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Abstract. We review a number of models which appear in physics,
biology, chemistry, etc. and which are described by the reaction-
diffusion equation. By discretazing this equation we obtain the
corresponding coupled map lattice (CML) system. We classify
these CMLs by the type of the dynamics of the local map. We
observe several different types of behavior, namely, Morse-Smale
type systems, systems with attractors, and systems with Smale
horseshoes.

1. Introduction.

In this paper we review a number of important models in physics,
biology, and chemistry which are described by the non-linear reaction-
diffusion equation

ut = h(u) +Aκ4u,
where x ∈ Rp, u = u(x, t) is a function with values in Rd, A a matrix,
and κ a parameter. This equation represents extended systems of un-
bounded equilibrium media with energy pumping and the function u is
a characteristic of the medium (for example, its density, or distribution
of temperature). In Section 2 we discribe the models while in Section
3 we classify them according to their type.

We are interested in the dynamics of the corresponding coupled map
lattice (CML) that is a discrete versions of this equation, i.e.,

uj̄(n+ 1) = f(uj̄(n)) + εgj̄({uī(n)}|̄i−j̄|≤s),
where n ∈ Z is the discrete time coordinate and j̄ = (jk), k = 1, ..., p
the discrete space coordinate. We assume that f : Rd → Rd and
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gj̄ : (Rd)(2s+1)p → Rd are smooth maps; f is called the local map and it
acts in the local phase space (which is either Rd or its compactification
Sd); g is the interaction of finite size s. We also assume that ε is a
sufficiently small parameter (see Section 4).

One can think of a CML as an infinite collection of copies of the
local dynamical system (f,Rd) associated with each point in the lattice
Zd. When ε = 0 the local dynamics at different points of the lattice
do not depend on each other. However, for small ε the dynamics at
a given point of the lattice ”feels” the local dynamics at neighboring
points (within the lattice cube of size s). In the cases, where the local
dynamics displys strong hyperbolic behavior, the dynamics of CML is
completely determined by the local dynamics (provided ε is sufficiently
small). See [1, 2]. The goal of this paper is to analize the local dynamics
in some ”physicall interesting” cases.

When a CML is obtained from a partial differential equation (PDE)
there are two ways to ensure that ε is small: 1) to require that the
corresponding parameter of the PDE (usually the diffusion coefficient)
is small and 2) to select small discretization steps appropriately.

In what follows, we will fix the discretization step and will vary ”the
physical parameters” of the system. It turns out that CML’s obtained
in this way can often be viewed as initial phenomenological models of
the underlying processes and in many cases may be better adopted to
them.

In the Sections 5 and 6 we classify CML under consideration by the
type of the dynamics of their local maps. It turns out that when the
local map is one-dimensional the dynamics is of Morse-Smale type in
some range of parameters. When the local map is the two-dimensional
the dynamics is much richer: by varying parameters of the system one
can observe a Morse-Smale type behavior, existence of Smale horse-
shoes, or “strange” attractors. We illustrate this by study of the dy-
namics of the local map of the FitzHugh-Nagumo equation (see Section
6).
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corrections. Ya. P. also would like to thank RIMS at Kyoto University,
where the final version of the paper was prepared, for support and
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2. Models From Science.

Here we present several examples from different branches of science
that are described by evolution PDE’s.

2.1. Fisher model in population genetics [26]. The model de-
scribes a population of diploid individuals (i.e., the ones that carry
two genes) distributed in a flat two dimensional habitat. Assuming
that a gene occurs in two forms a and A, called alleles, one can divide
the population into three genotypes aa, aA, and AA. Let ui = ui(t, x),
i ∈ {1, 2, 3}, be the population densities of aa, aA, and AA respec-
tively. Assume that members of the population mate at random, with
a birth rate r, and diffuse through the habitat with a diffusion constant
D. Assume further that death rates depend only on the genotypes and
denote them by τi, i = 1, 2, 3. Thus, ui(x, t) changes due to diffusion,
mating, and death.

It is shown in [3] that if |τ1 − τ2|+ |τ3 − τ2| � 1 and r � 1 then the
function

u =
u3 + 1

2
u2

u1 + u2 + u3

satisfies the following PDE

(2.1.1) ut = −σu(u− θ)(u− 1) +D4u,
where σ = σ(τ1, τ2, τ3) > 0 and θ = θ(τ1, τ2, τ3), 0 < θ < 1 are parame-
ters.

2.2. Kolmogorov-Petrovskii-Piskunov (KPP) planar model of
advance of advantageous genes [16]. Consider a two dimensional
area populated by individuals of a given species. Assume that the
population has a dominant allele A, that is, the chance of survival of
individuals with this allele is larger than individuals that do not posses
this gene.

In the case when the dominant allele is distributed over the area with
a constant concentration p the change of p per one generation can be
obtained by the formula (see [9])

δp = αp(1− p)2 +O(α2),

where α+1 is the ratio of the probability that an individual with domi-
nant allele A survives to the corresponding probability for an individual
without the allele A.

We now consider the case when the concentration p changes in time
and space due to the selection in favor of the dominant allele A and
to random motions of individuals. Assume finally that the root-mean-
square path ρ of an individual during one generation is sufficiently
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small. One can show that the change in the concentration per genera-
tion can be found by the formula
(2.2.2)

δp(x, y) =

∫

R

∫

R
p(ζ, ξ)

f(r)

2πr
dζdξ − p(x, y) + αp(x, y)(1− p(x, y))2,

where f(r)dr is the probability that an individual passes a distance

lying between r and r + dr with r =
√

(x− ζ)2 + (y − ξ)2. Assuming
that p is differentiable with respect to the coordinates x, y, and time t
and that α� 1 we can expand (2.2.2) into a Taylor series to obtain

(2.2.3) pt = αp(1− p)2 +
ρ2

4
4p.

2.3. Fisher linear model of advance of advantageous genes [10].
Consider a population of a given species distributed uniformly along a
linear habitat, such as a shore line. Assume that the size of the habitat
is large compare with the distances separating the sites of offsprings
from those of their parents. Assume further that at some point of the
habitat an advantageous mutation (that is a mutation that is somehow
advantageous to the survival of a member of the population) occurs.
This mutation diffuses, first, into the neighborhood of the occurrence
of mutation and then into the surrounding population. This process is
due to selection in favor of the advantageous mutation and to random
motions of individuals.

Let p = p(x, t) be the concentration of the members of the population
with the mutant gene and q = q(x, t) the concentration of the members
of the population whose offsprings have the mutant gene (x is a position
in the habitat). One can assume that q = 1 − p. Denote by α the
intensity of selection in favor of the mutant gene, which we assume to
be independent of p. For sufficiently small α the concentration p varies
continuously with time from generation to generation. Suppose that
the rate per generation at which members of the population with the
mutant gene diffuse into the whole population is given by −κ ∂p

∂x
, where

κ > 0 is a diffusion constant (assumed to be independent of x and
p). This corresponds to the ordinary law of diffusion that is diffusion
is proportional to the gradient of the concentration. Under all these
assumptions one can show that the concentration of the mutant gene
satisfies:

(2.3.4)
∂p

∂t
= αp(1− p) + κ

∂2p

∂x2
.
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Figure 1. Idealized Embryo.

2.4. Turing’s continuous model of morphogenesis [29]. The mor-
phogenesis is an embryological development of the structure of an or-
ganism or some part of an organism. Turing suggested a model of an
idealized embryo which contains two characteristic chemical substances
X and Y called morphogens. These substances react with each other
in each cell and diffuse between neighboring cells with diffusibility co-
efficients µ and ν respectively. Consider an idealized embryo which is
realized as an annulus of the inner radius ρ of tissue (see Figure 1).
Denote by X and Y concentrations of the corresponding chemicals. Let
f(X, Y ) and g(X, Y ) be the rates at which concentrations X and Y
respectively change due to the chemical interaction. The reaction rates
are assumed to obey the law of mass action that states that the rate
at which a reaction takes place is proportional to the concentrations of
the reacting substances. We assume that diffusion obeys the ordinary
law of diffusion. In this case this means that each morphogen moves
from the region of greater to the region of less concentration at a rate
proportional to the gradient of the concentration. Then the governing
equations are

Xt = f(X, Y ) +
µ

ρ2
Xθθ,

Yt = g(X, Y ) +
ν

ρ2
Yθθ,

(2.4.5)

where θ is the angle between the radius to the point and a fixed refer-
ence radius (see Figure 1). Turing used the following formulas for the
rate functions

f(X, Y ) = −aX2 − bXY + d,

g(X, Y ) = aX2 + bXY − cY + e,
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where a, b, c, d, e ∈ R+ are parameters of the reaction.

2.5. Maginu model of morphogenesis [17]. This model is a sim-
plification of the above Turing model. A single cell is viewed as an
electrical circuit similar to the one used by Nagumo (see Section 2.8
below and Figure 3). Arranging these cells on a ring by coupling neigh-
boring ones, Maginu produced a system of reaction-diffusion PDE’s

Xt = −aX(X − 1)(X + 1)− Y + κ1Xθθ,

Yt = ε(X − γY ) + κ2Yθθ,
(2.5.6)

where X and Y are concentrations of two types of morphogens, a, κ1,
κ2, ε, and γ are positive parameters. Note that the nonlinear term in
(2.5.6) is simpler than the nonlinear term in (2.4.5).

2.6. The FitzHugh’s model of the propagation of voltage im-
pulse through a nerve axon. In [14], Hodgkin and Huxley proposed
a model to describe the ionic and electrical events occurring during
the transmission of an impulse through the surface membrane and the
propagation of voltage impulse through a nerve axon. One can think
of the axon as a long cylindrical cable with a conducting core and a
partially insulating shell submerged into a large volume of conducting
fluid - an ionic solution of either sodium or chloride.

The total density I of the current through the membrane is

(2.6.7) I = CM
dV

dt
+ Ii,

where V is the displacement of the membrane potential from its resting
value; CM the membrane capacity per unit area (assumed to be con-
stant); and Ii = INa(V )+IK(V )+Il(V ) the ionic current density which
consists of three components carried by: sodium ions (INa), potassium
ions (IK), and other ions (Il). The expression for ionic currents densi-
ties INa, IK , and Il were obtained experimentally.

The current density through the membrane can be computed by the
formula

(2.6.8) I =
ρ

2R

∂2V

∂x2
,

where x is the distance along the fibre, R the specific resistance of the
axoplasm, and ρ the radius of the fibre. Combining (2.6.7) and (2.6.8)
we obtain that

ρ

2R

∂2V

∂x2
= CM

dV

dt
+ Ii(V ).
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The Hodgkin-Huxley model consists of four differential equations and
is yet to difficult for rigorous mathematical analysis. For the detailed
discussion of Hodgkin-Huxley model see [6].

In [11], R. FitzHugh suggested a model for the propagation of voltage
impulse through a nerve axon which is substantially simpler than the
Hodgkin-Huxley model and therefore, is often used in applications.

R. FitzHugh treated the nerve cell as a non-linear electric oscillator

v̈ + (v2 − 1)v̇ + cv = 0,

where v is a dimensionless variable corresponding to the membrane
potential V and c > 0 a constant. Setting

w = −v̇ + v − v3

3

reduces the above second order differential equation to the well-known
Bonhoeffer-van der Pol (BVP) system of differential equations of the
first order

v̇ = v − v3

3
− w,

ẇ = cv.

The variable w is called the recovery variable. R. FitzHugh further
modified this system as follows

v̇ = v − v3

3
− w + i,

ẇ = c(v + a− bw),
(2.6.9)

where a and b are positive constants and i a dimensionless variable cor-
responding to the total membrane current density. Combining (2.6.9)
and (2.6.8) we obtain the system of two differential equations:

vt = v − v3

3
− w + κvxx

wt = c(v + a− bw).
(2.6.10)

where κ is proportional to ρ
2R

. If no recovery is present (i.e., w = 0)
we obtain the one-dimensional FitzHugh model (see [12]):

(2.6.11) vt = v − v3

3
+ κvxx.
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2.7. Brusselator model for the Belousov-Zhabotinsky reaction
(BZR) [8]. The BZR is a chemical reaction in which the concentra-
tions of the reactants exhibit oscillating behavior. The Brusselator
model of BZR describes the case of a single mode of oscillation to
which the system returns if perturbed. The chemical reactions follow
the scheme:

A → X
B + X → Y +D

2X + Y → 3X
X → E

where A, B, D, E , X , and Y are chemical compounds. Let x and y
be the concentration of compounds X and Y and A and B the con-
centrations of compounds A and B. Assuming that the concentration
A and B are held constant during the chemical reaction and that the
system has only one spatial dimension one obtains the following system
of differential equations

∂x

∂t
= A− (B + 1)x+ x2y +D1

∂2x

∂ξ2

∂y

∂t
= Bx− x2y +D2

∂2y

∂ξ2

(2.7.12)

where D1 and D2 are diffusion constants and ξ is the spatial coordinate.

2.8. Bistable transmission lines [22]. One can simulate an active
transition line with two stable equilibrium states in the following way.
Consider a circuit which consists of a power source E0, resistance R,
capacitor C, and tunnel diode with characteristic curve f(v) to be a
cubic polynomial (see Figure 2). One can set E0 and R such that the
circuit acts as a bistable circuit. The equations of the circuit are given
by

j = C
dv

dτ
+ g(v),

g(v) = f(v) +
v − E0

R
,

where j is the current and v the potential; the function g(v) is a cubic
polynomial,

g(v) = a(v − v1)(v − v2)(v − v3),

where a > 0 and v1 < v2 < v3.
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Figure 2. The circuit of the simple bistable line.

Figure 3. The distributed bistable line.

Regarding this circuit as a distributed line (see Figure 3) we obtain

j =
1

r

∂2v

∂s2
,

where s is the distance along the line and r the interstage coupling re-
sistance per unit length of the line. By appropriate change of variables
we obtain

(2.8.13)
∂u

∂t
= −(u+ 1)(u− θ)(u− 1) + κ

∂2u

∂s2
,
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Figure 4. The plane Poiseuille flow.

where θ, −1 < θ < 1 and κ are parameters of the circuit and u the
rescaled voltage.

2.9. Wave system in plane Poiseuille flow [28]. The Poiseuille
flow is a planar flow of an incompressible viscous fluid under pressure
in a channel made up by two parallel plates with distance 2h between
them (see Figure 4). Under the uniform pressure gradient the flow
produces a velocity field which is independent of the x coordinate and
has its maximum value u0 at the center of the channel. The governing
equation of the flow is

(2.9.14) ζt + ψzζx − ψxζz =
1

R
4ζ,

where R = 1
γ
u0h is the Reynolds number, γ the kinetic viscosity, ψ =

ψ(x, z, t, R) the stream function, ζ = −4ψ, x the direction parallel to
the plates, and z the direction perpendicular to the plates. The time
is measured in h

u0
units, the length in h units, and the velocity in u0

units. For the incompressible flow (i.e. ∇~u = 0) the stream function ψ
is defined by

~u = ∇⊥ψ,
where ~u is the velocity field and ∇⊥ := (∂z,−∂x).

In the case of the undisturbed laminar flow (called the basic flow)
the motion is parallel to the plates and is given by the mean velocity
with respect to x

ū` :=
∂ψ`
∂z

= 1− z2,

where ψ` is the stream function of the undisturbed laminar flow.
Consider a small disturbance which is confined to a small neigh-

borhood of the origin at t = 0. Linearization of the (2.9.14) around
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the basic flow gives the following equation for the perturbed stream
function ψ

(2.9.15)

(
∂

∂t
+ (1− z2)

∂

∂x

)
4ψ + 2

∂ψ

∂x
=

1

R
42ψ.

One can obtain a formal solution of (2.9.15) using the Fourier-Laplace
transform

ψ̂(z, α, s, R) =

∫ ∞

0

e−stdt

∫

R
e−iαxψ(x, z, t, R)dx,

ψ(x, z, t, R) = ψ(z) =
1

4π2i

∫

R
eαixdα

∫ γ+i∞

γ−i∞
estψ̂(z, α, s, R)ds.

where the line Re(s) = γ lies to the right of all singularities of ψ̂. Solv-
ing the above equation for ψ leads to the Orr-Sommerfeld eigenvalue
problem

− iα
((

1− z2 − is

α

)(
dψ̂(2)

dz2
− α2ψ̂

)
+ 2ψ̂

)

+
1

R

(
dψ̂(4)

dz4
− 2α

dψ̂(2)

dz2
+ α4ψ̂

)
= 0.

Fix R and let s(α) be the eigenvalues of the non-trivial solution.
One can show that there is a critical value Rc such that for all R < Rc,
the real part of each eigenvalue s(α) is less than zero and for R > Rc

there are eigenvalues with positive real part. Hence, for R > Rc the
basic flow is unstable under the small disturbances and for R < Rc it
is stable.

The experiments however, show that even for R < Rc the basic flow
can be unstable. Thus the linear analysis is not sufficient to study
stability of the basic flow and some non-linear terms should be taken
into account.

For that we consider a small perturbation of the basic flow whose
Reynolds number R is sufficiently close to the critical value Rc. We
then expand solutions into powers of R − Rc and study the leading
Fourier mode of the expansion. One can show that its amplitude A
satisfies the following equation

(2.9.16) At = kA |A|2 + εA+ aAxx,

where |ε| � 1 and k, a are complex parameters; moreover, ε > 0 if
R > Rc and ε < 0 otherwise.
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Figure 5. Steady state - the basic flow.

2.10. Generating waves by wind [4]. Consider the fully developed
laminar flow of two layers of fluids (e.g. air and water) confined be-
tween two infinite parallel plates (see Figure 5; the fully developed flow
means an entirely viscous flow with velocity independent of the hori-
zontal position). The flow is generated by the combination of a pressure
gradient and the movement of the upper plate, parallel to the pressure
gradient, relative to the lower plate. Fluids are assumed to be immis-
cible, and in steady states the interface between two fluids is parallel
to the boundary plates.

The fluids are governed by the Naiver-Stokes equations

∂

∂t
+ ~V · ∇~V + ν24~V = − 2

ρ1
DP̃ + ~g,

∂

∂t
+ ~v · ∇~v + ν14~v = − 1

ρ1

Dp̃+ ~g.

(2.10.17)

Here (x, y, z) is a position vector with x-axis being parallel to the
plates and in the direction of the flow and y-axis perpendicular to
the plates in the direction opposite to the acceleration of the gravity ~g;
~V = (V1, V2, V3) and ~v = (v1, v2, v3) are velocity vectors for the upper
and lower fluids; ρ1 and ρ2 their (constant) densities; ν1 and ν2 their
(constant) kinematic viscosities; P̃ and p̃ the pressures applied to the
lower and upper fluids.

We begin by describing the basic flow, that is, a steady fully de-
veloped laminar flow parallel to the plates (i.e. ~V = (V1(y), 0, 0) and
~v = (v1(y), 0, 0)) with the boundary conditions V1(D1) = Vtop and
V (−D2) = 0 (these conditions guarantee that there is no slip on the
upper and lower plates and across the interface between two fluids the
velocity field is continuous). The governing equations of the basic flow
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are

0 =
G

ρ2
+ ν2

d2V1

dy2
,

0 =
G

ρ1

+ ν1
d2v1

dy2
,

where
∂P

∂x
=
∂p

∂x
= −G

is the constant pressure gradient and p = p̃ + ρ1gy and P = P̃ + ρ2gy
are modified pressures. Let Ṽb(y), ṽb(y), Pb, pb be the solution of this
system (with boundary conditions discussed above). These solutions
depend linearly on G and Vtop. We introduce the dimensionless veloci-
ties

Vb =
Ṽb

Vmean
, vb =

ṽb
Vmean

,

where Vmean is the mean velocity

Vmean =
1

D1 +D2

(∫ 0

−D1

ṽbdy +

∫ D2

0

Ṽbdy

)
.

We also introduce the Reynolds number R = VmeanD2

ν2
.

The ”wind” can be viewed as a perturbation of the basic flow for
which the velocity field can be represented in the form

~v = (vb, 0, 0) + δ cos(kx + lz − kct) (v1(y), v2(y), v3(y)) ,

~V = (Vb, 0, 0) + δ cos(kx+ lz − kct) (V1(y), V2(y), V3(y)) ,

and the pressures

p = pb + δp(y) cos(kx + lz − kct),
P = Pb + δp(y) cos(kx + lz − kct).

Here δ � 1, k, l ∈ C are disturbance wave numbers in x- and z-
directions respectively, and c ∈ C the phase speed. This kind of per-
turbation is considered frequently in the systems with translational
invariance. It corresponds to the study of the stability of the Fourier
modes (which represents delocalized disturbances) ([7]).

The perturbed system is governed by the Navier-Stokes equation
(2.10.17) with boundary conditions as above and the velocity field being
continuous across the interface y = η(x, z, t) where

η(x, z, t) = δ cos(kx + lz − kct).
To study stability of the basic flow we substitute the values of pres-

sures and velocities into (2.10.17) and linearize this system along the
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basic flow. One can show that in the (R, k)-plane there exists the sta-
bility curve, i.e., a curve that divides the (R, k)-plane into two regions
in which the basic flow is stable and unstable respectively. This curve
has a critical point (Rc, kc) for which kc 6= 0.

Now, consider a small perturbation of the basic flow whose Reynolds
number R is sufficiently close to the critical value Rc. By expanding
solutions of (2.10.17) into powers of R−Rc one can show that

(2.10.18) At = bA + kA |A|2 + aAxx,

where A is the leading Fourier mode of the expansion (i.e. amplitude
of the surface wave is proportional to A), a a complex parameter with
positive real part, b a complex parameter which is related to the expo-
nential growth of the wave for R > Rc, and k is a complex parameter
which is related to the motion in the bulk of the fluid and nonlinear
effects at the interface.

3. A Classification of Models.

A non-linear reaction-diffusion equation is a PDE of the form:

(3.0.19) ut(x, t) = h(u) +Aκ∆xu(x, t),

where u(x, t) is a function of space coordinate x ∈ Rn and time t ≥ 0
with values in Rd; A is the coupling matrix, and κ a diffusion coefficient.
One can obtain a number of well-known equations by the appropriate
choice of the nonlinear term h.

3.1. The Kolmogorov-Petrovsky-Piskunov (KPP) Equation. The
Fisher linear model and the KPP planar model of advance of advan-
tageous genes (Equations (2.3.4) and (2.2.3)) are examples of the gen-
eralized KPP equation introduced in [16]. This is a one-dimensional
reaction-diffusion equation

(3.1.20) ut(x, t) = h(u) + κ4u(x, t), 0 ≤ u ≤ 1,

where the nonlinear term h(u) ∈ C1([0, 1]) satisfies the following con-
ditions:

(3.1.21) h(0) = h(1) = 0, h′(0) = α > 0, h′(u) < α, u ∈ (0, 1],

For the Fisher model we have h(u) = αu(1 − u) and for the KPP
model h(u) = αu(1− u)2.
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3.2. The FitzHugh-Nagumo Equation. The FitzHugh model
of propagation of voltage impulse through a nerve axon (Equation
(2.6.10)) and Maginu model of morphogenesis (Equation (2.5.6)) are
described by the FitzHugh-Nagumo generalized equation. It is a two di-
mensional reaction-diffusion equation with u(x, t) = (u1(x, t), u2(x, t)),
x ∈ R and

h(u1, u2) = (n(u1)− bu2, cu1 − du2),

A =

(
σ1 0
0 σ2

)
,

where a, b, c, d, and σi are positive parameters, σi ∈ {0, 1}, i = 0, 1,
and

n(u1) = −au1(u1 − θ)(u1 − 1)

with θ ∈ (0, 1). The equations become

∂u1

∂t
= −au1(u1 − θ)(u1 − 1)− bu2 + κ1

∂2u1

∂x2

∂u2

∂t
= cu1 − du2 + κ2

∂2u2

∂x2
.

(3.2.22)

where κi ≥ 0 and at least one of them is nonzero.

3.3. Nagumo Equation. The one-dimensional FitzHugh model of
propagation of voltage impulse through a nerve axon (Equation (2.6.11)),
the Fisher model in population genetics (Equation (2.1.1)), and bistable
transition lines (Equation (2.8.13)) are described by the Nagumo equa-
tion. The latter is a special case of the more general semi-linear bistable
reaction-diffusion equation

(3.3.23) ut(x, t) = h(u) + κuxx(x, t),

where the nonlinear term is given by

h(u) = −au(u− θ)(u− 1),

with a > 0 and θ ∈ (0, 0.5]. Note that the case θ ∈ (0.5, 1) can be
reduced to the previous one by replacing u with −u+1. Also note that
Equation (3.3.23) is the first equation in the system (3.2.22) for b = 0.

3.4. The Real Ginzburg-Landau (Amplitude) Equation. The
amplitude of the disturbance in the Poiseuille flow (Equation 2.9.16)
and amplitude of the waves generated by wind (Equation 2.10.18) are
all described by the amplitude equation. A general complex Ginzburg-
Landau equation is given by

ut(x, t) = βu|u|2 − γu+ α∆xu(x, t),
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where α, β ∈ C, and γ ∈ R are parameters, u ∈ C. Here we only
consider a one dimensional real version of this equation given by

(3.4.24) ut(x, t) = u(γ − δu2) + κuxx(x, t),

where γ, δ, κ ∈ R. Note that if γ, δ, κ > 0 Equation (3.4.24) becomes
(after rescaling) the Nagumo equation (3.3.23).

3.5. Some Other Non-linear Reaction-Diffusion Equations. The
Brusselator model for the Belousov-Zhabotinsky reaction (Equation
2.7.12) gives us another two dimensional reaction-diffusion equation

∂u1

∂t
= A− (B + 1)u1 + u2

1u2 + κ1
∂2u1

∂x2
,

∂u2

∂t
= Bu1 − u2

1u2 + κ2
∂2u2

∂x2
.

(3.5.25)

where A, B, κi, i = 0, 1 are positive parameters.
Finally, from the Turing model of morphogenesis (Equation 2.4.5)

we obtain yet another two dimensional system

∂u1

∂t
= −(au2

1 + bu1u2) + c+ κ1
∂2u1

∂x2
,

∂u2

∂t
= (au2

1 + bu1u2)− du2 + e+ κ2
∂2u2

∂x2
.

(3.5.26)

where a, b, c, d, e, and κi, i = 0, 1 are positive parameters.

4. Coupled Map Lattices (CML).

To construct CMLs which correspond to the PDEs described above
we use the following discretization. For the derivative in time

∂u(x, t)

∂t
→ u(x, t+ ∆t)− u(x, t)

∆t
.

For the space derivative one can choose any discretization method in-
volving an arbitrary number of points. For example,

∂u(x, t)

∂x
→ u(x+ ∆x, t)− u(x, t)

∆x
∂u2(x, t)

∂x2
→ u(x+ ∆x, t)− 2u(x, t) + u(x−∆x, t)

(∆x)2
,

where ∆t and ∆x are the discretization steps.
Using the above discretization we obtain the CMLs corresponding

to the above mentioned PDEs. We describe below the local maps for
these CMLs and indicate leading parameters, i.e., the parameters that
we will vary to obtain different types of dynamics.
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• The KPP equation:

f(u) = u+ γh(u),

where h(u) satisfies (3.1.21), h′(0) = α is a leading parameter
and γ = ∆t > 0 is a parameter.
• The Nagumo equation:

f(u) = u− Au(u− θ)(u− 1),

where A = α∆t > 0 is a leading parameter and θ ∈ (0, 0.5) is a
parameter.
• The real amplitude equation:

f(u) = Au− bu3,

where A = (1 +γ∆t) > 0 is a leading parameter and b = δ∆t ∈
R is a parameter.
• The FitzHugh-Nagumo equation:

f(u1, u2) = (u1 − Au1(u1 − θ)(u1 − 1)− αu2, βu1 + γu2),

where A = a4t > 0 is a leading parameter, α = b4t > 0,
β = c∆t > 0, γ = (1− d∆t) > 0, θ ∈ (0, 1) are parameters.
• The Brusselator model:

f(u1, u2) = (a+ (1− γ − b)u1 + γu2
1u2, u2 + bu1 − γu2

1u2),

where a = A4t > 0, b = B∆t > 0 are two leading parameters,
and γ = 4t > 0 is a parameter.
• The Turing model:

f(u1, u2) = (u1 − Au2
1 − Bu1u2 + C,

Au2
1 +Bu1u2 + (1−D)u2 + E),

where A = a4t > 0, B = b∆t > 0, C = c∆t > 0, D = d∆t > 0,
and E = e∆t > 0 are parameters.

The interaction g is a function of 2s+ 1 variables, where in our case
s = 1.

5. Dynamics of Local Map: One Dimensional Maps.

We consider the case of one-dimensional local maps. We show that
in some range of parameters they exhibit Morse-Smale type behavior.

5.1. KPP Equation. We begin with the KPP equation and consider
local maps of two types: (1) f(u) = u + γu(1 − u) and (2) f(u) =
u+ γu(1− u)2.



18 YAKOV PESIN AND ALEX YURCHENKO

Figure 6. Phase Portraits of 1-dimensional maps: a)
KPP equation, f(u) = u + γu(1 − u), 0 < γ < 1; b)
Nagumo equation, f(u) = u− Au(u− θ)(u− 1), A < 1;
c) real amplitude equation, f(u) = Au− bu3.

Figure 7. The local map of the KPP equation, f(u) =
u+ γu(1− u), γ < 1.

5.1.1. The local map f(u) = u + γu(1 − u). Assume that 0 < γ < 1
and let u1 = 1

2
+ 1

2γ
> 1. The derivative f ′(u) = 1 + γ(1− 2u) > 0 for

u < u1 while f ′(u1) = 0 (see Figure 7). The local map has two fixed
points: u = 0 is repelling (f ′(0) = 1 + γ > 1) and u = 1 is attracting
(f ′(1) = 1− γ < 1). We change f outside of [0, u1] such that the new
map (still called f) has a repelling fixed point u = P and f ′(u) > 0
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Figure 8. The modified local map of the KPP equation.

Figure 9. The local map of the KPP equation, f(u) =
u+ γu(1− u), γ > 1 +

√
5.

for all u ∈ R and f ′(u) > 1 for u > P (see Figure 8). The new map
is a diffeomorphism of R with three fixed points and no other periodic
points. Let f̃ be the compactification map of f (see Appendix).

Theorem 5.1.1. For all γ ∈ (0, 1) the compactification map f̃ is a
Morse-Smale diffeomorphism of S1 with four fixed points corresponding
to {0, 1, p,∞} (see Figure 6(a)).

We now consider the KPP equation for the sufficiently large γ (see
Figure 9). Set u0 = 2u1 = 1 + 1

γ
. It is clear that f(0) = f(u0) = 0,

f(u1) > u0 if γ > 3. Since f ′(u) = 1 + γ − 2γu we obtain f ′(1
2
) = 1

and f ′(1
2

+ 1
γ
) = −1. One also has f( 1

2
) = f(1

2
+ 1

γ
) > u0 if γ > 1 +

√
5.

It follows that for any small ε > 0 there exists λ = λ(ε) > 1 such that
|f ′(u)| ≥ λ for any u ∈ [0, 1

2
− ε] ∪ [1

2
+ ε + 1

γ
, u0], i.e., the map f is

expanding.
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Figure 10. The local map of the KPP equation, f(u) =
u+ γu(1− u)2.

Theorem 5.1.2. Assume that γ > 1 +
√

5 and let

U = [0,
1

2
] ∪ [

1

2
+

1

γ
, 1 +

1

γ
].

Then the set

Λ =
⋂

n≥0

f−n(U)

is a Cantor-like subset of U on which f is conjugate to the full shift on
the space Σ+

2 of one-sided infinite binary sequences.

5.1.2. The local map f(u) = u+ γu(1− u)2. Assume that γ > 0. The
local map f(u) = u + γu(1 − u)2 has two fixed points on [0, 1] (see
Figure 10): u = 0 is repelling (f ′(0) = 1 + γ > 1) and u = 1 is neutral
(f ′(1) = 1). It is easy to check that if γ > 0 and u ∈ (−∞, 1

3
)∪(1,+∞)

we have f ′(u) > 1 and hence f(u) is expanding on (−∞, 0) ∪ (1,+∞)
so there are only two fixed points for all u ∈ R. Hence, for 0 < γ < 1
map f(u) is a homeomorphism of R with two fixed points and it is easy
to see that there are no other periodic points. The compactification
map f̃ has three fixed points: points corresponding to 0 and ∞ are
hyperbolic and point corresponding to u = 1 is neutral. The phase
portrait of f̃ resembles the phase portrait of a Morse-Smale map (see
Figure 6).

5.2. Nagumo Equation. The local map is a cubic polynomial, f(u) =
u−Au(u− θ)(u− 1) (see Figure 11). It has three fixed points {0, θ, 1}
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Figure 11. The local map of the Nagumo equation,
f(u) = u− Au(u− θ)(u− 1).

Figure 12. The modified local map of the Nagumo equation.

which are hyperbolic for sufficiently small A:

|f ′(0)| = |1− Aθ| < 1,

|f ′(θ)| = |1 + Aθ(1− θ)| > 1,

|f ′(1)| = |1− A(1− θ)| < 1.

The derivative f ′(u) = 1 +Ah(u), where h(u) = −3u2 + 2(θ+ 1)u− θ.
We modify the map f outside some large interval [−R,R], R >> 1,

such that the new map f̂ satisfies the following conditions:

(1) f̂(x) = f(x) for x ∈ [−R,R];

(2) for x ∈ R\[−R,R] map f̂(x) is as on Figure 12;

(3) f̂ ∈ C2(R), moreover f̂ ′ and f̂ ′′ are bounded on R;

(4) limx→−∞ f̂ = −∞ and limx→+∞ f̂ = +∞.
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Figure 13. The local map of the Real Amplitude Equa-
tion, f(u) = Au− bu3, A ∈ (0, 1).

Figure 14. The local map of the Real Amplitude Equa-
tion, f(u) = Au− bu3, A ∈ (1, 3

2
).

Theorem 5.2.1. For all sufficiently small A the compactification map
f̃ is a Morse-Smale diffeomorphism of S1 with four fixed points corre-
sponding to {0, θ, 1,∞} (see Figure 6(b)).

5.3. Real Amplitude Equation. The local map is a cubic polyno-
mial, f(u) = Au− bu3. Let A ∈ (0, 1)∪ (1, 3

2
) and b > 0. The map f is

an endomorphism with one fixed point 0 if A < 1 (see Figure 13) and

three fixed points {0,±
√

A−1
b
} if A ∈ (1, 3

2
) (see Figure 14). All fixed

points are hyperbolic.

Set u0 =
√

A
3b

, then f ′(u0) = 0. Let R = u0 − ε for sufficiently small

ε. We can change f outside of [−R,R] in such a way that the new
map f has f ′(u) > 0 for u ∈ R (here we need A < 3

2
) and f ′(u) < 1

for u ∈ R\[−R,R]. The new map is a diffeomorphism of R with four
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Figure 15. The local map of the Real Amplitude Equa-
tion, f(u) = Au− bu3, A > 3 .

hyperbolic fixed points (one of them being ∞) if A ∈ (1, 3
2
) and two

hyperbolic fixed points if A ∈ (0, 1). The map has no other periodic
points.

Theorem 5.3.1. For b > 0 and A ∈ (0, 1)∪ (1, 3
2
) the compactification

map f̃ is a Morse-Smale diffeomorphism of S1 with four fixed points if
A ∈ (1, 3

2
) and two fixed points if A ∈ (0, 1) (see Figure 6(c)).

We now consider the real amplitude equation for large values of A.

For A > 3
√

3
2

the local maximum and minimum exceed, in absolute

value,
√

A
b
, where f(

√
A
b
) = f(−

√
A
b
) = 0 (see Figure 15). Let m1 >

m2 > 0 be two positive solutions of the equation

f(x) =

√
A

b

and n1 < n2 < 0 two negative solutions of the equation

f(x) = −
√
A

b
.
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Set I1 = [−
√

A
b
, n2], I2 = [n2, m2], and I3 = [m1,

√
A
b
]. One has

|f ′(
√
A− 1

3b
)| = |f ′(−

√
A− 1

3b
)| =

|f ′(
√
A + 1

3b
)| = |f ′(−

√
A+ 1

3b
)| = 1,

and for A > 3 a straightforward computation shows that m2 <
√

A−1
3b

.

Hence, the following is true

(1) |f ′(x)| > 1 for x ∈ Ii, i = 1, 2, 3;

(2) f−1
([
−
√

A
b
,
√

A
b

])
= I1 ∪ I2 ∪ I3.

Let

Λ =
⋂

i≥0

f−i
([
−
√
A

b
,

√
A

b

])
.

The following is the well known fact for the cubic non-linearity:

Theorem 5.3.2. If A > 3 then f |Λ is conjugated to the Markov chain
Ω|B, where

B =




1 1 0
1 1 0
0 1 1


 .

6. Dynamics of the Local Map for the FitzHugh-Nagumo
Equation.

In this section we present rigorous and numerical results for the local
map for the FitzHugh-Nagumo equation (which is a two-dimensional
equation).

6.1. Rigorous Results. The local map is given by

f(u1, u2) = (u1 − Au1(u1 − θ)(u1 − 1)− αu2, βu1 + γu2),

where A, α, β > 0, γ ∈ (0, 1), and θ ∈ (0, 1) are parameters. We
modify the cubic nonlinear term in u1-coordinate outside some large
interval [−R,R] as in Section 5.2 (and we still call this map f). We

also consider the compactification map f̃ on S2.
We will show that: 1) for all sufficiently large values of A the map

f posses a Smale horseshoe, 2) for all sufficiently small values of A the

compactification map f̃ is of Morse-Smale type, and 3) for intermediate
values of A the map f a trapping region and a ”strange” attractor. We
believe that for some values this attractor is Hénon-like.
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Figure 16. The local map for the FitzHugh-Nagumo
equation with: a) one attracting fixed point; b) two at-
tracting fixed points and one saddle; c) three saddles.

It is easy to check that the map f has one fixed point, O = (0, 0), if

(6.1.27) A <
4αβ

(1− γ)(1− θ)2

and three fixed points, O = (0, 0) and Pi = (xi, yi), i = 1, 2, where

(6.1.28) xi =
1

2

(
θ + 1∓

√
(θ − 1)2 − 4αβ

A(1− γ)

)
, yi =

β

1− γxi,

if

(6.1.29) A >
4αβ

(1− γ)(1− θ)2
.

Theorem 6.1.1. There exist positive α0, β0, and A0 such that if

0 < A < A0, 0 < α < α0, 0 < β < β0, 0 < θ < 1, 0 < γ < 1,

and

A 6= 4αβ

(1− γ)(1− θ)2
,

the compactification map f̃ is a Morse-Smale diffeomorphism of the
sphere S2. Moreover,

(1) if (6.1.27) holds then the map f̃ has two fixed points correspond-
ing to 0 (attracting) and ∞ (repelling) (see Figure 16(a));
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Figure 17. The attractor for the FitzHugh-Nagumo
map: the first image of the rectangle R.

(2) if (6.1.29) holds then the map f̃ has four fixed points corre-
sponding to 0 = (0, 0) (attracting), ∞ (repelling), P1 = (x1, y1)
(saddle), and P2 = (x2, y2) (attracting) (see Figure 16(b)).

Proof. We write the map f in the form

f(u1, u2) = f0(u1, u2) + f1(u1, u2),

where f1(u1, u2) = (−αu2, βu1), f0(u1, u2) = (u1 − Au1(u1 − 1)(u1 −
θ), γu2) on [−R,R], and f0(u1, u2) is modified as above for x ∈ R\[−R,R].

Let f̃0 be the compactification of the map f0. We have that f̃ = f̃0 + f1

is a small pertrubation of f̃0 for sufficiently small α and β. It follows
from Sec. 5.2 that for γ ∈ (0, 1) and all sufficiently small A, the map f̃0

is a Morse-Smale diffeomorphism of S2. The theorem follows from the
structural stability of Morse-Smale systems (i.e., a small perturbation
of a Morse-Smale diffeomorphism is again a Morse-Smale diffeomor-
phism; see [25]). �

Theorem 6.1.2. There exist a rectangle R = [t, `] × [r, s] ⊂ R2 (for
some ` > 1 > 0 > t and s > 0 > r) and numbers

α0 > 0, 0 < A2 < A3, 0 < θ1 <
1

2
< θ2 < 1
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such that if

0 < γ < 1, 0 < α < α0, 0 < β, θ1 < θ < θ2, A2 < A < A3,

then

(1) condition (6.1.29) holds, the three fixed points, O = (0, 0) and
Pi = (xi, yi), i = 1, 2, are saddles, and they lie inside R (see
Figure 16(b,c));

(2) f(R) ⊂ R, i.e. R is a trapping region (see Figure 17).

It follows immediately that the map f has an attractor

Λ =
⋂

n≥0

fn(R).

The structure of this attractor will be discussed in the next section.

Proof. Let R = [t, `] × [r, s] ⊂ R2, ` > 1 > 0 > t, s > 0 > r, be a
rectangle.

We require that the image of the point B = (`, s) lie below the line
u2 = s and the image of the point C = (t, r) above the line u2 = r, i.e.,

β`+ γs < s, βt+ γr > r.

Hence,

(6.1.30) s >
β`

1− γ , r <
βt

1− γ .

In what follows we choose |`| < 2 and |t| < 1. Therefore, (6.1.30) can
be assured by any choice of β > 0 and 0 < γ < 1.

The images of the horizontal edges of the rectangle R are

f(AB) = (k(u1)− αs, βu1 + γs),

f(CD) = (k(u1)− αr, βu1 + γr),

for u1 ∈ [t, `], where k(u1) = u1−Au1(u1− θ)(u1− 1). We require that
the images of AB and CD lie in R , i.e., for u1 ∈ (t, `), one must have

(6.1.31) t < k(u1)− αs < k(u1)− αr < `.

We want to show that one can choose ` and t, such that (6.1.31) hold
for an appropriate choice of parameters A, θ, and α.

We first consider the case when α = 0 and θ = 1
2
. It is easy to check

that for all A > 4 all three fixed points are hyperbolic. To guarantee
(6.1.31) it is sufficient to choose ` and t such that

(6.1.32) k(c2) < `, k(c1) > t,

(6.1.33) k(t) < `, k(`) > t,
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Figure 18. The Smale horseshoe for the FitzHugh-
Nagumo map.

where c1 is the local minimum and c2 is the local maximum of k(u1).
(6.1.33) can be assured by choosing A such that

A < Â(t, `) = min

{
`− t

−t (t− 1)
(
t− 1

2

) , `− t
` (`− 1)

(
`− 1

2

)
}
.

Note that Â(−0.044, 1.045) > 4. Therefore there are t0 and `0 such

that Â(t, `) > 4 for all t0 < t < −0.044 and 1.045 < ` < `0. On the
other hand for A = 4 one has

k(c2) < 1.045, k(c1) > −0.044.

Hence, by continuity, there is 4 < Ã3 < B such that inequality (6.1.32)
holds for all 4 < A < Ã3.

Notice that maps

(α, θ) 7→ f(u1, u2), (α, θ) 7→ D(u1,u2)f

are continuous. Therefore, there is a neighborhood of θ = 1
2
, (θ1, θ2),

0 < θ1 <
1
2
< θ2 < 1, and a neighborhood of α = 0, (0, α0), α0 > 0,

such that there exist `, t, and A2 < A3 such that estimate (6.1.31) still

holds. It follows that f(R) ⊂ R. �

Theorem 6.1.3. There exists a rectangle R = [t, `] × [r, s] ⊂ R2 (for
some ` > 1 > 0 > t and s > 0 > r) and a number A4 > 0 such that for
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all A > A4 one can find α0 > 0, and β0 > 0 for which if

0 < γ < 1, 0 < θ < 1, 0 < α < α0, 0 < β < β0

then

(1) condition (6.1.29) holds, the three fixed points, O = (0, 0) and
Pi = (xi, yi), i = 1, 2 are saddles, and they lie inside R (see
Figure 18);

(2) the set

Λ =

∞⋂

n=−∞
fn(R)

is a locally maximal hyperbolic set for f .

Note that set Λ is a Smale horseshoe.

Proof. For for some s > 0 > r and ` > 1 > 0 > t set R = [t, `]× [r, s] ⊂
R2. We shall show that the following statements hold:

(1) f(R)∩R has three disjoint connected ”horizontal” components
(see Figure 18);

(2) f−1(R)∩R has three disjoint connected ”vertical” components;
(3) Λ is hyperbolic;
(4) O,P1, P2 ∈ R.

We need the following simple lemma.

Lemma 6.1.4. Let n(x) = −x(x − 1)(x− θ), h(x) = n′(x) = −3x2 +
2(θ + 1)x− θ, and x̃1, x̃2 be the roots of h(x). Then

0 < x̃1 < θ < x̃2 < 1, n(x̃1) < 0, n(x̃2) > 0,

n(x) > 0 for x ∈ (−∞, 0)∪(θ, 1) and n(x) < 0 for x ∈ (0, θ)∪(1,+∞).

To prove Statement 1 we consider the images of the following line
segments (see Figure 18):

AC = {(t, u2)| u2 ∈ [r, s]},
MN = {(k, u2)| u2 ∈ [r, s]}, 0 < k < θ,

KG = {(θ + 1

2
, u2)| u2 ∈ [r, s]}, BD = {(`, u2)| u2 ∈ [r, s]}.

We have

f(AC) = (t− At(t− 1)(t− θ)− αu2, βt+ γu2),

f(MN) = (k − Ak(k − 1)(k − θ)− αu2, βk + γu2),

f(KG) = (
θ + 1

2
+ A

(θ + 1)(θ − 1)2

8
− αu2, β

θ + 1

2
+ γu2),

f(BD) = (`− A`(`− 1)(`− θ)− αu2, β`+ γu2),



30 YAKOV PESIN AND ALEX YURCHENKO

where u2 ∈ [r, s].
For all suficiently large values of A the line segments f(BD) and

f(MN) lie to the left of the line u1 = t and the line segments f(AC)
and f(KG) lie to the right of the line u1 = `. The latter implies that

(6.1.34) θ + A
(θ + 1)(θ − 1)2

4
> `+ 2αs.

We also require that the images of four corner points A, B, C, and
D lie between lines u2 = r and u2 = s, i.e.,

(6.1.35) r <
βt

1− γ , s >
β`

1− γ .

Next we want the images of the points where the map f is not locally
one-to-one to lie outside of R. We have that

Df(u1,u2) =

(
1 + Ah(u1) −α

β γ

)
,

where h(u1) = −3u2
1 + 2(1 + θ)u1 − θ. There are two values of u1,

u1 = e1,2, such that Df(u1,u2) is not invertible:

e1,2 =
1

3
(θ + 1)∓ 1

3

√
θ2 − θ + 1 +

3

A

(
αβ

γ
+ 1

)

It is easy to check that for all A >> 1 and for sufficiently small α and
β, we have

0 < e1 < θ < e2 < 1.

Hence, the images of the two line segments

{(e1, u2) : u2 ∈ [r, s]}, {(e2, u2) : u2 ∈ [r, s]}
lie outside of the rectagle R. To complete the proof of Statement 1 we
need to show that the three disjoint “horizontal” connected components
of f(R) ∩R do not overlap. it suffices to show that

f2(u1, u2) 6= f(u
′
1, u
′
2)

for distinct (u1, u2) and (u′1, u
′
2). Indeed, βu1 +γu2 = βu′1 +γu′2 implies

u1 = u′1 + γ
β
(u′2 − u2). Since the map f is locally diffeomorphic in

f(R)∩R we have that |u′2−u2| > ε. Hence, for sufficiently small β we
obtain that |u1−u′1| becomes so large that the points u1 and u′1 cannot
both lie in R. This completes the proof of Statement 1. The second
statement follows from the first one.
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We now establish the third statement. For each p ∈ R and λ > 1
define two cones

Cu(p) =
{
v = (v1, v2) ∈ TpR2 : |v2| ≤ λ−1|v1|

}
,

Cs(p) =
{
v = (v1, v2) ∈ TpR2 : |v2| ≥ λ|v1|

}
.

Note that Cu(p) and Cs(p) depend continuously on p, Cu(p)∩Cs(p) =
{p}, and the angle between Cu(p) and Cs(p) is a non-zero constant.
For v = (v1, v2) ∈ R2 define ||v|| = ||(v1, v2)|| = max(|v1|, |v2|).
Lemma 6.1.5. There exists λ > 1 such that

(a) if p ∈ R ∩ f−1(R) and v ∈ Cu(p) then Dfpv ∈ Cu(f(p)) and
||Dfpv|| ≥ λ||v||;

(b) if p ∈ R ∩ f(R) and v ∈ Cs(p) then Df−1
p v ∈ Cs(f−1(p)) and

||Df−1
p v|| ≥ λ||v||.

Proof of the Lemma. Let p = (x, y), f(p) ∈ R. For any γ > 1 one
can define Cs,u(p). Let v = (v1, v2) ∈ Cu(p). Then we have |v1| ≥
λ|v2| > |v2| and hence, ||(v1, v2)|| = |v1|. Set (w1, w2) = Dfp(v1, v2).
Let x̃1 and x̃2 be the roots of h(x) defined in Lemma (6.1.4). For
sufficiently large A we have that f(x̃2, y) > ` and f(x̃1, y) < r. Hence,
if (x, y), f(x, y) ∈ R then h(x) 6= 0. For sufficiently large A we can
choose λ1 > 1 such that

(6.1.36)
|1 + Ah(x)| − α

β + 1
> λ1 > 1.

We have

|w2| = |βv1 + γv2| ≤ β|v1|+ |v2| ≤ (β + 1)|v1|
and

|w1| = |(1 + Ah(x))v1 − αv2| ≥ |(1 + Ah(x))||v1| − α|v2|
≥ |1 + Ah(x)||v1| − α|v1| = (|1 + Ah(x)| − α)|v1|.

Hence,

|w1| ≥
|1 + Ah(x)| − α

β + 1
|w2| ≥ λ1|w2|.

for sufficiently large A. This implies that (w1, w2) ∈ Cu(f(p)) and

||(w1, w2)|| = |w1| ≥ (1 + β)λ1|v1| > λ1|v1| = λ1||(v1, v2)||.
Statement (a) follows.

To prove Statement (b) let p = (x, y), f−1(p) ∈ R and v = (v1, v2) ∈
Cs(p). Then |v1| ≤ λ|v2| < |v2| and hence, ||v1, v2|| = |v2|. Let
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(w1, w2) = Df−1
p (v1, v2). We have

Df−1
p =

(
γ

m(x)
α

m(x)

− β
m(x)

1+Ah(x)
m(x)

)
,

where m(x) = αβ + γ(1 + Ah(x)). It follows that

|w1| =
1

|m(x)| |γv1 + αv2| ≤
1

|m(x)|(γ|v1|+ α|v2|) ≤
α+ γ

|m(x)| |v2|,

and

|w2| =
1

|m(x)| |(1 + Ah(x))v2 − βv1| ≥

1

|m(x)| |(1 + Ah(x))||v2| − β|v1| ≥
|1 + Ah(x)| − β
|m(x)| |v2|.

For sufficiently large A and sufficiently small α and β, one can choose
λ2 > 1 such that

|1 + Ah(x)| − β
|m(x)| > λ2.

It follows that

|w2| ≥
|1 + Ah(x)| − β
|m(x)| |v2| ≥

|m(x)|
γ + α

λ2|w1| ≥ λ2|w1|.

This implies that (w1, w2) ∈ Cs(f−1(p)). It follows that

||(w1, w2)|| = |w2| > λ2|v2| = λ2||(v1, v2)||.
The desired result follows if we set λ = min{λ1, λ2}. �

It follows from the lemma that Λ is hyperbolic.
We now prove Statement 4 of the theorem. Clearly, O ∈ R. It

follows from (6.1.35) and (6.1.34) that

A >
4(1 + 2αs− θ)
(θ + 1)(θ − 1)2

>
4(1 + 2 αβ

1−γ − θ)
(θ + 1)(θ − 1)2

>
4αβ

(1− γ)(1− θ)2
.

Thus the condition (6.1.29) holds, and, hence, there are three fixed
points, O and Pi, i = 1, 2. Finally, one has

θ < x1 < x2 < 1,
βθ

1− γ < y1 < y2 <
β

1− γ ,

for xi and yi, i = 1, 2, defined by (6.1.28). It follows from (6.1.35) that

0 < y1 < y2 < s.

Hence, P1, P2 ∈ R. �
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Figure 19. The bifurcarion diagram for the FitzHugh-
Nagumo map, γ = 0.1, α = 0.01, β = 0.02, θ = 0.51.

Figure 20. The bifurcarion diagram for the FitzHugh-
Nagumo map, γ = 0.52, α = 0.01, β = 0.02, θ = 0.51.

Figure 21. The bifurcarion diagram for the FitzHugh-
Nagumo map, γ = 0.9, α = 0.01, β = 0.02, θ = 0.51.
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Figure 22. The bifurcarion diagram for the Nagumo
map, θ = 0.51.

Figure 23. The attractor for the FitzHugh-Nagumo
map, γ = 0.2, α = 0.01, β = 0.02, θ = 0.51, A = 6.1,
R = [−0.21, 1.23]× [−0.02, 0.031].

6.2. Bifurcation Diagrams for the FitzHugh-Nagumo Equa-
tion. In this section we give a computer-assisted analysis of the tran-
sition from the Morse-Smale type to the existence of the Hénon-like
attractor as A increases.

Set α = 0.01, β = 0.02, and θ = 0.51 which satisfy the requirments of
Theorems 6.1.1 - 6.1.3. Observe that the bifurcation diagrams appear
to be identical for different values of γ ( see Figure 19 - 21). More-
over, the bifurcation diagram for the FitzHugh-Nagumo equation (for
the different values of γ) and the bifurcation diagram for the Nagumo
equation (see 5.2) are also identical. In what follows we set γ = 0.2.

We have only one fixed point for A < 4.1649313×10−3 and three for
A > 4.1649313× 10−3 (see (6.1.27) and (6.1.29)).
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Figure 24. The attractor for the FitzHugh-Nagumo
map, γ = 0.2, α = 0.01, β = 0.02, θ = 0.51, A = 6.4,
R = [−0.21, 1.23]× [−0.02, 0.031].

Figure 25. The attractor for the FitzHugh-Nagumo
map, γ = 0.2, α = 0.01, β = 0.02, θ = 0.51, A = 7.75,
R = [−0.21, 1.21]× [−0.02, 0.031].

It follows from Theorem 6.1.1 that for small values of A the system
is of Morse-Smale type. As A increases we observe two sequences of
period doubling bifurcations around A = 4. The first sequence arises
from O and the second one from P2. It follows from Theorem 6.1.2
that for A between approximately 4 and 7.8 there is a trapping region
(rectangle) R, containing all three fixed points, and an attractor inside
R.

At first the attractor contains only finitely many attracting and hy-
perbolic periodic points and their unstable manifolds. As A increases
the period doubling goes on and, as we believe, ends up with two
Feigenbaum attractors (in general, these attractors appear for different
values of A), one around P2 and another one around O.



36 YAKOV PESIN AND ALEX YURCHENKO

When A exceeds the value A = 6 two Hénon-like attractors appear
around the same two fixed points, P2 and O (they may correspond to
different values of A). In each of these attractors the unstable manifold
of the corresponding fixed point is dense The basins of attraction of
these attractors are separated by the stable separatrix of the fixed point
P1 (see Figure 23).

For A ≈ 6.3 the unstable separatrix of the fixed point O interesects
the stable separatrix of P1 and all orbits in R will go to the only Hénon-
like attractor around P2 (see Figure 24). This does not happen in the
symetric case, θ = 0.5.

As A increases even further (approximately above 6.5), the two at-
tractors collide and the unstable separatrices of P2 and O are dense in
the resulting Hénon-like attractor (see Figure 25).

It follows from Theorem 6.1.3 that for large values of A the system
has a horseshoe.

Appendix . Preliminaries (see [15], [25], [23])

Consider a C1 diffeomorphism f : M →M of a compact smooth Rie-
mannian manifold M . We denote by Ω(f) the set of all nonwandering
points and by Per(f) the set of periodic points of f .

Recall that a diffeomorphism (endomorphism) f is called a Morse-
Smale diffeomorphism (endomorphism) if

(1) Ω(f) = Per(f);
(2) every periodic point is hyperbolic;
(3) the global (local) stable and unstable manifolds of periodic

points intersect transversally.

If a map f : Rd → Rd has∞ as a fixed point (repelling or attracting),

one can define the compactification map f̃ : Sd → Sd by

f̃ = P ◦ f ◦ P−1,

where P : Sd\{N} → Rd is the stereographic projection and N is the
North Pole of Sd.
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