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Abstract. We show that every compact smooth Riemannian manifold M of dimM ≥ 3,
admits a volume-preserving Bernoulli flow with non-zero Lyapunov exponents except for
the Lyapunov exponent along the direction of the flow.

1. Introduction

In [DP], Dolgopyat and Pesin obtained an affirmative solution to the long-standing prob-
lem of whether a compact smooth Riemannian manifold admits a volume-preserving ergodic
(Bernoulli) diffeomorphism with non-zero Lyapunov exponents. In this paper we discuss a
continuous time version of this problem and we prove the following result.

Theorem 1. Given a compact smooth Riemannian manifold M of dimM ≥ 3, there exists
a C∞ flow f t such that for each t 6= 0,

(1) f t preserves the Riemannian volume µ on M ;
(2) f t has non-zero Lyapunov exponents (except for the exponent along the flow direc-

tion) at m-almost every point x ∈M ;
(3) f t is a Bernoulli diffeomorphism.
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2. Construction of diffeomorphisms by Katok and Brin

In our construction of the flow we use a special diffeomorphism of the two dimensional
unit disc D2 constructed by Katok in [K]. We summarise the description and properties of
this diffeomorphism in the following proposition.

Proposition 2. There exists a C∞ diffeomorphism g : D2 → D2 with the following proper-
ties:

(1) g preserves area on D2;
(2) g has non-zero Lyapunov exponents almost everywhere;
(3) g is a Bernoulli map;
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(4) dk(g − id)|∂D2 = 0 for any k ≥ 0, i.e., on the boundary of the disk g is the identity
map and has all its derivatives zero.

Let us sketch the construction of the diffeomorphism g. We begin with the automorphism

g0 of the torus T2 given by the matrix

(
13 8
8 5

)
. The map g0 has four fixed points

q1 = (0, 0) , q2 =

(
1

2
, 0

)
, q3 =

(
0,

1

2

)
, q4 =

(
1

2
,

1

2

)
.

In a small neighborhood Di
r = {(s1, s2) : s2

1 + s2
2 ≤ r} of each qi, 0 < r < 1, the map g0 is

the time-1 map of the flow given by

ṡ1 = −(logα)s1, ṡ2 = (logα)s2,

where α > 1 is the larger eigenvalue of g0 and {s1, s2} is the coordinate system in a neigh-
borhoods of each qi generated by the eigenvectors of g0.

Then we consider the map g1 that is conjugate to g0 via a conjugacy φ0 that slows down
the motion near qi. More precisely, g1 is the time-1 map of the flow given by

(2.1) ṡ1 = −(logα)s1ψ(s2
1 + s2

2), ṡ2 = (logα)s2ψ(s2
1 + s2

2)

in Di
r, and g1 = g0 otherwise, where ψ is a C∞ function except at zero and such that

ψ(0) = 0, ψ(ξ) ≥ 0 for ξ ≥ 0, ψ(ξ) = 1 for ξ ≥ r and

∫ r

0

√
1

ψ(ξ)
dξ <∞.

The map g1 preserves a probability measure dν = κ−1
0 κ dm, where m is area and the density

κ is a positive C∞ function defined by the formula

κ(s1, s2) =

{
(ψ(s1

2 + s2
2))−1 if (s1, s2) ∈ Di

r.

1 otherwise.

Here

κ0 =

∫

T2

κ dm.

Note that κ is infinite at qi.
Define the map φ1 by the formula

φ1(s1, s2) =
1√

κ0(s1
2 + s2

2)

(∫ s1
2+s2

2

0

du

ψ(u)

)1/2

(s1, s2)

near each qi and then extend the map to T2 in such a way that φ1 is C∞, commutes with the
involution J(t1, t2) = (1−t1, 1−t2) on T2, and satisfies (φ1)∗ν = m. Hence, g2 = φ1◦g1◦φ−1

1

is a C∞ area preserving map.
Let φ2 : T2 → S2 be a double branched covering that satisfies φ2 ◦ J = φ2, (φ1)∗m = m,

and C∞ everywhere except for the points qi, where it branches and near qi,

φ2(s1, s2) =
1√

s1
2 + s2

2
(s2

1 − s2
2, 2s1s2).

The map g3 = φ2 ◦ g2 ◦ φ−1
2 is a C∞ diffeomorphism of the sphere S2.
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Finally, let φ3 be a C∞ map that blows up the point q4 into a circle and makes g =
φ3 ◦ g3 ◦ φ−1

3 to be the desired map of the disk. We refer the reader to [K] (see also [DP])
for more details.

Note that the map g1 preserves measure ν and the maps g2, g3 and g preserve area. The
desired result follows.

We call the map g Katok’s map. We need some additional properties of this map.
Since g has non-zero Lyapunov exponents, for almost every x there are global stable and

unstable manifolds, Ws
g(x) and Wu

g (x), at x.

Let Q = {q1, q2, q3} ∪ ∂D2 be the discontinuity set of g.

Proposition 3. The following properties hold:

(1) periodic points of g are everywhere dense;
(2) g possesses two one-dimensional continuous foliations which are extensions of the

stable and unstable global foliations W s
g (x) and W u

g (x); we will use the same nota-
tions for these foliations;

(3) there exist neighborhoods U ⊂ U1 of ∂D2 and a vector field V in U1 which generates
an area-preserving flow gt : U → D2, −2 < t < 2 for which g|U = g1.

Proof. Note that the map g1 is topologically conjugate to g0 and Statement 1 follows. State-
ments 2 is proved in [K] (see Lemma 4.1). We prove the last statement. By construction,
near each point qi, the map g1 is the time-1 map of a vector field V1. Moreover, near each qi
we have V1(−x) = −V1(x) for any x, see (2.1). It follows that the maps g2 and g3 near qi are
the time-1 maps of the vector fields given by V2 = dφ1 ◦V1 ◦φ−1

1 and V3 = dφ2 ◦V2 ◦φ−1
2 re-

spectively. Here we should stress that V3 is well defined even though φ2 is a two to one map.
In fact, near qi we have φ1(−x) = −φ1(x) and φ2(−x) = φ2(x). This gives V2(−x) = −V2(x)
and therefore, for any y near qi, φ

−1
2 (y) has two preimages x and −x at which

(dφ2)−x(V2(−x)) = (dφ2)−x(−V2(x)) = (dφ2)x(V2(x)).

Now we see that g is the time-1 map of the vector field V = dφ3 ◦ V2 ◦ φ−1
3 . �

The next result shows that the map g is diffeotopic to the identity map.

Proposition 4. There exists a map G : D2 × [0, 1]→ D2 with the following properties:

(1) G(x, t) is C∞ in (x, t);
(2) G(·, 0) = id and G(·, 1) = g;
(3) G(x, t) = gt(x) for any x ∈ U and t ∈ [0, 1], where gt(x) is the flow in Proposition 3;
(4) for any t ∈ [0, 1] the map G(·, t) : D2 → D2 is an area-preserving diffeomorphism;
(5) dkG(x, 1) = dkG(g(x), 0) for any k ≥ 0.

Proof. Recall that in the neighborhood U of the boundary of D2 the map g is the time-1

map of the flow generated by the vector field V . We extend V to a smooth vector field V̂

on the whole D2, and let ĝt be the flow generated by V̂ . Note that g|U = ĝ1|U . We need
the following result of Smale (see [S], Theorem B):

Lemma 5. Let A be the space of C∞ diffeomorphisms of the unit square which are equal
to the identity in some neighborhood of the boundary. Endow A with the Cr topology,
1 < r ≤∞. Then A is contractible to a point.

The statement also holds if the unit square is replaced by the unit disk. Applying the
result to the diffeomorphism g ◦ ĝ−1, which is equal to the identity on U , we obtain a
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homotopy G̃ : D2× [0, 1]→ D2 such that G̃(·, 0) = id |D2 and G̃(·, 1) = ĝ−1◦g. Moreover, G̃

is C∞ in (x, t), i.e., G̃ is a diffeotopy in A (see [S], Theorem 4). Therefore, for each t ∈ [0, 1],

there is a neighborhood Ut of ∂D2 such that G̃(·, t)|Ut = id |Ut. One can show that the set

U = int
⋂

t∈[0,1]

Ut

is not empty and is a neighborhood of ∂D2. Denote g̃t = G̃(·, t). It follows that the map
G(·, t) = g̃t ◦ ĝt satisfies Statements 1- 3 of the proposition. To prove Statements 4 and 5,
we need the following lemma.

Lemma 6. Let {Ωt0} and {Ωt1} be two families of volume forms on D2 that are C∞ in (x, t).
Assume that Ωt0|U = Ωt1|U for any t and Ωt0 = Ωt1 for t ∈ [0, ε)∪ (1− ε, 1]. Then there exists
a map Ḡ : D2 × [0, 1]→ D2 with the following properties:

(1) Ḡ(x, t) is C∞ in (x, t);
(2) Ḡ(·, 0) = Ḡ(·, 1) = id;
(3) for any t ∈ [0, 1] the map Ḡ(·, t) : D2 → D2 is a diffeomorphism with Ḡ(·, t)∗Ωt1 =

Ωt0;
(4) Ḡ(x, t) = x for any t ∈ [0, 1] and x in some neighborhood U ′ ⊂ U of ∂D2.

Proof. The argument is a modification of the proof of Moser’s theorem ([M]). We follow
here the approach in [KH] (see Theorem 5.1.27). Let Ωt = Ωt1 − Ωt0 and Ωts = Ωt0 + sΩt for
s ∈ [0, 1]. We know that Ωt|U = 0. We construct a family of one forms Ht such that Ht is
C∞ in (x, t), dHt = Ωt and Ht|U ′ = 0 for some neighborhood U ′ ⊂ U of ∂D2. Consider a
Euclidean coordinate system (x1, x2) such that D2 = {(x1, x2) : x2

1 + x2
2 ≤ 1}. We have

Ωt = ρt(x)dx1 ∧ dx2

and

Ωts = ρts(x)dx1 ∧ dx2

with ρts > 0. Note that ρt|U = 0 and
∫
ρt dx = 0 for any t ∈ [0, 1]. Given a C∞ function

θt = θt(x), x ∈ D2, t ∈ [0, 1], let

E1(θt)(a) =

∫

D2∩{x2=a}
θt(x1, a)dx1

and

E2(θt)(a) =

∫

D2∩{x1=a}
θt(a, x2)dx2

be the expectation of θt along the lines x2 = constant and x1 = constant. We choose the
function θt such that

E1(θt) = E1(ρt), E2(θt) = 0,

and θt|U ′ = 0 where U ′ ⊂ U is a neighborhood of ∂D2. Such θt exists. Indeed, choose any
positive C∞ function δ such that

∫
δdx1 = 1, the support supp δ ⊂ (−ε, ε) for some small

ε > 0, and then set θt(x1, x2) = δ(x1)E1(ρt)(x2). Now let

at(x1, x2) = −
∫

D2∩{(x1,y):y<x2}
θt(x1, y) dy,

bt(x1, x2) =

∫

D2∩{(y,x2):y<x1}

[
ρt(y, x2)− θt(y, x2)

]
dy.
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The 1-forms

Ht(x1, x2) = at(x1, x2)dx1 + bt(x1, x2)dx2

satisfy the desired requirements.
For each s ∈ [0, 1], consider the vector field

V ts = − b
t

ρts

∂

∂x1
+
at

ρts

∂

∂x2
.

It is well defined since ρts > 0 on D2 and it is C∞ in (x, t, s). We also have V ts |U ′ = 0
and Ωts(V

t
s , ·) = −Ht. Let (Ḡt)s : D2 → D2 be the solution of the differential equation

dx
ds = V ts (x) satisfying the initial condition (Ḡt)0 = id. We have that

(dḠt)1∗Ωt1 = (dḠt)0∗Ωt0 = Ωt0

(see [KH], Theorem 5.1.27 for more details). So Ḡt = (Ḡt)1 is the desired map. �

We proceed with the proof of the proposition. Consider the map Ḡ as in the lemma with
Ωt0 = dx1 ∧ dx2 on D2 for any t ∈ [0, 1] and Ωt

1 = dg̃t∗dĝt∗Ωt0. Let ḡt = Ḡ(·, t). Then the
map G : D2 × [0, 1]→ D2,

G(x, t) = ḡt ◦ ĝt ◦ g̃t

satisfies Statements 1 – 4 of the proposition. If necessary one can change the map G̃(·, t) in
a small neighborhood of the set D2 × 0 and D2 × 1 so that it will also satisfy Statement 5.

For example, one can choose G̃ in such a way that

G̃
(
Ĝ(x, t), t

)
= G̃

(
Ĝ(x, 0), 0

)
, t ∈ [0, ε), G̃

(
Ĝ(x, t), t

)
= G̃

(
Ĝ(x, 1), 1

)
, t ∈ (1− ε, 1].

Hence, ĝt◦g̃t is area-preserving for any t ∈ [0, ε)∪(1−ε, 1]. Therefore, by Lemma 6, Ωt
1 = Ωt0

and Ḡ(·, t) = id for all t ∈ [0, ε) ∪ (1− ε, 1], because in this case Ωt = 0, ρt = 0, at = bt = 0
and V ts = 0 for every s. �

We also need Brin’s construction from [B2]. Given n ≥ 5, let A : Tn−3 → Tn−3 be a
hyperbolic automorphism of the (n−3)-dimensional torus and ht : L→ L the suspension flow
over A with the roof function H = 1, y ∈ Tn−3. The suspension manifold L is diffeomorphic
to Tn−3 × [0, 1]/ ∼, where ∼ is the identification (y, 1) = (Ay, 0). The flow ht preserves
volume on L and one can choose A so that L can be embedded into Rn−1 × S1 with trivial
normal bundle.

3. Proof of the theorem: the case dimM ≥ 5

Consider the map

R = g ×A : D2 × Tn−3 → D2 × Tn−3,

where g : D2 → D2 is Katok’s diffeomorphism and A : Tn−3 → Tn−3 is the automorphism
from Brin’s construction. Consider the suspension flow over R with roof function H = 1
and the suspension manifold K = D2 × Tn−3 × [0, 1]/ ∼, where ∼ is the identification
(x, y, 1) = (g(x), A(y), 0). In other words, K is the manifold D2 × Tn−3 × [0, 1] where the
points (x, y, 1) are identified with the points (g(x), A(y), 0). Denote by Z the vector field of
the suspension flow and by ϕtZ the suspension flow itself.

For each point (x, y, t) ∈ K consider the coordinate system

(3.2) (x1, x2, y1, . . . , yn−3, t) = (x, y, t)
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in its neighborhood where x = (x1, x2) ∈ D2, y = (y1, . . . yn−3) ∈ Tn−3 and t ∈ [0, 1]. In
this coordinate system, Z = (0, 0, 1).

Set N = D2 × L, where L is the suspension manifold in Brin’s construction (see the
previous section). Write N = D2 × (Tn−3 × [0, 1]/ ∼) where ∼ is the identification (y, 1) =
(A(y), 0) for all y ∈ Tn−3.

Consider the map F : K → N given by

F (x, y, t) = (G(x, t), y, t),

where G : D2 × [0, 1]→ D2 is the diffeotopy constructed in Proposition 4. We have

F (x, y, 1) = (g(x), y, 1) = (g(x), A(y), 0) = F (g(x), A(y), 0).

Therefore, the map F is well-defined. It is easy to see that F preserves volume, is one-to-one
and continuous. Hence, it is a homeomorphism. Formal differentiation yields

(3.3) dF (x, y, t) =




Gx(x, t) 0 Gt(x, t)
0 1 0
0 0 1


 .

It follows from Statement 5 of Proposition 4 that for every k ≥ 1,

dkF (x, y, 1) = dkF (g(x), Ay, 0)

and hence, F is a C∞ diffeomorphism.
Consider the vector field Y = dFZ on N and let ϕtY be the corresponding flow. In the

coordinate system (3.2), we have

Y (G(x, t), y, t) =
(∂G
∂t

(x, t), 0, 1
)
, (x, y, t) ∈ K.(3.4)

The vector field Y is divergence free since it is the image of the divergence free vector field
Z under the volume-preserving map F .

Let us choose a C∞ function α : D2 → [0, 1] such that

(A1) α and all its partial derivatives of any order are equal to zero on ∂D2;
(A2) α(x) > 0 for x ∈ intD2, α(x) = 1 for x ∈ D2 \ U .

Define the vector field X on N by

X(G(x, t), y, t) =
(∂G
∂t

(x, t), 0, α(G(x, t))
)
, (x, y, t) ∈ K.(3.5)

Note that by Statement 3 of Proposition 4,
∂G

∂t
(x, t) = V (G(x, t)) for x ∈ U . Therefore,

Equalities (3.4) and (3.5) imply that for (x, y, t) ∈ N with x ∈ U ,

Y (x, y, t) = (V (x), 0, 1), X(x, y, t) = (V (x), 0, α(x)).(3.6)

Let ϕt = ϕtX be the flow on N generated by the vector field X . It is easy to see that X
is divergence free and hence, ϕt is volume-preserving.

Lemma 7. All but one Lyapunov exponents of the flow ϕtX are non-zero almost everywhere.

Proof. We begin with a construction of a map which is similar to Katok’s map: it has the
same topological and hyperbolic properties but does not preserve area. It is better adopted
to the flow. We will also use this map in the proof of the ergodicity of the flow.

We assume that the function α(x) is chosen such that the following additional condition
holds:
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(A3) α(x)−1V (x)→ 0 as x→ ∂D2, where V is the vector field defined in Statement 3 of
Proposition 3.

Consider the map g∗ : D2 → D2 such that g∗ = g on D2\U and g∗ is the time-1
map of the flow g∗t generated by the vector field V ∗ = α−1V on U1 (see Statement 3 of
Proposition 3). By (A1) − (A3), the map g∗ is well defined and is a diffeomorphism. It
also satisfies Statements 2 – 4 of Propositions 2 and 3. Note that the map g∗ preserves a
measure µ∗ which is absolutely continuous with respect to area with positive density ρ∗(x);
the latter is unbounded as x approaches ∂D2.

We now proceed as before replacing g by g∗. Namely, define G∗ : D2 × [0, 1] → D2 by
G∗(x, t) = G(x, t) if x ∈ X \U , and G∗(x, t) = g∗t(x) otherwise. Let φtZ∗ be the suspension
flow over g∗ × A with the suspension manifold K∗ = X × Tn−3 × [0, 1]/ ∼, where ∼ is the
identification (x, y, 1) = (g∗(x), A(y), 0) and Z∗ is the vector field of the suspension flow.
Define the map F ∗ : K∗ → N by

F ∗(x, y, t) = (G∗(x, t), y, t)

and let Y ∗ = dF ∗Z∗. We have for x ∈ U ,

∂G∗

∂t
(x, t) = α(gt(x))−1V (gt(x))

and hence,

Y ∗(G∗(x, t), y, t)) = (α(g∗t(x))−1V (g∗t(x)), 0, t)

or equivalently,

Y ∗(x, y, t) = (α(x)−1V (x), 0, t).

Since Y ∗(x, y, t) = Y (x, y, t) for x /∈ U , we obtain by (3.6) that X = αY ∗.
Define the vector field Z̃ on K∗ by

Z̃(x, y, t) = (dF ∗)−1X(F ∗(x, y, t)) (x, y, t) ∈ K∗.
It is easy to see that φtX = F ∗ ◦ φt

Z̃
◦ F ∗−1 and the vector fields Z∗ and Z̃ have the same

orbits. In other words, there is a function β : K∗ → R+ such that for every (x, y, t) ∈ K∗,
(B1) Z̃(x, y, t) = β(x, y, t)Z∗(x, y, t);
(B2) β(x, y, t) = 0 if x ∈ ∂D2;
(B3) β(x, y, t) = 1 if x /∈ U .

By construction, the flow φtZ∗ has non-zero Lyapunov exponents almost everywhere. Denote
by EsZ∗(x, y, t), E

u
Z∗(x, y, t), E

cs
Z∗(x, y, t) and EcuZ∗(x, y, t) the stable, unstable, center-stable

and center-unstable invariant subspaces at the point (x, y, t) ∈ K∗ repectively. Observe that
the subspaces EcsZ∗(x, y, t) and EcuZ∗(x, y, t) are also invariant under the flow φt

Z̃
. Chose a

point (x0, y0, t0) and a vector v ∈ EuZ∗(x0, y0, t0). Note that for almost every (x0, y0, t0) (with
respect to the Riemannian volume) the proportion of time the trajectory {φt

Z̃
(x0, y0, t0)}

spends in the set {(x, y, t) : x /∈ U} is strictly positive. It follows that the Lyapunov exponent
χ(v) at (x0, y0, t0) with respect to the flow φt

Z̃
is positive. �

Almost every point (x0, y0, t0) ∈ N has stable, unstable, center-stable and center-unstable
global manifolds W s

X (x0, y0, t0), W u
X(x0, y0, t0), W cs

X (x0, y0, t0) and W cu
X (x0, y0, t0) with re-

spect to the flow ϕtX . Similarly, almost every point (x0, y0, t0) ∈ K∗ has stable, un-
stable, center-stable and center-unstable global manifolds W s

Z̃
(x0, y0, t0), W u

Z̃
(x0, y0, t0),

W cs
Z̃

(x0, y0, t0) and W cu
Z̃

(x0, y0, t0) with respect to the flow ϕt
Z̃

. By Proposition 2 these
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foliations can be extended to foliations which are continuous everywhere except for the dis-
continuity set Q × Tn−3 × [0, 1]/ ∼. We will use the same notations for these foliations.
Observe that

(3.7) πx(W cs
Z̃

(x0, y0, t0)) = W s
g∗(x0), πx(W cu

Z̃
(x0, y0, t0)) = W u

g∗(x0)

and

(3.8) πy(W cs
Z̃

(x0, y0, t0)) = W s
A(y0), πy(W cu

Z̃
(x0, y0, t0)) = W u

A(y0),

where πx : K∗ → D2 and πy : K∗ → Tn−3 are natural projections.
We say that two points z, z′ ∈ N are accessible if there are points z = z0, z1, . . . , z`−1, z` =

z′, zi ∈ N such that zi ∈ W u
X(zi−1) or zi ∈ W s

X (zi−1) for i = 1, . . . , `. The collection
of points z0, z1, . . . , z` is called a path connecting z and z′ and is denoted by [z, z′] =
[z0, z1, . . . , z`]. Accessibility is an equivalence relation. We say that the time-t map of the
flow ϕtX has accessibility property if the partition into accessibility classes is trivial (i.e. any
two points z, z′ are accessible) and to have essential accessibility property if the partition
into accessibility classes is ergodic (i.e. a measurable union of equivalence classes must have
zero or full measure). Similarly, one defines (essential) accessibility of the time-t map of the
flow ϕt

Z̃
using its global stable and unstable foliations.

Lemma 8. For every t the time-t map of the flow ϕtX has essentially accessibility property.
Moreover, for any set E of zero measure and almost any two points z, z ′ /∈ E one can find a
path [z, z′] = [z0, z1, . . . , z`] such that each zi /∈ E.

Proof. It suffices to establish essential accessibility property of the time-t map of the flow ϕt
Z̃

.
Note that the map g∗ has essential accessibility property, indeed, any two points outside
of the discontinuity set Q are accessible. Note also that the automorphism A in Brin’s
construction is accessible. Denote by Q∗ = {(x, y, t) ∈ K∗ : x ∈ Q, y ∈ Tn−3, t ∈ [0, 1]}. Fix
t and consider the time-t map of the flow ϕt

Z̃
. Relations (3.7) and (3.8) imply that for any

two points (x, y) and (x′, y′) ∈ D2 × Tn−3 and any t ∈ [0, 1] the point (x, y, t) is accessible
to a point (x′, y′, t′). In particular, any point (x, y, t) ∈ K∗ \Q∗ is accessible to a point in
Πp,q = {(p, q, t′) ∈ K∗ : t′ ∈ [0, 1]} for some p ∈ D2 and q ∈ Tn−3. It remains to show that
any two points in Πp,q are accessible.

Let q ∈ Tn−3 be a periodic point of the automorphism A in Brin’s construction and p,
p′ be two periodic points of g∗ such that the orbit of p and the orbit of p′ except for p′

itself (under g∗) lie outside the neighborhood U . Consider local stable and unstable leaves
(curves) at p and p′, V sg∗(p), V

u
g∗(p), V

s
g∗(p

′), and V ug∗(p
′). One can choose points p and p′

such that the local unstable leaf from p to V ug∗(p)∩V sg∗(p′), and the local stable and unstable
leaves from p to V sg∗(p) ∩ V ug∗(p′) also lie outside the neighborhood U .

For a point (p, q, t) ∈ Πp,q, let γup ⊂ W u
Z̃

(p, q, t) and γsp ⊂ W s
Z̃

(p, q, t) be the curves such

that πx(γup ) ⊂ V ug∗(p), πy(γup ) = q and πx(γsp) ⊂ V sg∗(p), πy(γsp) = q. Since γu and γs lie
outside U and the point (p, q) is periodic, the t coordinate of a point remains unchanged
when this point moves along γup from (p, q, t) toward γup ∩ π−1

x (V ug∗(p) ∩ V sg∗(p′)) ∩ π−1
y (q).

So does the t coordinate of a point moving along γsp from (p, q, t) toward γsp ∩ π−1
x (V ug∗(p

′)∩
V sg∗(p)) ∩ π−1

y (q). On the other hand, for a point (p′, q, τ) ∈ Πp′,q , if we choose γup′ and γsp′
in a similar way, then the third coordinate τ increases when a point moves along γup′ from

(p, q, τ) toward γup ∩ π−1
x (V ug∗(p

′) ∩ V sg∗(p)) ∩ π−1
y (q) and the third coordinate τ decreases

when a point moves along γsp′ from (p, q, τ) toward γup ∩ π−1
x (V ug∗(p) ∩ V sg∗(p′)) ∩ π−1

y (q) (we
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assume that α(p′) < 1). We can now use the argument in [DHP] (see the proof of Lemma
B.4) to obtain that the point (p, q, t) is accessible to some point (p, q, t′) ∈ Πp with t′ < t,
and then any two points in Πp are accessible. This show that for every t the time-t map of
the flow ϕtX has essentially accessibility property.

Let us note that for any zero measure set in the disk and almost any two points outside
this set there exists a path for Katok’s map which consists of points lying outside this set.
Similar statement holds for the automorphism in Brin’s construction.

To complete the proof consider a set E of zero measure. For almost any two points
z, z′ /∈ E and almost every points w and w′ close to (p, q) one can find paths connecting the
point z to (w, s) and z′ to (w′, s′) for some s and s′ such that every point in these paths lies
outside E. Note that the quadrilateral path from (p, q, t) to (p, q, t′) in the above argument
can be replaced by a nearby paths from (w, s) to (w′, s′) such that both (w, s) and (w′, s′)
and all other points in the path do not belong to E. The desired result follows. �

Lemma 9. The flow ϕtX on N is Bernoulli.

Proof. By results in [P3], a flow with non-zero Lyapunov exponents is Bernoulli if it is a
K-flow, i.e., the Pinsker algebra P, (the largest subalgebra for which φt|P has zero entropy),
is trivial.

Let B be the σ-algebra of Borel subsets in N and A ⊂ B a subalgebra. Denote by Sat0(A)
the saturation of A by sets of measure zero, that is,

Sat0(A) = {B ∈ B : there exists A ∈ A such that µ(A4 B) = 0}
(where µ is volume). Let Ss (respectively, Su) be the subalgebra of Borel sets that consist
of whole stable (respectively, unstable) leaves, that is, for E ∈ Ss (respectively, E ∈ Su)
and x ∈ E we have W s

X(x) ⊂ E (respectively, W u
X (x) ⊂ E). By [P2] (see Theorem 2), the

Pinsker algebra P is contained in Sat0(Ss). Similarly, P is contained in Sat0(Su). Therefore,
P is contained in Sat0(Su)∩Sat0(Su) and we wish to show that this intersection is the trivial
algebra.

Let A ⊂ Sat0(Su)∩ Sat0(Su) with µ(A) > 0. We shall show that µ(A) = 1. Recall that a
point x ∈ N is a density point of A if

lim
r→0

µ(B(x, r) ∩A)

µ(B(x, r))
= 1.

Denote by D(A) the set of density points of A. By the Lebesgue-Vitali theorem D(A) = A

(mod 0) and hence, it suffices to show that µ(D(A)) = 1. Let E1 the complement of
D(A) ∪D(N\A). Applying again the Lebesgue-Vitali theorem we obtain that µ(E1) = 0.

Recall that the diffeomorphism g∗ : D2 → D2 has non-zero Lyapunov exponents and
results of smooth ergodic theory applies (see [BP] for relevant notions and details). Let
R` ⊂ D2 be the regular set (of level `) for g∗. The set

⋃
` R` has full measure in D2 and so

does the set R =
⋃
`D(R`).

For x ∈ D2 and outside the discontinuity set let γsg∗(x, r) and γug∗(x, r) be arcs in V sg∗(x)
and V ug∗(x) centered at x of length r.

Choose two points x and x′ outside the discontinuity set which are sufficiently close to
each other. Consider the holonomy map θ : V sg∗(x) → W s

g∗(x
′) generated by the family of

local leaves V ug∗(y), y ∈ V sg∗(x). Since the foliation W s
g∗ is absolutely continuous the map

θ moves the conditional measure (length) µsx on V sg∗(x) to a measure on V sg∗(x
′) which is

absolutely continuous with respect to µsx′ . The Jacobian Jac(θ)(y) is not bounded. It is
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however bounded if we allow y to run over the set V s
g∗(x) ∩ R`. More precisely, for every

x ∈ R` there is J = J(`) such that

(3.9) µsx′(θ(V
s
g∗ (x) ∩ R`)) ≤ Jµsx(V sg∗(x) ∩ R`).

Since x′ ∈ D(R`) without loss of generality we may assume that for sufficiently small r,

(3.10) µsx′(γ
s(x′, 3Jr) ∩ R`) ≥ 0.9µsx′(γ

s(x′, 3Jr)).

We claim that

(3.11) θ(γs(x, r)) ⊂ γs(x′, 3Jr)
for all sufficiently small r. Indeed, if (3.11) does not hold then µsx′(γ

′) ≥ 3Jr where γ′ = θ(γ)
is the longer component of θ(γs(x, r)) \ {0} and γ = θ−1(γ′) ⊂ γs(x, r). By (3.10), we have

µsx′(γ
s(x′, 3Jr) ∩ γ′ ∩ (N \ R`)) ≤ 0.2µsx′(γ

s(x′, 3Jr) ∩ γ′).
It follows that

µsx′(θ(γ
s(x, r)) ∩ R`) ≥ µsx′(γs(x′, 3Jr) ∩ γ′ ∩ R`) ≥ 0.8µsx′(γ

s(x′, 3Jr) ∩ γ′)
≥0.8 · 0.5µsx′(γs(x′, 3Jr)) ≥ 0.4 · 3Jµsx′(γs(x′, 3Jr)) > Jµsx(γs(x, r)),

contradicting to (3.9).
Let E2 be the set of (x, y, t) ∈ N , where x ∈ D2 with x /∈ D(R`) for any ` > 0, y ∈ Tn−3

and t ∈ R. Clearly, µ(E2) = 0. Let E = E1 ∪ E2. We have µ(E) = 0.
Choose a point z ∈ D(A) \ E and a point z′ ∈ V uX (z) \ E (recall that V uX (z) is a local

unstable manifold at z for the flow φtX). Consider the holonomy map θ : V csX (z)→W cs
X (z′)

generated by the family of local unstable manifolds of φtX (here V csX (z) is a local center-
stable manifold at z and W cs

X (z′) is the global center-stable manifold at z′ for the flow φtX).
Consider a small ball Bcs(z, r) ⊂ V csX (z) centered at z. By (3.11), the size of θ(Bcs(z, r)) in
the stable direction Esg∗(z) of the disc is bounded by C1r for some C1 > 3J independent of
r. Since the stable foliation W s

A of the torus is smooth, the size of θ(Bcs(z, r)) in the stable
direction EsA(z) is bounded by C2r for some C2 > 0. Also, the size of θ(Bcs(z, r)) in the
central direction is bounded by C3r for some C3 > 0. Hence, the point z′ cannot belong to
D(N \A). Note that z /∈ E implies z′ ∈ D(A) ∪D(N \A) and hence, z′ ∈ D(A).

We shall now show that µ(A) = 1. By Lemma 8, for almost every point z ′ ∈ N \ E one
can find a point z ∈ D(A) \ E such that z and z′ are accessible through a path z0, . . . , z`
such that zi /∈ E. Repeating the above arguments we obtain that z1, . . . , z` = z′ ∈ D(A).
Hence, µ(D(A)) = 1. The desired result follows. �

By identifying some boundary points, it is easy to see that the manifold N can be mapped
onto the n-dimensional disc Dn via a map φ : N → Dn such that φ(N) = Dn and φ|int(N)
is a diffeomorphism. Since X |∂N = 0, dφ(X) is smooth on Dn. There is also a mapping
ψ : Dn → M (see [K]), and the vector field dψdφ(X) generates the flow with the desired
properties.

4. Proof of the theorem: the case dimM = 3 and 4

In the case dimM = 3, the proof is essentially the same. Consider the suspension flow
over g with roof function 1. The suspension manifold K = D2 × [0, 1]/ ∼ (where ∼ is the
identification (x, 1) = (g(x), 0)) is diffeomorphic to N = D2 × S1 = {(x, t) : x ∈ M, t ∈
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[0, 1]}/ ∼ (where ∼ is the identification (x, 0) = (x, 1)). Let Z be the vector field of the
suspension flow. For each (x, t) ∈ K we have Z = (0, 1).

Let F : K → N be given by F (x, t) = (G(x, t), t) (see Proposition 4). We have

dF (x, t) =

(
Gx(x, t) Gt(x, t)

0 1

)
.

Consider the vector field Y = dFZ. Note that

Y (G(x, t), t) =
(∂G
∂t

(x, t), 1
)
.

Define the vector field X on N by

X(G(x, t), t) =

(
∂G

∂t
(x, t), α(G(x, t))

)
,

where α(x) is a C∞ function on D2 satisfying Conditions (A1) – (A3). The vector field X
is divergence-free and the flow φtX has all the desired properties.

In the case dimM = 4 we start with a Bernoulli map with non-zero Lyapunov exponents
on a 3-manifold constructed in [DP]. More precisely, define

S = g × id : D2 × S1 → D2 × S1.

Let T (x, y) = (g(x), Tγ(x)y) : D2 × S1 → D2 × S1, where Tγ(x) is rotation by γ(x). Here

γ : D2 → R is a nonnegative C∞ function which is equal to zero in a small neighborhood of
the discontinuity set Q = {q1, q2, q3, ∂D2} × S1 and is positive elsewhere.

It is shown in [DP] that the function γ can be chosen so that the map T is robustly
accessible, i.e., any C1 perturbation R of T is accessible provided R coincides with T in a
small neighborhood of the discontinuity set Q. Moreover, there is a perturbation R of T
which has non-zero Lyapunov exponents and is of the form R = φ ◦ T . Here the map φ
differs from id in a small neighborhood of a point z0 ∈ D2 × S1 which lies outside a small
neighborhood U of the set Q. To describe the perturbation φ consider the coordinate system
ξ = {ξ1, ξ2, ξ3} in an open disc B(z0, ε) of asufficiently small radius ε centred at z0 such that

(1) dm = dξ;
(2) EcT (z0) = ∂/∂ξ1, EsT (z0) = ∂/∂ξ2, EuT (z0) = ∂/∂ξ3.

Let ψ(t) be a C∞ function with support in (−ε, ε). Set τ = ‖ξ‖2/γ2 and

φ−1(ξ) = (ξ1 cos(εψ(τ)) + ξ2 sin(εψ(τ)),−ξ1 sin(εψ(τ)) + ξ2 cos(εψ(τ)), ξ3).

Choose a function ψ̂(x, t) : R× [0, 1]→ R with the following properties

(1) ψ̂(x, 0) = 0 and ψ̂(x, 1) = ψ(x) for any x ∈ R;

(2) ψ̂ is C∞ in x and t and ψ̂′t(x, t) = 0 for t = 0, 1 and x ∈ R;

(3) ‖ψ̂(x, t)‖r < δ for all t ∈ [0, 1].

Define the map Ψ : D2 × S1 × [0, 1]→ D2 × S1 by the formula

Ψ(x, y, t) = φt(x, y),

where

φt(ξ) = (ξ1 cos(εψ̂(τ, t)) + ξ2 sin(εψ̂(τ, t)),−ξ1 sin(εψ̂(τ, t)) + ξ2 cos(εψ̂(τ, t)), ξ3).

Note that Ψ has the properties similar to those of the map G in Proposition 4. Namely,

(1) Ψ is C∞ in (x, y, t);
(2) Ψ(·, 0) = id and Ψ(·, 1) = φ;
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(3) for any t ∈ [0, 1] the map Ψ(·, t) : D2 × S1 → D2 × S1 is area-preserving;
(4) Ψt(x, y, 1) = Ψt(φ(x, y), 0);
(5) Ψ(x, y, t) = id for x ∈ U .

Set

H = {(x, y, t) : x ∈ D2, y ∈ S1, t ∈ [0, 1]}/ ∼1

with the identification ∼1: (x, y, 1) = (T (x, y), 0) = (g(x), Tγ(x)(y), 0) and

K = {(x, y, t) : x ∈ D2, y ∈ S1, t ∈ [0, 1]}/ ∼2

with the identification ∼2: (x, y, 1) = (φ ◦ T (x, y), 0) = (φ(g(x), Tγ(x)(y)), 0). Consider the

diffeomorphism G̃ : H → K given by

G̃(x, y, t) = (Ψ−1(x, y, t), t),

where Ψ−1(x, y, t) for each t is the inverse of Ψ. Note that T itself is diffeotopic to S. Let
Ḡ be the diffeomorphism K → K ′ where K ′ is the suspension manifold of the suspension

flow over S. The manifold K ′ is diffeomorphic to N = D2 × S1 × S1. If Ĝ : K ′ → N then

F = G̃ ◦ Ḡ ◦ Ĝ : H → N is a diffeomorphism.
Let Z be the vector field on H of the suspension flow over R . Obviously, Z = (0, 0, 1) is

divergence free. Set Y = dFZ. Since F (x, y, t) = (G(x, t), y, t) for (x, y, t) in a neighborhood

Ũ of the boundary of H then for (x, y, t) ∈ Ũ ,

Y (F (x, y, t)) = Y (G(x, t), y, t) =

(
∂G

∂t
(x, t), 0, 1

)
.

Let X be the vector field on N defined by the formula

X =

(
∂G

∂t
(x, t), 0, α(x)

)
,

where α(x) satisfies Conditions (A1) – (A3). Clearly, X is divergence free and the flow
generated by X has all the desired properties.
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