y $

B~{x, γ υ ( - °°)). Then B~(y, yv(- °°)) Π B+(x, yw(+ «>)) Φ 0. But this is impossible,

because by virtue of the choice of y and (7.1), B~(y, yv(- °°)) = B~(x, yw(- °°)), and, by

virtue of Theorem 7.2, B~(x, yw(- <»)) η B+(x, yw(+ «>)) = 0 . Thus, y € Π(υ). Hence

it follows from Proposition 7.3 that 8xy G L(ii(v), yv(+ °°)). The lemma is proved.

We now draw through the points of the geodesic segment 8xy geodesies orthogonal

to L(ir(v), yv(+ °°)). It follows from Definition 7.1 that these geodesies are asymptotic.

We denote the two-dimensional manifold so obtained by P. Since the element f*(v) is an

element of nonuniqueness, repeating the preceding argument we get that the curve π^*(Ζχγ))

(Zxy is the curve bxy fitted with unit vectors orthogonal to L(n(v), yv(+ °°))) is a geodesic

in Η and lies in P. Hence from the elementary geometry of geodesic quadrangles it follows

that the curvature at any point z G i i n the two-dimensional direction TZP is equal to zero.

Since Μ has no focal points, by virtue of Proposition 3.17 in [17] any Jacobi field generated

by the above construction is parallel. It follows that the geodesies y(zl, t) and γ(ζ 2, t),

where zx, z2 € bxy, are asymptotes, i.e. p(y(zt, t), y(z2, ")) = P(7(zi> ')> ΉΖ2> 0) = const,

for any ( G R . Hence the imbedding x: R χ [0, a] (a is the length of δ ^ ) , x(t, u) =

γ(ζ, t), ζ = 8xy(u), is the one desired (cf. [22], §5).

2. The proof of monotonicity of the function ψ(ί) is analogous to the proof of

Theorem 5.1. We fix t > 0 and we consider the family of limit spheres

{L(yv(s—0,V,( + ° o ) ) , 0 < s < f } ·

We choose a geodesic segment 8t(u) G L(yv(- t), yv(+ °°)), 0 < u < a, 6 f(0) =

π(/~*(υ)), 8t(a) = n(f~t(w)). Equipping it with unit vectors orthogonal to the limit sphere,

we get a curve Zt(u) in SH. We consider the variation r{u, s) = exp(sZf(i<)), 0 < s < t,
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0 < u < a. The points of intersection of yu(s) = r(u, s) with L(yv(s - t), yv(+ °°)) form a

smooth curve Ss(u), 5s(0) = yv(s - t), 8s(a) = yw(s ~ i). We denote by l(s) the length of

this curve. To prove the assertion it suffices to show that \p(s — t) < φ(— t) for any s, 0 <

s < t. For this, we shall show that l(s) < l(t) for any s ε [0, t]. We consider the Jacobi

field Yu(s) along the geodesic yu(s), generated by the variation r(u, s) (cf. (4.4)). Since Μ

has no focal points, it follows from the properties of limit spheres (cf. Theorem 6.1 and

Lemma 6.1(3)) and Proposition 4.8 that Yu(s) satisfies (5.2). Hence, by virtue of (5.3),

/(sj) < /(s2) if 0 < sl < s2 < t. It follows that i//(s - r) < l(s) < l(t) < ψ(- f).

Now we shall show that φ(ί) —*• °° as t —*• — °°. If the functions ψ(ί) were bounded

as t —* - °°, then from the definition of limit sphere it would follow that p(yv(- t), yw{~ t))

< φ(ί) < const, for any t > 0, so that yv(t) and ? w ( 0 would be asymptotic for t < 0. But

this contradicts the fact that the line element υ is an element of uniqueness. The theorem

is proved.

7.4. Strengthened axiom of uniform visibility.

DEFINITION 7.2 (cf. [14] -[16] or [22], Axiom 2). A manifold Μ without conjugate

points satisfies the strengthened axiom of uniform visibility if it satisfies the axiom of uni-

form visibility and for any two geodesies 7 j (0 and y2(t) one can find a unique geodesic

y(t) such that y(— °°) = 7j(— °°) and 7(+ °°) = γ2("*" °°) (cf· Proposition 5.3(2)), or in

other words, if any two points on the absolute can be joined by a unique geodesic; equiva-

lent definition: any element ν ε SH is an element of uniqueness.

It follows from Theorem 7.3 that if the manifold Μ has no focal points and satisfies

the strengthened axiom of uniform visibility, then the foliation Q ~ is expanding as t —•

- °° (i.e. for any υ &SH and w S 6 ~(υ) we have t//(r) —• °° as t —• - °°; cf. Theorem 7.3).

THEOREM 7.4. // the compact two-dimensional manifold Μ has no focal points and

satisfies the strengthened axiom of uniform visibility, then the foliation S ~" is contracting

as t —• + «>.

PROOF. We must show that for any υ & SH and w G Q ~(u) the function φ(ί) —• 0

as t —>· + °°. From the hypotheses of the theorem, Proposition 7.3 and Theorem 7.3(2) it

follows that the limit sphere L(IT(V), ρ), ρ = γ υ (+ °°), is strictly convex, and the function

ψ(ί) is monotone decreasing.

Let tn —•* + °° υη = ftn(v), wn = / f "(w), xn = π(υη) and yn = n(wn). We choose

a sequence of isometries φη such that the sequence of points {φη(χη)} lies in a compact

domain in H. Since the geodesies yv(t) and yw(t) are asymptotic, p(xn, yn) ^ const, for

any η > 0, so that the sequence of points {^n(yn)} is situated in a compact domain of H.

Hence, without loss of generality, one can assume that Ψη(χη) —*• r, fn(yn) —* s, d<pnvn

—»• ϋ, άφη\νη —»• w and ψη(ρ) —+ q. Since φη(γη) e φη(1(χη, ρ)) = 1(φπ(χη), ψη(ρ))

(cf. Theorem 7.2(5)), one has s e L(r, q).

Let us assume that Φ(ίη) > a > 0. Then p(xn, yn) > b > 0, and hence

Thus p(r, s) > b. On the other hand, it follows from the axiom of visibility that Άρ (χη, yn)

= 0 (cf. [14], Lemma 1.6; 4fl(ft, c) denotes the angle under which the geodesic segment
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be is visible from the point a). Hence from the formula for the sum of the angles of a

geodesic triangle with vertices at the points xn, yn and ρ (cf. [4], §3.6, formula (21)) it

follows that Xryn(xn, p) + %,x (yn, p) —* π as η —»• °°. Thus, one can assume that

which means \(r, q) > τι 12. But this contradicts the strict convexity of the limit sphere

L(s, q) and the condition r € L(s, q), r Φ s. The theorem is proved.

In conclusion, we mention two criteria for a manifold without focal points to satisfy

the strengthened axiom of uniform visibility. For manifolds of nonpositive curvature these

results were obtained in [22] (cf. §5).

THEOREM 7.5. Assume that the compact Riemannian manifold Μ has no focal points.

Then the following assertions are equivalent.

1. Μ does not satisfy the strengthened axiom of uniform visibility.

2. There exists a global geodesic isometric imbedding of the strip {(x, y): 0 < χ <

c, - °° < y < °°} in Η for some c > 0 (cf. Proposition 5.2(1)).

3. There exists a global geodesic isometric imbedding of the rectangle {(x, y): 0 <

χ < c, 0 < y < T} for some c > 0 and any T>0.

PROOF. The equivalence of assertions 1 and 2 follows from assertion 1 of Theorem

7.3 and Definition 7.2. The proof of the equivalence of assertions 2 and 3 is a simple modi-

fication of the proof of Lemma 4.2 in [14].

7.5. The topology of the absolute. The results presented in this section are generali-

zations to the case of manifolds satisfying the axiom of asymptoticity of results obtained

in [22] (cf. §2) for Hadamard manifolds and in [14] (cf. also Proposition 5.3(1)) for mani-

folds satisfying the axiom of visibility.

Let χ e Η, ν G SH and π(υ) = χ. We shall call the set C(v, e) = {p G Η U H(°°):

\(yv(+ °°), p) < e} the cone in Η U H(°°) with vertex at x, axis υ and angle e; and we

shall call the set T(v, e, r) = C(v, e)\ {y G H: p(x, y) < r} the truncated cone in Η U H(°°)

with vertex at x, axis υ, angle e and radius r.

THEOREM 7.6. Assume that the compact manifold Μ satisfies the axiom of asympto-

ticity. Then on Η Ό Η(°°) one can introduce a topology k satisfying the following condi-

tions:

1. The restriction of k to Η coincides with the topology in Η induced by the Riemann-

ian metric.

2. Η is an open everywhere dense subset of Η U H(°°); the sets H(°°) and Η U H(°°)

are compact.

3. For any ρ G H(°°) the collection of cones containing ρ is a local basis for the

topology k at p.

4. For any ρ G H(°°) and χ GH the collection of truncated cones containing ρ with

vertex at χ is a local basis for the topology k at p.

PROOF. We fix a point χ G Η and we consider the map φχ: Β —*• Η U //(°°) (β is

the open unit ball in Tx M) defined by
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where uy is a vector in Tx Μ with initial point at zero and end at y. By virtue of Proposition

4.4 the map φχ\Β is a homeomorphism and φχ\δΒ is bijective. It follows from Proposition

5.1 that φχ\δΒ is a map onto the absolute H(°°). The topology of the closed ball Β induces,

with the help of the map φχ, a topology on Η U H(°°). We shall show that this topology is

independent of the choice of x. Let y &H. It suffices to show that for any closed set A

C Η U H{°°) the set D = φ~γ(Α) is also closed. This follows immediately from the following

lemma.

L E M M A 7.2. L e t x , y &H, p , p n ^ H KJ H(°°) and φ ~ ι ( ρ η ) — + φ χ

ι ( ρ ) . Then φ ' 1 (ρ)

PROOF. If ρ G Η (so that pn^H for all sufficiently large ή), then the assertion is

obvious. Let ρ GH(°°). We consider the following two cases:

1. pn ε Η. We consider the geodesies yn = yxp and an = oyp , and also geodesies

y and σ such that γ(0) = χ, γ(+ °°) = ρ, σ(0) = y and σ(+ °°) = ρ (cf. Proposition 5.1).

We set vn = Vn(0), wn = σπ(0), υ = γ(0) and w = σ(0). Since φχ

ι(ρη) —»• ^ ' ( p ) , one

has υη —>• υ, and hence, by virtue of the axiom of asymptoticity, wn —* w.

2. pn £H(°°). By virtue of Proposition 5.1, there exist geodesies yn, an, y and σ

such that γη(0).= γ(0) = χ, ση(0) = σ(0) = y, γ Β ( + °°) = σΒ(+ °°) = ρη and γ(+ οβ) =

σ(+ °°) = p. We set υη = γ η (0), wn = σπ(0), υ = γ(0) and w = σ(0). We have vvn e

δ ~°(υη). Since υπ —>· υ, by virtue of the continuity of the foliations 6~° (cf. Theorem

6.4) any limit point w of the sequence wn lies in 6 ~°(u). Hence ρ = yv(+ °°) = 7~(+ °°),

whence it follows that iv = w (cf. Proposition 5.1) and wn —> w. The lemma is proved.

Assertions 1 —4 follow immediately from our method of introducing the topology on

the set Η U //(°°). The theorem is proved.

PROPOSITION 7.4. Let υη, υ e SH, υη —»· υ and ρ = yv(+ <»). por a n y truncated

cone Τ(υ, e, f) with vertex at the point χ = π(υ) and axis v, there exist Ν > 0 and Τ > 0

such that for any η > Ν and t > Τ the point yv (f) lies in Τ(υ, e, f).

PROOF. Let us assume the contrary. Then for some e > 0 and r > 0 there exists a

sequence of numbers tn —• °° such that γ υ (/„) does not lie in Τ(υ, e, r). We consider the

sequence of geodesies on joining the points χ and yv (tn), and let σ be a limit geodesic

(which exists, since the sequence of vectors wn = σΠ(0) is compact). By virtue of the axiom

of asymptoticity (applied in relation to x, xn = x, wn = ση(0) and w = σ(0)) we get that

the geodesies σ and y are asymptotic, so that w = υ and wn —>· υ. Hence for sufficiently

large η and t we get that φχ

ι(ση(ί)) C φ~ι(Τ(υ, e, /·)). But this is impossible, since yVfj(tn)

^ T(v, e, r). This contradiction proves the required assertion.

Directly from the results obtained we get

COROLLARY 7.1. Ifvn,v€. SH and υη —>· υ, then yv (+ °°) —• yv(+ <*>) as η —• °°.(

COROLLARY 7.2. Let χ e. H, xn, yn, y € Η U H(°°),. xn —+ x, yn—+ y, υη =

yx (0) and υ = 7x>,(0). Then vn —> υ as η —> °°.
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COROLLARY 7.3. The function \pt: SH —+ Η U H(°°) defined by i//f(u) = γυ(ί) is

continuous for 0 < t < °°.

COROLLARY 7.4. The function φ: Η U #(«>) —»• 5// defined by φ(χ, y) = 7x>)(0) κ

continuous.

COROLLARY 7.5. For any χ G Η and any geodesic y, l i m ^ ^ " * (γ(0) exists and is

equal to Ψχ1(7(+ °°)).

PART III. METRIC PROPERTIES OF GEODESIC FLOWS

§8. The condition of negativity of the characteristic exponents

for a geodesic flow

It is well known (cf. [1] and [2]) that the geodesic flow f* has a smooth measure,

which we shall denote by μ. Let υ ε SM. We consider some orthonormal system of parallel

vector fields along yv(f), and a vector w orthogonal to υ. We set

w{t)=D-{t)w{\D-{t)w\)-\

where D~(t) is the solution of (4.5) constructed in Proposition 4.6. We consider the set

: for any t e i e S M , orthogonal to v,

f->00 t
0

The set Λ is measurable and invariant with respect to the flow / ' . Let χ + be the character-

istic exponent of the dynamical system f* (cf. §1.1).

THEOREM 8.1 (cf. [11], Theorem 10.5). Assume that the Riemannian manifold Μ

has no focal points. Then χ+(υ, ξ) < 0 (χ+(υ, ξ) > 0) if υ G Λ and ξ £ Χ~(υ) (ξ G Χ+(υ)).

In the two-dimensional case this theorem admits a converse.

THEOREM 8.2. Assume that the Riemannian manifold Μ has no conjugate points and

dim Μ = 2. Let υ G SM be such that χ+(υ, ξ) < 0 for some (and consequently any) % G

X~(v). Then ν G Λ.

PROOF. TO prove the theorem we shall need

LEMMA 8.1. Let ψ: R + —• R be a continuous function, where

t

sup 1 -φ (i) I = a < o o and Urn — frj)(s)ds = 6 < 0 .

Then

lim-1 ( V (s) ds = c > 0.
/-•oo

0



GEODESIC FLOWS ON CLOSED RIEMANNIAN MANIFOLDS 1223

PROOF OF THE LEMMA. We choose a number e e (0, min(a/2, - b/4)) and consider

the set X = {s G [0, t]: |i//(s)| > e}. There exists a T> 0 such that for any t > Τ

[0,<]\X

< — αmes (X) + — ε (t — mes (X)).

(Here mes denotes Lebesgue measure on the line.) Hence

la

Thus

c > lim — Γ -ψ2 (s) ds > — ε2 -
/-co < J

The lemma is proved.

We proceed to the proof of the theorem. We fix a vector w, \\w\\ = 1, orthogonal to

v, and we choose a vector ξ G X~(u), ||ξ|| = 1, for which di\% = w. By means of the usual

substitution the scalar Jacobi equation reduces to the scalar Ricatti equation (cf. [11], §10.5):

(8.1)

while according to Proposition 4.7(4)

s u p | z ( i ) | < a < o o ,

and by the hypotheses of the theorem and (4.6)

t

fiin - C ζ (s) ds = ilm - In || 7 ξ (t) || = Tim - In || da ο dfc
<-KX) f J /-Η» ί t-«X) t

= ΗΪ5-f Inldfgβ = X+ (ο,
t—co t

Hence, integrating (8.1) on the segment [0, t] and using Lemma 8.1, we get that
t t

lim — [ Kv,w (s) ds = —Tim — [ z2 (s) ds < 0.
/-*» / J t—co t J

0 0

The theorem is proved.

COROLLARY 8.1. // the compact Riemannian manifold Μ has no focal points and

μ(Λ) > 0, then μ(Λ) > 0, where Λ is the set defined in §1.1.

§9. Ergodic properties of geodesic flows on manifolds

without focal points

9.1. THEOREM 9.1. Let Μ be a compact Riemannian manifold without focal points

satisfying the axiom of uniform visibility. Then either μ(Λ) = 0, or μ(Λ) = 1. In the latter

case the geodesic flow is isomorphic to a Bernoulli flow (the set Λ is defined in §1.1).
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PROOF. Let us assume that μ(Λ) > 0. We consider the local stable and unstable

manifolds V~(v) and V+fy), υ G Λ. We denote by κ: Η —* Μ the covering map. In what

follows, a small circle over the notation for vectors, sets, etc. indicates that they are con-
o ο

sidered in the Riemannian universal covering Η or in SH. Thus κ(υ) = υ, K(V~(V)) = V~(v),

κ(Λ) = Λ.
Ο

LEMMA 9.1. V(u) C S -(υ), V +(ΰ) C S +(u) for any ΰ 6 Λ .

P R O O F . Let vv G V~(v). By virtue of (1.1)

P(n(f(v)), η(f(w)))-+0 as /-•bo. (9.1)

Hence, in particular, γ °(+ °°) = γ °(+ °°)· Let us assume that w £ S ~(u). We consider
Ο u Ο

the limit sphere L(TT(V) , γ°(+ °°)). Let ζ be the point of intersection of 7^(0 and

L(n(v), J°(+ °°)). Then by virtue of Proposition 7.1

Ρ (η (f (υ)), η (f (w))) + °P (z, rt (w)) > 0,

which contradicts (9.1). The lemma is proved.

LEMMA 9.2. For any δ > 0 and a > 0 one can /?nd a number Τ(δ, a) such that for

any ν e\'m_ls and wv w2 e F~(u) swcn i«ai ^ - ( ^ ( ^ , w2) = <*· and

Τ(δ, a), one has the inequality

ο £

PROOF. If this is not so, then there exist δ > 0, a > 0 and sequences vn e A^_j s ,

w", vv" e K~(un) and *:„ —> «> such that ρ | _(u°n)(w", ννί?) = α and

Pi-<r*-A» (Γ*η (if). f~kn (k)) < δ- (9·2)
Since the set Λ^_ ! ^ is compact (cf. Proposition 1.2), passing to a subsequence we get that

vn —»• υ e Kn-i,s· ^ e choose a sequence of isometries î n e irj(iW) of the space Η such

that 6?γ?πυη —• υ. Again passing to a subsequence, we can assume by virtue of Proposition
o o o o o o ^ o o O O

6.1(2) that άφη\ν" —*• Wj and dipnw" —*• vv2, where wt, w2 G V~(v) and ρ ο _ o (wv w2)

= a. According to Theorem 7.3(1) the line element υ is an element of uniqueness. More-

over, by virtue of Proposition 2.3.1 of [10], x+(w, if) < 0 for any vv G V~(v) and \ G

Ty«V~(v). Using Theorem 7.3(1) again, we conclude that any line element w G V~(v) is

an element of uniqueness. Hence and from Theorem 7.3(2) follows the existence of a num-

ber 7Χδ, a) > 0 such that for any t>T(b, a)

Hence for sufficiently large η

Using the monotonicity of ρ g_,f_t,° ..(f~ i(vv"),/~/(w2

1)) on elements of uniqueness

(cf. Theorem 7.3(2)), we get that for sufficiently large kn>T(S, a)
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W s » n » ( f k n *>· fkn A» > a > 1 δ·
But this contradicts (9.2). The lemma is proved.

From Lemma 9.2 immediately follows

LEMMA 9.3. For any δ > 0 there exists a measurable function T(p) such that for any

veXand t> T(v)

Since for almost any υ G 7\!m_1 s the semitrajectory {/'(")}, t > 0, lands in the set

A ' m _ l s infinitely many times, from Lemma 9.3 and Theorem 1.3 we get

LEMMA 9.4. Q~ (υ) - W~(v) for almost all υ G Λ.

We proceed to the proof of the theorem. Since the manifold Μ satisfies the axiom of

uniform visibility, by virtue of Theorem 5.2 the flow / ' is topologically transitive. Thus

from Lemma 9.4 it follows that f* satisfies the hypotheses of Theorem 9.5 in [11]. From

this theorem it follows that / ' is ergodic on Λ. We shall show that Λ = SM (mod 0).

Let υ G JLl

m-itS· We consider a ball $ on L{n(p), y°(+ °°)) with center at π(ΰ).

We identify Η U H(°°) with the closed unit ball in T-faH. We consider the set At(v) C
Ο V / Q Ο Q Ο Q

H, t > 0, bounded by Q, segments of the geodesies γ ^ ( ϊ ) , π(νν) G bQ, - w £ S ~(v), 0

< s < f, and the domain Qt C L(y°(t), Tg(+ °°)), whose boundary is the set {y^(t), TT(W) e

Q, - w G S " ( " ) } . If Q is chosen sufficiently small, so that Q c π(Ρ~(ΰ)), then, as fol-
ο ο ο ο ο ο

lows from Theorem 7.3(2), any line element w, — w € S ~(i>), for which π(νν) G β, is an

element of uniqueness. Hence any two geodesies yw (r) and yw (r) in Η diverge if w(wf)

e β and - w,· S 6 ~(v), i = 1, 2.

We consider the domain (?„ C //(°°) whose boundary is the set{7,=(+ °°), π(νν) G

9Q, - w e § - ( u ) } . We put

Bt (v) ={w<=SH:n(w)e= At (υ), γ^ ( + oo) e= Q«,}.

We shall show that for ahnost all υ G Λ

ο ο ο
)

ο ο

(ο) C Λ (mod 0).

We fix t G [0, °°] and put

&(o) = U U
N

It is easy to see that B^v) C ^«.(u) for any υ GbA. But, by virtue of Lemmao9.4, D (υ)

C Λ (mod 0) for any t > 0, and hence D^(v) C X (mod 0). Hence £«,(u) C Λ (mod 0).
ο ο ο

Let U c Η and V C / (̂°°) be open balls. We consider the open set R = {w G Sff:

π(νν) G U, y o(+ oo) e F}. It follows from Proposition 5.3(3) that for any ΰ G S// there
ο ο ο

exists an isometry φ of the space Η such that î (i?) C ^ ^ ( U ) . Hence on the basis of Lemma

9.5 and the inclusion (9.3) we have R C Λ (mod 0). Thus we have proved that Λ = SM

(mod 0) and the geodesic flow in SM is ergodic. We shall show that it is isomorphic to a

Bernoulli flow.
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We note that from the condition μ(Λ) > 0 and the Gauss-Bonnet formula (cf. [4],

§7.8) it follows that the manifold Μ is not homeomorphic to a two-dimensional torus.

Hence from a theorem of V. I. Arnol'd (cf. [1], §23) it follows that the flow f has no

continuous eigenfunctions.

LEMMA 9.5 (cf. [1], Lemma 20.2). If φ is a measurable eigenfunction of the flow ff,

then there exists a continuous eigenfunction ψ such that φ = ψ (mod 0).

PROOF. For some λ and almost all υ £ SM we have φ^\υ)) = e2niktip(v). Setting

t0 = l/λ, we get that φ is invariant mod 0 with respect to the diffeomorphism f*°. Since

Λ = SM (mod 0), for almost all ν £ SM and w £ Q ~(v) we have

as η —*•<*>. Now it is easy to show by the method of Hopf (cf. [2], Theorem 4.4, and [11],

Theorem 6.1) that the function φ is constant mod 0 on stable horospheres; analogously one

can show that φ is constant mod 0 on unstable horospheres. The rest of the proof of the

lemma proceeds just as in the case of U-flows (cf. [1], §20, proof of Theorem 6).

Thus, we have proved that the flow f1 has no eigenfunctions in SM. Hence the asser-

tion to be proved follows from Theorems 2.1 and 3.1.

In the two-dimensional case Theorem 9.1 can be strengthened.

THEOREM 9.2. // the compact two-dimensional manifold Μ of genus greater than 1

has no conjugate points, then either μ(Λ) = 0, or μ(Λ) = 1. In the latter case the geodesic

flow is isomorphic to a Bernoulli flow and Λ = SM (mod 0) {the set Λ is defined in § 1.1).

PROOF. Since dim Μ = 2, it follows from Theorems 8.1 and 8.2 that for υ £ Λ the

conditions ξ £ X~(v) and χ+(υ, ξ) < 0 are equivalent and 4 C Λ. By virtue of Theorem

1.1, the set Λ decomposes into a countable number of ergodic components of positive

measure. Since dim Μ = 2, Lemma 9.1 shows that the hypotheses of Theorem 9.5 of [11]

are satisfied, so that each ergodic component is mod 0 an open set, and 6'(υ) = W~(v) for

almost all υ £ Λ. Since the genus of Μ is at least 2, Μ satisfies the axiom of uniform visi-

bility (cf. Proposition 5.2), and consequently the flow / ' is topologically transitive (cf.

Theorem 5.2). Hence f is ergodic on Λ (cf. [11], §9).

We shall show that Λ = SM (mod 0). From what was said above and the results of
Q Ο Ο

[11] (cf. § §7 and 9) it follows that, for almost all υ £ Λ, almost all line elements w £
0 0 °

6 ~(v) lie in the set Λ (we are using the notation of the previous theorem). We fix a line

element υ £ Λ with the indicated property. Let Qx be a segment on the absolute H{°°)

containing the point y°(- <»). We join the ends of this segment with the point y°(+ °°)

by geodesies (cf. Proposition 5.3(2)). Let χ and y be the points of intersection of these
ο

geodesies and the limit sphere £(π(υ), γ^(+ °°)). From what was said above it follows that
o o O o 0 0 0 ο

almost all line elements w such that - w £ 6 ~(v) and π(νν) £ [χ, y ] lie in Λ. It remains

to repeat the concluding part of the proof of Theorem 9.1. The theorem is proved.

In [11] (cf. Theorem 10.6) it is proved that if Mis a compact two-dimensional mani-

fold of genus greater than 1, then μ(Λ) > 0. Hence from Theorem 9.2 and Corollary 8.1

follows
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THEOREM 9.3. (cf. [11], Theorem 10.7). If a compact two-dimensional manifold of

genus greater than 1 has no focal points, then the geodesic flow is isomorphic to a Bernoulli

flow.

From the formula for the entropy of a flow (cf. [11], §5) and Theorem 9.2 follows

THEOREM 9.4. If a geodesic flow on a compact two-dimensional manifold of genus

greater than 1 without conjugate points has positive entropy, then it is isomorphic to a

Bernoulli flow.

We note that a geodesic flow on a two-dimensional torus with Riemannian metric

without focal points has zero entropy (since this metric is equivalent to the standard one).

REMARK 9.1. The absence of focal points is used in the proof of Theorem 9.1 to as-
o ο

sure that from the condition ν & A one can derive with the help of Theorem 7.3(1) that

υ is an element of uniqueness. However, if a priori it is known that any element ΰ G SH is

an element of uniqueness, the condition of absence of focal points can be discarded. Thus

we arrive at the following theorem.

THEOREM 9.5. // the manifold Μ is compact, has no conjugate points and satisfies

the strengthened axiom of uniform visibility, than either μ(Λ) = 0, or μ(Λ) = 1. In the

latter case the geodesic flow is isomorphic to a Bernoulli flow.

REMARK 9.2. Modifying the proof of Lemma 9.5 and using Theorem 1.2(5), it is

easy to prove the following assertion.

THEOREM 9.6. Let ff: Μ —* Μ be a flow of class C2, preserving a measure ν equiv-

alent to the Riemannian volume. Assume that Aks = Μ (mod 0) for some k and s (cf.

§1.3) and there exist continuous foliations W~ and W+ of Μ such that W~\Aks = W~\Aks

and W + \Aks = W+ \Aks (cf. § 1.9). Then any measurable eigenfunction of the flow f*

mod 0 is continuous.

This theorem allows one to supplement Theorems 2.1 and 3.1 in the following way.

THEOREM 9.7. Under the hypotheses of Theorem 9.6 either the flow f* is isomorphic

to a Bernoulli flow, or it can be represented as the suspension of a diffeomorphism of a

compact manifold having almost everywhere nonzero Ljapunov characteristic exponents.

PROOF. If the flow/' has continuous spectrum, then it is isomorphic to a Bernoulli

flow (cf. Theorem 3.1). If it has an eigenfunction, then it is mod 0 continuous (cf. Theo-

rem 9.6). Considering its level lines and arguing just as in the case of U-flows (cf. [1],

§20, the proof of Theorem 12), it is easy to show that these level lines are compact mani-

folds, and the succession diffeomorphism on each of these manifolds has almost everywhere

nonzero Ljapunov exponents. The theorem is proved.
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