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Abstract. In this paper we study the liftability property for piecewise continuous maps
of compact metric spaces, which admit inducing schemes in the sense of Pesin and Senti
[Y. Pesin and S. Senti. Thermodynamical formalism associated with inducing schemes
for one-dimensional maps. Mosc. Math. J. 5(3) (2005), 669–678; Y. Pesin and S. Senti.
Equilibrium measures for maps with inducing schemes. Preprint, 2007]. We show that
under some natural assumptions on the inducing schemes—which hold for many known
examples—any invariant ergodic Borel probability measure of sufficiently large entropy
can be lifted to the tower associated with the inducing scheme. The argument uses the
construction of connected Markov extensions due to Buzzi [J. Buzzi. Markov extensions
for multi-dimensional dynamical systems. Israel J. Math. 112 (1999), 357–380], his
results on the liftability of measures of large entropy, and a generalization of some results
by Bruin [H. Bruin. Induced maps, Markov extensions and invariant measures in one-
dimensional dynamics. Comm. Math. Phys. 168(3) (1995), 571–580] on relations between
inducing schemes and Markov extensions. We apply our results to study the liftability
problem for one-dimensional cusp maps (in particular, unimodal and multi-modal maps)
and for some multi-dimensional maps.

1. Introduction
In [PS05, PS07], the authors studied existence and uniqueness of equilibrium measures
for a continuous map f of a compact topological space I , which admits an inducing
scheme {S, τ } where S is a countable collection of disjoint Borel subsets J of I —the basic
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elements—and τ the integer-valued function on S—the inducing time (see the next section
for the definition of inducing schemes and some relevant information). More precisely,
they determined a classH of potential functions ϕ : I → R for which one can find a unique
equilibrium measure µϕ satisfying

hµϕ ( f ) +

∫
I
ϕ dµϕ = sup

{
hµ( f ) +

∫
I

ϕ dµ

}
. (1)

Here hµ( f ) is the metric entropy of the map f and the supremum is taken over f -invariant
ergodic Borel probability measures µ, which are liftable with respect to the inducing
scheme.

If a map admits an inducing scheme its action on a subset of the phase space can be
described symbolically as a tower over the full (Bernoulli) shift on a countable set of
states. One can provide some conditions for the existence and uniqueness of equilibrium
measures for this shift with respect to the corresponding potentials (which are lifts of
potentials ϕ to the tower). One then restates these conditions into requirements on the
original potential.

This naturally leads to the liftability problem: describing all the liftable measures,
i.e. those that can be expressed as the images under the lift operator (see equation (3)) of
invariant measures for the shift. The goal of this paper is to introduce some conditions
on the inducing scheme guaranteeing that every f -invariant ergodic Borel probability
measure of sufficiently large entropy, which gives positive weight to the tower, is liftable.
A different point of view is to construct an inducing scheme for which a given invariant
measure is liftable. This provides a symbolic description of the measure but allows only
the comparison of this measure with invariant measures, which can be lifted to the same
tower (since the lift operator depends on the inducing scheme).

In §2 we introduce inducing schemes and state one of the main results in [PS07]
on the existence and uniqueness of equilibrium measures within the class of liftable
measures. Our inducing schemes are determined by Conditions (H1), (H2) and (H3).
Condition (H1) introduces the induced map F on the base W . The latter is the disjoint
union of basic elements of the inducing scheme, i.e. W =

⋃
J∈S J . Condition (H2) states

that the partition of W by basic elements J is Bernoulli generating. This allows the unique
symbolic coding of every point in the base in such a way that the induced map is conjugated
to the full shift on a countable set of states. Condition (H3) implies that the coding captures
all Gibbs measures.

In §3 we discuss the liftability problem and some recent related results. In our study
of liftability we follow the approach by Bruin [Bru95]: the tower associated with the
inducing scheme is ‘embedded’ into the Markov extension ( Ǐ , f̌ ) of the system (I, f )

in such a way that the induced map is the first return time map to a certain subset of
the Markov extension. As a result one reduces the liftability to the inducing scheme
to the liftability to the Markov extension. The latter can be ensured by some results of
Keller [Kel89] and Buzzi [Buz99]. In [Bru95], the above approach was used to establish
liftability of the absolutely continuous invariant measure of positive entropy for some
one-dimensional maps. Extending this approach to general multi-dimensional inducing
schemes and general invariant measures faces substantial technical problems and requires
additional assumptions on the inducing scheme (see §5).
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Since we deal with general multi-dimensional inducing schemes an essential new
element of our construction is the use of Markov extensions in the sense of Buzzi for
piecewise invertible continuous maps of compact metric spaces. We describe this Markov
extension in §4 and we state a result which provides two conditions (called (P1) and (P2))
for liftability to the Markov extension of measures with large entropy (see [Buz99]).
Condition (P1) means that the topological entropy of the system is not concentrated merely
on the image of the boundary of the invertible pieces. Condition (P2) requires the existence
of a set I0 of full µ-measure with respect to any invariant ergodic Borel measure µ of
sufficiently large entropy and such that the partition of the system into invertible pieces is
generating on I0 with respect to µ.

The Markov extensions constructed by Buzzi have the important feature that any
invariant ergodic measure for the system induces a measure on the Markov extension,
which is also ergodic. This is crucial in our study of liftability, since in view of (1) we are
only concerned with lifting ergodic invariant measures. In §5 we study relations between
Markov extensions and inducing schemes.

To obtain liftability we need to replace Condition (H1) with a slightly stronger
Condition (M). Roughly speaking it requires that the inducing time is as small as possible.
We also need a requirement called Condition (C), which expresses compatibility of the
inducing scheme and the Markov extension.

In applications to one-dimensional systems and in some other situations, where
controlling the distortion of derivatives is important, one often constructs inducing schemes
satisfying a slightly modified version of Condition (M) that we call Condition (M+). The
principle difference between them is the way in which the action of the system on each
element of the tower is extended to a small neighborhood of the element. In this case we
also replace Condition (C) with its modified version, Condition (C+).

In §6 we prove our main result.

MAIN THEOREM 1.1. Let f be a piecewise invertible continuous map of a compact
metric space admitting an inducing scheme {S, τ }, which satisfies Conditions (M) and (C)
or Conditions (M+) and (C+). Assume that f has finite topological entropy htop( f )

and satisfies Conditions (P1) and (P2). Then there exists 0 ≤ T < htop( f ) such that any
invariant ergodic Borel probability measure µ with µ(W ) > 0 and hµ( f ) > T is liftable.

In the last section of the paper we describe a general approach, exploiting the notion
of nice sets, to construct inducing schemes satisfying all the conditions of the Main
Theorem. Many known inducing schemes can be constructed using this approach. We also
present some applications of our results to: (1) one-dimensional cusp and multi-modal (in
particular, unimodal) maps; (2) polynomial maps of the Riemann sphere; and (3) some
multi-dimensional piecewise expanding maps. In some situations (e.g. one-dimensional
maps and polynomial maps of the Riemann sphere) the requirement that the entropy of the
liftable measure should be large can be weakened to the requirement that it is just positive.
Since for many ‘natural’ potential functions the corresponding equilibrium measures must
have positive entropy, this implies that the equilibrium measure is unique within the class
of all invariant Borel probability measures supported on the tower (see §3 for a further
discussion).
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2. Inducing schemes
To state the liftability problem more precisely, let us introduce the notion of the inducing
scheme. Let f be a continuous map of a compact topological space I . Throughout the
paper we assume that the topological entropy htop( f ) is finite. Let S be a countable
collection of disjoint Borel subsets of I and let τ : S → N be a positive integer-valued
function. Set W =

⋃
J∈S J and consider the function τ : I → N given by

τ(x) =

{
τ(J ), x ∈ J,

0, x /∈ W.

Following [PS07] we call the pair {S, τ } an inducing scheme for f if the following
conditions hold:
(H1) there exists a connected open set UJ ⊃ J such that f τ(J )

|UJ is a homeomorphism
onto its image and f τ(J )(J ) = W ;

(H2) the partition ξ of the set
⋃

J∈S J̄ induced by the sets J ∈ S is Bernoulli generating;
this means that, for any countable collection of elements {Jk}k∈N, the intersection

J1 ∩

(⋂
k≥2

f −τ(J1) ◦ · · · ◦ f −τ(Jk−1)(Jk)

)
is not empty and consists of a single point; here f −τ(J ) denotes the inverse branch
of the restriction f τ(J )

|J and f −τ(J )(I ) = ∅ provided that I ∩ f τ(J )(J ) = ∅.
We call W the inducing domain and τ(x) the inducing time. Furthermore, we introduce
the induced map F : W → W by F |J = f τ(J )

|J for J ∈ S and we set

X :=

⋃
J∈S

τ(J )−1⋃
k=0

f k(J ). (2)

As the inducing time is not necessarily the first return time, this union is not necessarily a
disjoint union.

Condition (H2) allows us to view the induced map F as the one-sided Bernoulli shift σ

on a countable set of states S. More precisely, define the coding map h : SN→
⋃

J∈S J̄
by h : ω = (a0, a1, . . .) 7→ x where x is such that x ∈ J a0 and

f τ(Jak )
◦ · · · ◦ f τ(Ja0 )(x) ∈ J ak+1 for k ≥ 0.

PROPOSITION 2.1. (See [PS05, PS07]) The map h is well defined, continuous and
W ⊂ h(SN). It is one-to-one on h−1(W ) and is a conjugacy between σ |h−1(W ) and
F |W , i.e.

h ◦ σ |h−1(W ) = F ◦ h|h−1(W ).

In what follows we assume that the following condition holds.
(H3) if ν is a shift invariant measure on SN such that ν(U ) > 0 for any open set U ⊂ SN,

then ν(SN \ h−1(W )) = 0.
This condition allows one to transfer Gibbs measures for the shift via the conjugacy map to
measures which give full weight to the base W and are invariant under the induced map F .
We stress that this condition will not be used in our study of liftability.
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For a Borel probability measure ν on W set

Qν :=

∑
J∈S

τ(J )ν(J ) =

∫
W

τ(x) dν(x).

If Qν < ∞, we define the lifted measure L(ν) on the set X (see (2)) as follows: for any
Borel subset E ⊂ X ,

L(ν) (E) :=
1

Qν

∑
J∈S

τ(J )−1∑
k=0

ν( f −k(E) ∩ J ). (3)

We denote byM( f, I ) the class of all f -invariant Borel probability measures on I and by
M(F, W ) the class of all F-invariant Borel probability measures on W . Given an inducing
scheme {S, τ }, we call a measure µ ∈M( f, I ) liftable if µ(W ) > 0 and there exists a
measure i(µ) ∈M(F, W ) such that µ = L(i(µ)). We call i(µ) the induced measure for µ

and we denote the class of all liftable measures by ML( f, X). Observe that measures for
which µ(W ) = 0 are trivially not liftable. Also observe that different inducing schemes
may lead to different classes of liftable measures.

By a result in [Zwe05], if µ ∈ML( f, X) is ergodic, then the measure i(µ) is unique,
ergodic, and has integrable inducing time: Qi(µ) < ∞.

By Proposition 2.1, liftable measures are the image of shift invariant measures on the
countable symbolic space under the lift operator L ◦ h∗ where L is defined in (3) and h is
the coding map. Certain important properties of the shift invariant measures can then be
transferred to liftable measures, as is the case of equilibrium measures. To illustrate this let
us first describe a class of potential functions ϕ : I → R, which admit unique equilibrium
measures. Define the induced potential function ϕ̄ : W → R by

ϕ̄(x) :=

τ(J )−1∑
k=0

ϕ( f k(x)), x ∈ J.

Also, define

PL(ϕ) := sup
ML ( f,X)

{
hµ( f ) +

∫
X

ϕ dµ

}
. (4)

It is shown in [PS07] that PL(ϕ) is finite under the conditions of Theorem 2.2. We say
that the induced potential function ϕ̄ is locally Hölder continuous if there exist A > 0
and 0 < γ < 1 such that Vn(ϕ̄) ≤ Aγ n for n ≥ 1. Here Vn(ϕ̄) is the n-variation defined by

Vn(ϕ̄) := sup
[b1,...,bn ]

sup
x,x ′∈[b1,...,bn ]

{|ϕ̄(x) − ϕ̄(x ′)|},

and the cylinder set [b1, . . . , bn] is the maximum subset of Jb1 such that, for every
1 ≤ k ≤ n − 1,

f τ(Jbk−1 )
◦ · · · ◦ f τ(Jb1 )([b1, . . . , bn]) ⊆ Jbk .

THEOREM 2.2. (See [PS07]) Assume that the map f admits an inducing scheme
satisfying Conditions (H1)–(H3). Also assume that the induced potential function ϕ̄ is
locally Hölder continuous, that ∑

J∈S

sup
x∈J

exp ϕ̄(x) < ∞,
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and that there exists ε > 0 such that∑
J∈S

τ(J ) sup
x∈J

exp(ϕ̄ − (PL(ϕ) − ε)τ (x)) < ∞.

Then there exists an equilibrium measure µϕ for ϕ (see (1)). This measure is liftable and is
unique among all the liftable measures, i.e. it is the only measure inML( f, X) for which

hµϕ +

∫
X

ϕ dµϕ = PL(ϕ).

Let us stress that the class of liftable measures depends on the inducing scheme and thus
so does the supremum in (4). It may in principle happen that another measure also assumes
the value of this supremum (or the absolute value of its free energy may even be larger, see
examples in [PZ07]) but such a measure will not be liftable to the given inducing scheme.

3. The liftability problem
Let us stress again that the class of liftable measures ML( f, X) depends on the choice of
the inducing scheme {S, τ } and that liftable measures are supported on X (i.e. µ(X) = 1;
in particular, µ(W ) > 0). In [PZ07] an example of an inducing scheme is given for
which there exists a non-liftable measure supported on X . Also, in this example there
exists another (non-liftable) measure supported outside X . Both measures are equilibrium
measures for some potential functions.

We begin the study of the liftability problem by stating two general criteria that
guarantee that a given measure µ ∈M( f, I ) is liftable. Given a Borel set A ⊂ X and
J ∈ S, define

ε(J, A) :=
1

τ(J )
Card{0 ≤ k ≤ τ(J ) − 1 : f k(J ) ∩ A 6= ∅},

where Card E denotes the cardinality of the set E .

THEOREM 3.1. (See [PZ07]) An f -invariant Borel ergodic probability measure µ with
µ(W ) > 0 is liftable if there exists a number N ≥ 0 and a subset A ⊂ I such that µ(A) >

supτ(J )>N ε(J, A).

THEOREM 3.2. (See [Zwe05]) A measure µ ∈M( f, I ) with µ(W ) > 0 and with
integrable inducing time (i.e. τ ∈ L1(I, µ|W )) is liftable.

Although these two theorems provide conditions, which guarantee that a given invariant
measure is liftable, they are difficult to check. Moreover, the study of equilibrium
measures, which serves as our motivation, requires the impossible task of checking these
conditions for all invariant measures. It then becomes our goal to establish sufficient
conditions on inducing schemes, which guarantee liftability of all invariant measures with
sufficiently large entropy and positive weight to the base.

For interval maps Hofbauer and Keller constructed a different type of the inducing
scheme known as the Markov extension or Hofbauer–Keller tower (see [Hof79, Hof81,
Kel89]). It produces a symbolic representation of the interval map via a subshift of
countable type; however, the transfer matrix, defining which (symbolic) sequences are
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allowed, is not known a priori and can be very complicated. In [Kel89], Keller obtained
some general criteria for liftability to the Markov extension for one-dimensional maps.
In this case, the liftability problem consists of proving the existence of a finite non-zero
measure on the Markov extension, which is invariant under the lift of f and projects (via
the canonical projection π on intervals as opposed to the operator L defined by (3)) to the
given f -invariant measure on the interval.

In [Bru95], Bruin established liftability of absolutely continuous invariant measures of
positive entropy to inducing schemes satisfying some additional assumptions for piecewise
continuous piecewise monotone interval maps. These assumptions allow one to ‘embed’
the inducing scheme into the Hofbauer–Keller tower and express the induced map as
the first return time map to a certain subset (in the Hofbauer–Keller tower). Pesin and
Senti [PS07] showed that for a transverse family of unimodal maps at a Misiurewicz
parameter there is a set of parameters of positive Lebesgue measure (this set is a
subset of the Collet–Eckmann parameters) for which every measure µ ∈M( f, X) of
positive metric entropy is liftable to the particular inducing scheme constructed by Yoccoz
(see [Yoc97, Sen03]). A similar result holds for multi-modal maps.

In [Buz99], Buzzi constructed Markov extensions (i.e. a version of the Hofbauer–Keller
tower) for multi-dimensional piecewise invertible maps and established liftability (in the
sense of Markov extensions) for invariant measures of large entropy. In this paper we
modify the approach by Bruin adjusting it to Markov extensions in the sense of Buzzi and
we establish liftability of measures of large entropy for general inducing schemes.

4. Markov extensions
Let I be a compact metric space. A map f : I → I is said to be piecewise invertible if
there exists a collection of open disjoint subsets P = {Ai ⊂ I }s

i=1 satisfying:
(A1)

⋃s
i=1 Ai = I ;

(A2) for each i there is a connected set Ui and a homeomorphism fi : Ui → fi (Ui ) for
which Ai ⊂ Ui and fi |Ai = f |Ai .

Set ∂0 P := ∂ P ,

∂n P :=

n−1⋃
k=0

f −k(∂ P), n ≥ 1,

and for x /∈ ∂ P denote by P(x) the element of P containing x . Furthermore, for x /∈ ∂n P
we denote by Pn(x) the element of P ∨ f −1 P ∨ · · · ∨ f −n+1 P containing x .

We introduce the connected Markov extension of the map f . Our approach differs
slightly from the approach by Buzzi [Buz99], but the results we use (Theorem A and
Proposition 2.2) still hold, see [Buz99, Remark 1.10] (our construction of the Markov
extension is also different from the classical construction of the Hofbauer–Keller tower for
one-dimensional maps). Set D0 = {I } and for n > 0 define Dn to be the collection of sets

{ f (E) : E is a connected component of A ∩ B, A ∈Dn−1, B ∈ P}.

We then set
D :=

⋃
n≥0

Dn .
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The connected Markov extension of f is the pair ( Ǐ , f̌ ) where

Ǐ := {(x, D) ∈ I ×D : x ∈ D̄},

is the tower and f̌ : Ǐ \ π−1(∂ P) → Ǐ is the map given by

f̌ (x, D) = ( f (x), f (E)).

Here E is the connected component of D ∩ P(x) containing x and π : Ǐ → I is the
canonical projection, i.e. π(x, D) = x . The set Ǐ is a (non-compact) metric space. We
refer to sets of the type

Ď := {(x, D) : x ∈ D̄} with D ∈D

as elements of the Markov extension and we set

Ď :=

⋃
D∈D

Ď.

Let inc : I \ ∂ P → Ǐ be the inclusion into the zero level of the Markov extension,
i.e. inc(x) = (x, I ). For any D ∈D, we define the level of D as `(D) = min{n ∈ N : D ∈

Dn} and, by extension, we define the level of Ď as `(Ď) = `(D).
Note that the projection π : Ǐ → I is countable to one on Ǐ , but it is injective on

each Ď ∈ Ď.
The Markov extension has the following properties (see [Buz99]):

• it is an extension of the system (I, f ), i.e.

π ◦ f̌ | Ǐ \ π−1(∂ P) = f ◦ π | Ǐ \ π−1(∂ P);

• Ď is a Markov partition for ( Ǐ , f̌ ) in the sense that, for any k ∈ N and any Ďa, Ďb ∈

Ď, we have that f̌ k(Ďa) ∩ Ďb 6= ∅ if and only if f̌ k(Ďa) ⊇ Ďb;
• for any Ď ∈ Ď of level n, there exists a subset E ⊂ Ai for some Ai ∈ P such that f̌ n

maps inc(E) homeomorphically onto Ď.
We denote by (I, fe) and (Ǐ, f̌e) the natural extensions of f and f̌ , respectively. Recall

that the natural extension (I, fe) of a map f : I → I is the space of all sequences {xn}n∈Z,
satisfying f (xn) = xn+1 (i.e. orbits of f ), along with the map fe, which is the left shift.
There is a natural projection p({xn}) = x0 from the natural extension to the original space.
If f preserves a measure µ, there is a unique fe-invariant measure µe on the natural
extension, which projects to µ. If µ is ergodic then so is µe and hµe ( fe) = hµ( f ). The
definition of the natural extension (Ǐ, f̌e) is similar.

We denote by p : I → I and p̌ : Ǐ → Ǐ the natural projections and by πe : Ǐ → I the
extension of the projection π to the natural extensions. We have the following commutative
diagram:

(Ǐ, f̌e)

p̌
��

πe // (I, fe)

p

��
( Ǐ , f̌ )

π // (I, f )

(5)
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Define the f̌e-invariant set Ǐ ′
⊆ Ǐ as

Ǐ ′
:= {{x̌n}n∈Z ∈ Ǐ : there exists N ≥ 0 such that x̌0 = f̌ n(inc(π(x̌−n))) for all n ≥ N },

and set I ′
= πe(Ǐ ′). It is shown in [Buz99] that πe : Ǐ ′

→ I ′ is one-to-one and
bi-measurable. Let 1P = f (∂ P).

PROPOSITION 4.1. (See [Buz99, Theorem A, Proposition 2.2]) Assume that the map f
satisfies the following conditions:
(P1) htop(1P, f ) < htop( f );
(P2) there exist a measurable subset I0 ⊂ I and a number 0 ≤ H < htop( f ) such that,

for any ergodic measure µ ∈M( f, I ) with hµ( f ) > H, we have µ(I \ I0) = 0
and diam(Pn(x)) → 0 as n → ∞ for µ-almost every x ∈ I0.

Then, for any µe ∈M( fe, I) with

hµe ( fe) > max{H, htop(1P, f )},

we have µe(I ′) = 1. The same statement holds under the same conditions for any
µ̌e ∈M( f̌e, Ǐ).

As a manifestation of this proposition one has that any measure with sufficiently large
entropy can be lifted to the connected Markov extension. More precisely, the following
statement holds.

PROPOSITION 4.2. Assume that the map f satisfies Conditions (P1) and (P2). Then for
any ergodic invariant Borel probability measure µ with hµ( f ) > max{H, htop(1P, f )}:
(1) there exists an f̌ -invariant ergodic Borel probability measure µ̌ on the connected

Markov extension Ǐ with π∗µ̌ = µ;
(2) there exists an f̌e-invariant ergodic Borel probability measure µ̌e on Ǐ with

p̌∗µ̌e = µ̌ and µ̌e(Ǐ ′) = 1.

Proof. Let µ be an f -invariant ergodic Borel probability measure with hµ( f ) >

max{H, htop(1P, f )} and µe the unique lift of µ to the natural extension I. By [Buz99,
Theorem A], πe is a measurable isomorphism between Ǐ ′ and I ′ and thus the measure
µ̌e := (π−1

e )∗µe|I ′ is well defined. Furthermore, by Proposition 4.1, µe(I ′) = 1 = µ̌e(Ǐ ′).
Set µ̌ = p̌∗µ̌e. Since the diagram (5) commutes, we have that µ = π∗µ̌. 2

5. Relations between Markov extensions and inducing schemes
Let f : I → I be a piecewise invertible map of a compact metric space I . Our study of the
liftability problem follows some ideas of Bruin [Bru95], which are to express the induced
map as the first return time map to a certain subset of the connected Markov extension.
This requires some stronger restrictions on the inducing schemes.
(M) Minimality. For any J ∈ S there is a connected open set UJ ⊃ J such that f τ(J )

|UJ

is a homeomorphism onto its image with f τ(J )(J ) = W (see Condition (H1)); in
addition, the inducing time is minimal in the following sense: for any L ⊂ I , m ∈ N
and any connected open set UL ⊃ L such that f m

|UL is a homeomorphism with
f m(L) = W , we have that if L ∩ J 6= ∅ for some J ∈ S then m ≥ τ(J ).
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In the case of one-dimensional maps one often needs bounds on the distortion of the
derivative of the induced map F . Such bounds can be obtained using Koebe’s lemma,
which applies under a somewhat different assumption than Condition (M).
(M+) Minimal extendibility. There is a connected open neighborhood W + of W

and for each J ∈ S there exists a connected open neighborhood J+ of J
such that f τ(J )

|J+ is a homeomorphism onto its image, f τ(J )(J+) = W + and
f τ(J )(J ) = W ; in addition, the inducing time is minimal extendible, in the
following sense: for any L ⊂ I , m ∈ N and any connected open neighborhood
L+

⊃ L such that f m is a homeomorphism of L onto W and of L+ onto W + we
have that if L ∩ J 6= ∅ for some J ∈ S then m ≥ τ(J ).

Conditions (M) and (M+) express a kind of ‘minimality’ of the inducing time. In
particular, a refinement of a minimal (or minimal extendible) inducing scheme fails to
be minimal but the liftability property may still hold. In fact, it does hold for any finite
refinement of the inducing scheme (as the proofs below can be easily modified to work for
finite refinements)†.

Let us stress that neither of the Conditions (M) or (M+) is necessary for liftability
as illustrated by the following example. Consider the map f (x) = 2x (mod 1) and the
inducing scheme given by Jn = ((1/(2n+1)), (1/(2n))), n ≥ 0 and τ(Jn) = n + 1. It is
easy to see that the inducing scheme {{Jn}, τ } does not satisfy either of the Conditions (M)
or (M+), although it can be shown that every measure µ with µ(W ) > 0 is liftable.

Note that for any J ∈ S and 0 ≤ i ≤ τ(J ) the map f i
|J is a homeomorphism and hence

it must be contained in some Ai ∈ P .
For each J ∈ S define the map F̌ |π−1(J ) = f̌ τ(J )

|π−1(J ). Observe that F̌(π−1(J )) ⊂

π−1(W ) and hence the set

W̌ :=

⋃
k≥0

F̌k(inc(W )) (6)

is well defined. Furthermore, assuming that f satisfies Condition (M+), for each J ∈ S
and the corresponding set J+, define F̌ |π−1(J+) = f̌ τ(J )

|π−1(J+) and then set

W̌ +
:=

⋃
k≥0

F̌k(inc(W +)),

where

F̌k(inc(W +)) =

⋃
J∈S

F̌(π−1(J+) ∩ F̌k−1(inc(W +))).

We introduce the following conditions on the inducing scheme, which express its
‘compatibility’ with the connected Markov extension:
(C) for any J ∈ S the connected open set UJ in Condition (M) satisfies f i (UJ ) ∩ ∂ P =

∅ for all 0 ≤ i < τ(J );
(C+) for any J ∈ S the connected open set J+ in Condition (M+) satisfies f i (J+) ∩

∂ P = ∅ for all 0 ≤ i < τ(J ).

† Given an inducing scheme {S, τ }, we call an inducing scheme {S′, τ ′
} a refinement if for any J ′

∈ S′ there exist
J ∈ S and a number n(J ′) such that J ′

⊂ J , τ(J ′) = τ(J ) + n(J ′) and f n(J ′)(J ′) = J ; a refinement {S′, τ ′
} is

said to be finite if there exists N > 0 such that n(J ′) ≤ N for all J ′
∈ S′.
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THEOREM 5.1. Assume that the inducing scheme satisfies Conditions (M) and (C). Then
the map F̌ : W̌ → W̌ is the first return time map of ( Ǐ , f̌ ) to W̌ . More precisely, for
any x̌ ∈ W̌ ∩ π−1(J ) with some J ∈ S we have that f̌ i (x̌) /∈ W̌ for 0 < i < τ(J ) and
f̌ τ(J )(x̌) ∈ W̌ . In particular, the first return time of a point x̌ ∈ W̌ depends only on π(x̌)

and does not depend on the level Ď ∈ Ď containing x̌ . Similarly, if the inducing scheme
satisfies Conditions (M+) and (C+), then the map F̌ : W̌ + → W̌ + is the first return time
map to W̌ +.

Proof. We need the following statement.

LEMMA 5.2. Let {S, τ } be an inducing scheme satisfying Condition (C+). For any Ď ∈ Ď
such that Ď ∩ W̌ 6= ∅ we have that

π(Ď) ⊃ W +.

If the inducing scheme satisfies Condition (C), then π(Ď) ⊃ W .

Proof. The result clearly holds for any Ď ∩ inc(W +) 6= ∅ since the zero level of the tower
is just the whole space. We now prove the lemma by induction on the level. Assume
that π(Ďn) ⊃ W + for any Ďn ∩ F̌n(inc(W +)) 6= ∅. We shall show that π(Ď) ⊃ W + for
any Ď ∩ F̌n+1(inc(W +)) 6= ∅. Since

F̌n+1(inc(W +)) =

⋃
J∈S

F̌(π−1(J ) ∩ F̌n(inc(W +))),

there exists Ďn ∩ F̌n(inc(W +)) 6= ∅ and J ∈ S such that Ď ∩ F̌(π−1(J ) ∩ Ďn) 6= ∅. By
the inductive assumption, π(Ďn) ⊃ W +

⊃ J+, in other words, Ďn contains a complete
copy of J+. Condition (C+) implies that the map f̌ i

|π−1(J+) ∩ Ďn is a homeomorphism
for all 1 ≤ i ≤ τ(J ). Since J+ is a connected open set, so are the sets f̌ i (π−1(J+) ∩ Ďn)

for 1 ≤ i ≤ τ(J ). It follows that Ď ⊃ F̌(π−1(J+) ∩ Ďn). This implies what we need
since π(F̌(π−1(J+) ∩ Ďn)) ⊃ W +. Adapting the proof to the case when Condition (C) is
satisfied is straightforward. 2

Proceeding with the proof of the theorem consider first an inducing scheme satisfying
Conditions (M+) and (C+). Assume by contradiction that there exist x̌ ∈ W̌ ∩ π−1(J ) ∩

Ďa and 0 < i < τ(J ) such that f̌ i (x̌) ∈ W̌ ∩ Ďb. It follows from the lemma that
both π(Ďa) ⊃ W + and π(Ďb) ⊃ W +. As i < τ(J ), by Condition (C+), the map
f̌ i

|(π−1(J+) ∩ Ďa) is a homeomorphism and we have that f̌ i (π−1(J+) ∩ Ďa) ⊂ Ďb.
By the Markov property of the Markov extension, f̌ i (Ďa) ⊃ Ďb. Take Ľ+ to be the
unique homeomorphic pre-image of π−1(W +) ∩ Ďb under f̌ i that contains x̌ and set L+

=

π(Ľ+). We have that f i (L+) = W + and f i
|L+ is a homeomorphism. By Condition (M+),

we conclude that i ≥ τ(J ) and we come to a contradiction.
Consider now the case of an inducing scheme satisfying Conditions (M) and (C).

Repeating the argument in the proof of Lemma 5.2 (and replacing J+ with UJ ), one can
show that π(Ď) ⊃ W for any Ď ∈ Ď such that Ď ∩ W̌ 6= ∅. Using this fact, one can then
prove that f̌ i (Ďa) ⊃ Ďb. To conclude the proof take Ľ to be the unique homeomorphic
pre-image of π−1(W ) ∩ Ďb under f̌ i that contains x̌ and repeat the above argument. 2
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THEOREM 5.3. Assume that the map f satisfies Conditions (P1) and (P2) of
Proposition 4.1. Let µ be an f -invariant ergodic Borel probability measure on I with
hµ( f ) > max{H, htop(1P, f )} and let µ̌ be its lift to the connected Markov extension.
Also let E ⊂ X be such that µ(E) > 0 and E ∩ ∂ P = ∅. Then for µ̌-almost every x̌ ∈ Ǐ ,
there exists k ∈ N and y̌ ∈ inc(E) such that f̌ k(y̌) = x̌ . In other words,

µ̌

(⋃
k≥0

f̌ k(inc(E))

)
= 1.

Proof. Consider the set

R := {{x̌n}n∈Z ∈ Ǐ ′
: there exists nk → ∞ such that π(x̌−nk ) ∈ E}.

We claim that if µ̌e(R) = 1 then our statement holds. Indeed, set

R := {x̌ ∈ Ǐ : there exist k ∈ Z and y̌ ∈ inc(E) such that f̌ k(y̌) = x̌}.

We have that p̌(R) ⊂ R and hence, by Proposition 4.2,

1 ≥ µ̌(R) ≥ µ̌( p̌(R)) ≥ µ̌e(R) = 1.

It follows that µ̌(R) = 1, which implies the desired result.
We are therefore left to prove that µ̌e(R) = 1. Note that the set Ǐ ′ has full µ̌e-

measure and that µ̌e( p̌−1(π−1(E))) = µ(E) > 0. Since µ is ergodic with respect to f ,
Proposition 4.2 yields that µ̌ is ergodic with respect to f̌ . Note that the inverse map f̌ −1

e
is well defined on the natural extension and hence it is ergodic with respect to µ̌e. By
Birkhoff’s ergodic theorem, for µ̌e-almost every {x̌n}n∈Z ∈ Ǐ ′, there exists nk → ∞ such
that f̌ −nk

e ({x̌n}n∈Z) ∈ p̌−1(π−1(E)). This implies that

x̌−nk = p̌( f̌ −nk
e ({x̌n}n∈Z)) ∈ π−1(E),

i.e. π(x̌−nk ) ∈ E . For any {x̌n} ∈ Ǐ ′, we have that x̌0 = f̌ n(inc(π(x̌−n))) for sufficiently
large n. It follows that Ǐ ′

⊆R (mod µ̌e) and hence

1 = µ̌e(Ǐ ′) = µ̌e(R),

which implies the desired result. 2

COROLLARY 5.4. Assume that the map f satisfies Conditions (P1) and (P2) of
Proposition 4.1. Let µ be an f -invariant ergodic Borel probability measure on I with
hµ( f ) > max{H, htop(1P, f )} and µ̌ its lift to the connected Markov extension. If
µ(W ) > 0 then µ̌(W̌ ) > 0.

Proof. It follows from Theorem 5.3 that

µ̌

(⋃
k≥0

f̌ k(inc(W ))

)
= 1.

Since µ̌ is ergodic and ⋃
k≥0

f̌ k(inc(W )) ⊂

⋃
j≥0

f̌ − j (W̌ ),

we conclude that µ̌(W̌ ) > 0. 2
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6. Liftability: the proof of the main theorem
In this section we present the proof of the Main Theorem on the liftability of measures to
inducing schemes. More precisely, we establish the following result.

THEOREM 6.1. Let (I, P, f ) be a piecewise invertible system and {S, τ } an inducing
scheme satisfying either Conditions (M) and (C) or Conditions (M+) and (C+). Also
assume that the map f satisfies Conditions (P1) and (P2). Then any ergodic measure
µ ∈M( f, I ) supported on X with hµ( f ) > T := max{H, htop(1P, f )} is liftable to the
inducing scheme {S, τ }.

Proof. Since µ is an invariant ergodic probability measure and X ⊆
⋃

k≥0 f k(W ), the
fact that µ(X) = 1 implies that µ(W ) > 0. Let µ̌ be the lifted measure to the connected
Markov extension as in Proposition 4.2 and let W̌ be given by (6). Then Corollary 5.4
yields that µ̌(W̌ ) > 0.

It follows from Theorem 5.1 that (W̌ , F̌) is the first return time map of ( Ǐ , f̌ ) to W̌ .
Since µ̌(W̌ ) > 0 and τ(J ) is the first return time of π−1(J ) ∩ W̌ to W̌ , we have that the
measure ν̌ = (1/(µ̌(W̌ )))µ̌|W̌ is F̌-invariant. Furthermore, for any measurable set Ě ⊂ Ǐ ,

µ̌(Ě) =

∑
J∈S

τ(J )−1∑
k=0

µ̌|W̌ ( f̌ −k(Ě) ∩ π−1(J ))

=
1

Q ν̌

∑
J∈S

τ(J )−1∑
k=0

ν̌( f̌ −k(Ě) ∩ π−1(J )),

where, by Kac’s formula,

Q ν̌ =

∑
J∈S

τ(J )ν̌(π−1(J ) ∩ W̌ ) =
1

µ̌(W̌ )
.

We shall now prove that ν is the induced measure for µ, i.e. L(ν) = µ. Note that we have
the following two conjugacies:

π ◦ f̌ | Ǐ \ π−1(∂ P) = f ◦ π | Ǐ \ π−1(∂ P), π ◦ F̌ = F ◦ π.

It follows that ν := π∗ν̌ is an F-invariant Borel probability measure and

Qν =

∑
J∈S

τ(J )ν(J ) =

∑
J∈S

τ(J )ν̌(π−1(J )) = Q ν̌ .

For any µ-measurable set E we have

µ(E) = µ̌(π−1(E))

=
1

Q ν̌

∑
J∈S

τ(J )−1∑
k=0

ν̌( f̌ −k(π−1(E)) ∩ π−1(J ))

=
1

Qν

∑
J∈S

τ(J )−1∑
k=0

ν̌(π−1( f −k(E) ∩ J ))

=
1

Qν

∑
J∈S

τ(J )−1∑
k=0

ν( f −k(E) ∩ J ) = L(ν) (E)

(see (3)), which is what we need. 2
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7. Applications
7.1. Constructing canonical inducing schemes via nice sets. Let f : I → I be a
piecewise invertible map of a compact metric space I . We describe a general approach for
building canonical minimal (respectively, minimal extendible) inducing schemes, i.e. those
that satisfy Condition (M) (respectively, (M+)), by exploiting the notion of nice sets. This
notion was first introduced by Martens (see [Mar94]) in the context of interval maps.

Let us write f n(J ) ' V if f n
|J is a homeomorphism with f n(J ) = V . An open set V

is said to be nice (for the map f ) if

f n(∂V ) ∩ V = ∅ for all n ≥ 0

(here ∂V = V \ V ). In general, a given map f may admit no nice sets. In the case of
interval maps, however, it is easy to see that any periodic cycle contains end points of
nice intervals. Because the pre-images of nice sets are either disjoint or nested, they are
good candidates for being basic elements of minimal inducing schemes. More precisely,
the collection S of all first homeomorphic pre-images of a nice set, contained in the nice
set, determines an inducing scheme. It satisfies Condition (M), since the pre-images
are homeomorphic, so the partition elements must be contained in some domains of
invertibility of f . Let us make the above observation rigorous.

PROPOSITION 7.1. Let V be a nice set for f and let J and J ′ be such that f n(J ) ' V '

f m(J ′) with n ≤ m. Then either

int J ∩ int J ′
= ∅ or J ′

⊂ J and n < m.

Proof. Assume ∂ J ∩ int J ′
6= ∅. Then n 6= m (and hence n < m) and int f n(J ′) ∩ ∂V 6= ∅.

This implies that f m−n(∂V ) ⊂ int V leading to a contradiction. 2

Given a nice set V and an open neighborhood V +
⊃ V , consider the following two

collections of sets:

Q := {J ( V : f τ(J )(J ) ' V for some τ(J ) ∈ N},

Q+
:= {J ∈ Q : f τ(J )(J+) ' V + for some open set J+

⊃ J }.

Furthermore, define

S′
:= {J ∈ Q : τ(J ) < τ(J ′) for all J ′

∈ S with J ∩ J ′
6= ∅},

S′+
:= {J ∈ Q+

: τ(J ) < τ(J ′) for all J ′
∈ S+ with J ∩ J ′

6= ∅}.

We can then set
V =

⋃
J∈S′

J, V+
=

⋃
J∈S′+

J,

and consider the induced map F : V → V defined by F |J := f τ(J )
|J and the F-invariant

set
W :=

⋂
k≥0

F−k(V).

Finally, define the canonical inducing schemes {S, τ } and {S+, τ } where

S := {J ∩ W : J ∈ S′
}, S+

:= {J ∩ W : J ∈ S′+
}, (7)

and τ(J ∩ W ) = τ(J ) for J ∈ S′ (respectively, J ∈ S′+).

https://doi.org/10.1017/S0143385707000806 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385707000806


Lifting measures to inducing schemes 567

THEOREM 7.2. Given a connected nice set V and a connected open neighborhood
V +

⊃ V , the canonical inducing scheme {S, τ } (respectively, {S+, τ }) satisfies
Conditions (M) and (C) (respectively, (M+) and (C+)).

Proof. We only consider the case of the inducing scheme {S, τ } and show that it satisfies
Conditions (M) and (C). The proof in the case of the inducing scheme {S+, τ } is similar. By
definition, the elements L ∈ S are homeomorphic pre-images of W , which are contained
in elements J ∈ S′. The latter are homeomorphic pre-images of V , so F(L) = f τ(J )(L) '

W . Since all L ∈ S satisfy L ⊂ J for some J ∈ S′
⊆ Q, we choose UL = J and we have

that f τ(L)(L) = W and f τ(L)
|L is a homeomorphism. Consider a set L ′

⊂ I , an open
connected set UL ′ ⊃ L ′, and m ∈ N such that f m

|UL ′ is a homeomorphism and f m(L ′) '

W . Then by our assumption, there exists an open connected set U , L ′
⊂ U ⊂ UL ′ such

that f m(U ) = V . It follows that if L ′
∩ L 6= ∅ for some L ∈ S then U ∩ V 6= ∅ and

U ∩ ∂V = ∅. Hence, U ∈ Q. This implies that m ≥ τ(L) and Condition (M) follows.
Condition (C) is obvious. 2

In general, the collection S in the previous theorem may be empty. However, in certain
particular cases one can show that S is non-empty and moreover, the set W has full
relative Lebesgue measure in V in the sense that Leb(V \ W ) = Leb(V \

⋃
J∈S′ J ) = 0

(respectively, Leb(V \
⋃

J∈S′+ J ) = 0 in the case when we are interested in minimal
extendibility, i.e. Condition (M+)) with respect to some natural Lebesgue measure Leb
in I .

Assume that I is an interval. Then Condition (H3) is satisfied since the set SN \ h−1(W )

is countable and hence can only support measures at periodic orbits.

7.2. One-dimensional maps. A cusp map of a finite interval I is a map f :
⋃

j I j → I
of an at most countable family {I j } of disjoint open subintervals of I such that:
• f is a C1 diffeomorphism on each interval I j := (p j , q j ), extendible to the closure

Ī j (the extension is denoted by f j );
• the limits limε→0+ D f (p j + ε) and limε→0+ D f (q j − ε) exist and are equal to

either 0 or ±∞;
• there exist constants K1 > K2 > 0 and C > 0, δ > 0 such that, for every j ∈ N and

every x, x ′
∈ Ī j ,

|D f j (x) − D f j (x ′)| < C |x − x ′
|
δ if |D f j (x)|, |D f j (x ′)| ≤ K1,

|D f −1
j (x) − D f −1

j (x ′)| < C |x − x ′
|
δ if |D f j (x)|, |D f j (x ′)| ≥ K2.

We call a point singular if it belongs to ∂ I j for some j . Critical points of f are singular.
For cusp maps one has the following result, which can be derived from results

in [Dob06, see Theorem 1.9.10].

THEOREM 7.3. Let f be a cusp map with finitely many intervals of monotonicity
(i.e. a finite number of intervals I j ). Suppose f has an ergodic absolutely continuous
invariant probability measure m with strictly positive Lyapunov exponent. Then:
(1) f possesses a nice set V ⊂ I satisfying conditions of Theorem 7.2;
(2) f admits canonical inducing schemes {S, τ } and {S+, τ } satisfying Conditions (M)

and (C) and Conditions (M+) and (C+), respectively;
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(3) the inducing domain W has full relative Lebesgue measure in V (i.e. Leb(V \W ) = 0)
and

∫
I τ dLeb < ∞.

In [Dob06], the fact that the inducing domain is nice (called there regularly recurrent)
is not explicitly mentioned but is essentially proven.

We now establish Conditions (P1) and (P2) for piecewise invertible interval maps.
Recall that a wandering interval is an interval J such that the sets f i (J ) are pairwise
disjoint and the ω-limit set of J is not equal to a single periodic point.

PROPOSITION 7.4. Assume that a piecewise invertible map f : J → J with finitely many
branches has no wandering intervals or attracting periodic points on some invariant
interval I ⊂ J . Also assume that htop( f |I ) > 0. Then f |I satisfies Conditions (P1)
and (P2) with constant H = 0 and htop(1P, f ) = 0.

Proof. For any piecewise invertible interval map with finitely many branches (including
cusp maps) the partition P defined in §4 is finite and so the set of boundary points of P
is the union of the boundary points of the partition elements Ai . This is a finite set and
as such has zero topological entropy. Thus htop(1P, f ) = 0 and any map with positive
topological entropy satisfies Condition (P1).

To prove Condition (P2), we set I1 :=
⋃

j≥0 f − j (C) where C denotes the set of all
end points of intervals Ai and I0 = I \ I1. As I1 is at most countable, any finite invariant
measure, which gives positive weight to I1, is an atomic measure on a periodic point.
Hence it has zero entropy.

For x ∈ I0, denote by Ps(x) the maximal interval of monotonicity of f s containing the
point x . The sets Ps(x) are nested and contain x so the limit P∞(x) = lims→∞ Ps(x)

exists. If |P∞(x)| ≥ δ for some δ > 0, then P∞(x) contains an interval on which f n is
monotone for every n ∈ N. By hypothesis, there are no wandering intervals so every point
of P∞(x) is asymptotic to a periodic point (see, for instance, [dMvS93, Lemma III.5.2]),
contradicting the assumption that there are no attracting periodic points. Therefore
P∞(x) = x proving Condition (P2). 2

COROLLARY 7.5. Let f be a continuous piecewise invertible map of a finite interval I
with finitely many branches. Assume that f has an ergodic absolutely continuous invariant
measure m of positive entropy. Then:
(1) f possesses a nice set V ⊂ I satisfying conditions of Theorem 7.2;
(2) f |I satisfies Conditions (P1) and (P2) with constant H = 0 and htop(1P, f ) = 0;
(3) f admits inducing schemes {S, τ } and {S+, τ } satisfying Conditions (M) and (C)

and Conditions (M+) and (C+), respectively; the inducing domain W has full
relative Lebesgue measure in V ;

(4) any ergodic µ ∈M(I, f ) with hµ( f ) > 0 and µ(W ) > 0 is liftable.

Proof. The existence of an ergodic absolutely continuous invariant measure excludes the
existence of attracting periodic orbits as well as wandering intervals, since the restriction
of f to the support of an ergodic measure is transitive. The statement follows from
Theorem 7.3 and Proposition 7.4. 2
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We now consider the particular case of S-unimodal maps, i.e. smooth maps of
the interval with one non-flat critical point at 0 and negative Schwarzian derivative
(see [dMvS93] for the detailed definitions). We say that f has a Cantor attractor if the
ω-limit set of the critical point ω(0) is a Cantor set, which coincides to the ω-limit set
ω(x) for almost every x ∈ I . Combining the above statements we obtain the following
results for S-unimodal maps.

COROLLARY 7.6. Let f be an S-unimodal map of a finite interval I with a non-flat critical
point. Then f admits inducing schemes {S, τ } and {S+, τ } satisfying Conditions (M)
and (C) and Conditions (M+) and (C+), respectively, and with the inducing domain W of
full relative Lebesgue measure in some interval V ⊂ I if and only if there exist no Cantor
attractors or attracting periodic orbits. In particular, any invariant measure of positive
entropy, which gives positive weight to the inducing domain, is liftable.

Proof. Under the given hypothesis the unimodal map admits an ergodic absolutely
continuous invariant measure with positive Lyapunov exponent (see Martens [Mar94]),
so Theorem 7.3 applies. The desired result follows from Theorem 6.1. 2

In the more general case of multi-modal maps, i.e. smooth maps of the interval (or
circle) with finitely many critical points each of which is non-flat, we obtain the following
result.

COROLLARY 7.7. Let f be a multi-modal map of a finite interval I , which has an
ergodic absolutely continuous invariant measure. Then f admits inducing schemes {S, τ }

and {S+, τ } satisfying Conditions (M) and (C) and Conditions (M+) and (C+),
respectively, and with inducing domain of full relative Lebesgue measure in some interval
V ⊂ I . Also, f satisfies Conditions (P1) and (P2) and any invariant measure of positive
entropy, which gives positive weight to the inducing domain, is liftable.

7.3. Polynomial maps of the Riemann sphere. We now discuss the case of polynomial
maps f : C̄ → C̄ of the Riemann sphere C̄ of degree d ≥ 2. We will denote the set of
critical points of f by Cr and we assume that this set is finite. Furthermore, we assume
that the Julia set J ( f ) is connected, locally connected and full, so that J ( f ) is a dendrite
and all critical points of f belong to J ( f ).

Let F := C̄ \ J ( f ) denote the Fatou set and G(z) := limn→∞((log| f n(z)|)/dn) the
Green function. The level sets of the Green function form a foliation of F . The orthogonal
foliation is the foliation of external rays. Since the Julia set is locally connected, each
external ray lands at a single point z ∈ J ( f ), and each point z ∈ J ( f ) is the landing point
of at least one external ray (note that there are no more than 2d external rays landing at z).
For each critical point c ∈ Cr choose some kc ≥ 1 rays landing at f (c). If dc is the degree
of the critical point c, then there are kcdc ≥ 2 pre-image rays landing at c. The union
of these rays, together with c, separates the plane and hence the Julia set J ( f ) into kcdc

pieces on which f acts univalently. Since J ( f ) is closed, the closure of these pieces of
J ( f ) \ c intersect only at c. Repeating this construction for all the critical points gives
a partition P representing f |J ( f ) as a piecewise invertible map (see §4). This partition
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satisfies Conditions (A1) and (A2) by construction. The map f possesses the connected
Markov extension, which can be constructed as in §4.

Our requirements for liftability depend on the particular choice of the inducing scheme.
Utilizing some ideas from [BT07], we construct the inducing scheme in the following
way. Choose an arbitrary level set Ď of the connected Markov extension Ď of (J ( f ), f ).
For x ∈ Ď let τ̌ (x) be the first return time of the orbit of the point x under f̌ to the set
Ď∗

:=
⋃

V̌ where V̌ ⊂ π−1
◦ π(Ď) is a connected subset such that π(V̌ ) = π(Ď). Let

Š := { J̌ } be the partition of Ď into the connected components of the level sets of the
function τ . We define an inducing scheme {S, τ } on the Julia set J ( f ) by setting

S := {J = π( J̌ ) : J̌ ∈ Š} and τ(J ) := τ̌ ( J̌ ).

The following statement shows that τ(J ) is correctly defined, i.e. that it does not depend
on the choice of the set J̌ for which π( J̌ ) = J .

LEMMA 7.8. For any x̌ ∈ Ď∗ its first return time to Ď∗ depends only on x = π(x̌).

Proof. Consider x̌ ∈ Ď and y̌ ∈ Ď∗ with π(x̌) = π(y̌), and let k (respectively, `) be the
first return time of x̌ (respectively, y̌) to Ď∗. Without loss of generality, we may assume
that k ≤ `. By the Markov property of the connected Markov extension, there exists a
(connected) neighborhood V̌x̌ 3 x̌ such that f̌ τ̌

|V̌x̌ is a homeomorphism with π( f̌ τ̌ (V̌x̌ )) =

π(Ď). Denote by V̌y̌ the subset of Ď∗ containing y̌ such that π(V̌x̌ ) = π(V̌y̌). Since
π(x̌) = π(y̌), we obviously have that f̌ k(y̌) ∈ π−1

◦ π(Ď). If k < ` then f̌ k(y̌) /∈ Ď∗ and
hence f̌ i (V̌y̌) must contain the boundary of the connected Markov extension for some
0 < i < k. This contradicts the Markov property, thus proving the lemma. 2

Observe that the inducing domain for the inducing scheme {S, τ } is W = π(Ď).
In applications one often needs inducing schemes with bounded distortion. The latter

can be ensured using Koebe’s complex distortion lemma (see, for instance, [CG93]) but in
order to apply this lemma one should extend the partition P to a (complex) neighborhood
U f of the Julia set. Under our assumptions the set U f can be chosen as the component
delimited by some level set of the Green function, which contains the Julia set. The
partition of U f can again be defined by taking the union of each critical point c ∈ Cr
with the kc dc pre-images of kc external rays landing at f (c) for some kc ≥ 1. Since all
critical points belong to the Julia set, Conditions (A1) and (A2) still hold. Observe that if
kc = 1 the levels of the connected Markov extension only differ by the rays landing at the
critical orbits. Such a symbolic coding (for each point x /∈ Cr the first return time of x to
the full space is one) does not reflect the dynamical complexity of the system. In order to
obtain a connected Markov extension similar to the interval case allowing a better symbolic
coding, one should choose kc ≥ 2 (see also [BT07, Remark 1 and Figure 1]). One can
then construct the Markov extension of (Ǔ f , f̌ ) as above and the particular ‘extendible’
inducing scheme {S+, τ } on UJ as above.

LEMMA 7.9. The inducing schemes {S, τ } and {S+, τ } satisfy Conditions (H1), (H2), (M)
and (C).

Proof. We prove the claim for the inducing scheme {S, τ }. The proof for the inducing
scheme {S+, τ } is similar. By the Markov property of the connected Markov extension,
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if f̌ τ̌ (x̌) ∈ Ď∗ for some x̌ ∈ Ď then there exists a (connected) neighborhood V̌x̌ 3 x̌ such
that f̌ τ̌

|V̌x̌ is a homeomorphism with π( f̌ τ̌ (V̌x̌ )) = π(Ď). Since Ď ∈ Ď is a level set, we
have that V̌x̌ ⊆ Ď. Applying the projection π proves Condition (H1). Since Ď is a cylinder
set, Condition (H2) follows from our assumptions (see [BL02, Theorem 3.2]). In order to
prove Condition (M) assume that for some J ∈ S there exists τ ′ < τ and L ⊇ J such that
the restriction f τ ′

|L is homeomorphism onto its image with f τ ′

(L) = π(Ď). Consider
Ľ ⊂ Ď with π(Ľ) = L . Since τ = τ̌ is the first return time of f̌ to Ď∗, there exists an
integer k, 0 < k < τ ′, such that the set f̌ k(Ľ) intersects the boundary of the connected
Markov extension. But this is impossible since the boundary of the Markov partition
consists of critical points and hence the restriction f τ ′

|L cannot be a homeomorphism.
Condition (C) follows from the definition of the inducing scheme, since π( f̌ i (V̌y̌)) does
not meet the boundary of the partition. 2

Observe that since the connected Markov extension is not compact, closed subsets of
Ď do not necessarily carry invariant measures. Also, even if they do the inducing time
defined above may be non-integrable with respect to that measure. So the above lemma
does not imply that every map f has an invariant measure, which is absolutely continuous
with respect to some conformal measure, even in the current setting where neutral periodic
cycles are excluded. We do, however, have the following result.

THEOREM 7.10. Let f be a polynomial of degree d ≥ 2 with a connected, locally
connected and full Julia set. Consider the inducing scheme {S, τ } constructed above. Then
an f -invariant probability µ of positive entropy supported on the Julia set J ( f ) is liftable
to this inducing scheme provided that µ(

⋂
k≥0 F−k(W )) > 0.

Proof. To prove that f satisfies Condition (P1) it suffices to observe that the boundary of
the partition P of the Julia set consists of all the critical points, whose number is finite
by our assumption, so the topological entropy htop(1P, f ) = 0. Condition (P2) follows
from [BL02, Theorem 3.2], since invariant measures, which are not supported on the Julia
set, are atomic measures on an attracting periodic point and thus have zero entropy (our
assumptions exclude the existence of neutral periodic cycles). The result now follows by
applying Theorem 6.1 with T = 0. 2

In the case of the ‘extendible’ inducing scheme {S+, τ } the boundary consists of∑m
i=0 kci dci external rays where m is the total number of critical points and dci is the degree

of the critical point ci ∈ Cr . Since the restriction of f to an external ray is conjugated
to a homeomorphism, we have htop(1P, f ) = 0 implying Condition (P1) in this case.
Condition (P2) again follows from [BL02, Theorem 3.2] as above, and thus we obtain
Theorem 7.10 for the inducing scheme with bounded distortion.

In [BT07, see Corollary 1], Bruin and Todd established liftability of invariant measures
of positive entropy to the Markov extension they constructed. This result can also be used
to prove Theorem 7.10 for the special inducing schemes we consider.

7.4. A special example. We construct a special example of a multi-dimensional map
which illustrates some of our results.
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Let f : [b1, b2] → [b1, b2] be a unimodal map with the critical point at 0 and such
that f (b1), f (b2) ∈ {b1, b2}. We assume that f satisfies the Collet–Eckmann condition.
Consider a family of continuous maps gt : [0, 1] → [0, 1], t ∈ [b1, b2] satisfying:
(1) gt (0) = gt (1) = 0, gt (1/2) = 1;
(2) both gt |(0, (1/2)) and gt |((1/2), 1) are C1+α diffeomorphisms satisfying

|(d/(ds))gt (s)| ≥ a > 1 for any s ∈ (0, 1) \ (1/2);
(3) gt (s) is smooth in t for all s.
Consider the skew-product map h : R := [b1, b2] × [0, 1] → [b1, b2] × [0, 1] given by

h(x, y) = ( f (x), gx (y)),

and denote by π1 and π2 the projection to the first and second components, respectively.
It is easy to see that h is a piecewise invertible map where the partition P consists of

four elements

P = {(b1, 0) × (0, 1
2 ), (0, b2) × (0, 1

2 ), (b1, 0) × ( 1
2 , 1), (0, b2) × ( 1

2 , 1)}.

We describe an inducing scheme for h. Notice that, for any k ∈ N, the set h−k([b1, b2] ×

{1/2}) consists of 2k disjoint smooth curves {lk
j }

2k

j=1, each curve can be represented as the

graph of a function from [b1, b2] to [0, 1]. The set R \
⋃2k

j=1 lk
j consists of 2k connected

components; we denote by ξk the collection of these components.
It follows from Theorem 7.3 and Corollary 7.6 that there exist a nice set A ⊂ [b1, b2],

a collection of intervals Q, and an integer-valued function τ : Q → N such that for
all J ∈ Q one has f τ(J )(J ) ' A (recall that f τ(J )(J ) ' A means that f τ(J ) maps J
homeomorphically onto A).

Define the collection of open sets

Q′
:= {J × [0, 1] ∩ η : J ∈ Q, η ∈ ξτ(J )}.

It follows that

f τ(J )(J × [0, 1] ∩ η) ' A × (0, 1) and f τ(J )(J+
× [0, 1] ∩ η) ' A+

× (0, 1).

Set
W =

⋃
ζ∈Q′

ζ and H|ζ = hτ(J )
|ζ,

and then
W =

⋃
k≥0

H−k(W) and S = {ζ ∩ W : ζ ∈ Q′
}.

It is easy to see that {S, τ } is an inducing scheme for h.

LEMMA 7.11. The inducing scheme {S, τ } satisfies Conditions (M) and (C).

Proof. By Corollary 7.6 the inducing scheme {Q, τ } for f satisfies Condition (M). Choose
a number m ∈ N and a set L such that

hm(L) ' A × (0, 1), L ∩ ζ 6= ∅, ζ ∈ Q′.

Assume that ζ = W ∩ J × (0, 1) ∩ η for some J ∈ S and η ∈ ξτ(J ). It follows that
f m(π1(L+)) ' A+, f m(π1(L)) ' A, and π1(L) ∩ J 6= ∅. Since the inducing scheme
{Q, τ } satisfies Condition (M) we have that m ≥ τ(J ), which is what we need to prove.
Condition (C) is obvious. 2
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LEMMA 7.12. The map h : R → R satisfies Conditions (P1) and (P2) with H = log 2.

Proof. It is easy to show that the partition of (b1, b2) by (b1, 0) and (0, b2) is generating
for the map f and that the maps gt are expanding with a constant uniform in t . It follows
that the partition P for h is also generating. However, since the partition element Pn(x)

is only well defined outside the set
⋃

k≥0 h−k(∂ P), we have that diam Pn(x) → 0 on
R \

⋃
k≥0 h−k(∂ P). The only ergodic invariant measures supported on

⋃
k≥0 h−k(∂ P) are

supported either on [b1, b2] × {0} or on { f j (0)}
p−1
j=0 × [0, 1] if 0 is periodic of period p.

The entropy of such measures is at most max{log 2, htop( f )} = log 2. Condition (P2) is
satisfied if we set

I0 = R \

⋃
k≥0

h−k(∂ P) and H = log 2 < htop(h)

(see below for the last inequality).
To check Condition (P1) note that 1P = [b1, b2] × {1} ∪ f (0) × [0, 1]. We have that

htop([b1, b2] × {1}) = htop( f ) ≤ log 2.

Also we claim that
htop( f (0) × [0, 1)) ≤ log 2. (8)

To see this notice that, for any ε > 0, we can pick a number m such that the horizontal
diameter of ξm is smaller than ε. It follows that {lk+m

j ∩ {0} × [0, 1]}
2k+m

j=1 is a (k, ε)-
spanning set and (8) follows. Since h is topologically a direct product map,

htop(h) = htop( f ) + log 2 > log 2,

implying Condition (P1). 2
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